Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bishop, S.A.; Neary, J.P. Assessing prefrontal cortex oxygenation after sport concussion with near-infrared spectroscopy. Clin. Physiol. Funct. Imaging 2018, 38, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, D.H.; Nowinski, C.J.; McKee, A.C.; Cantu, R.C. The epidemiology of sport-related concussion. Clin. Sports Med. 2011, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Len, T.K.; Neary, J.P.; Asmundson, G.J.; Goodman, D.G.; Bjornson, B.; Bhambhani, Y.N. Cerebrovascular reactivity impairment after sport-induced concussion. Med. Sci. Sports Exerc. 2011, 43, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- La Fountaine, M.F. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury. Int. J. Psychophysiol. 2018, 132, 155–166. [Google Scholar] [CrossRef]
- Bishop, S.A.; Dech, R.T.; Guzik, P.; Neary, J.P. Heart rate variability and implication for sport concussion. Clin. Physiol. Funct. Imaging 2018, 38, 733–742. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75, S24–S33. [Google Scholar] [CrossRef]
- Romeu-Mejia, R.; Giza, C.C.; Goldman, J.T. Concussion Pathophysiology and Injury Biomechanics. Curr. Rev. Musculoskelet. Med. 2019, 12, 105–116. [Google Scholar] [CrossRef]
- Chancellor, S.E.; Franz, E.S.; Minaeva, O.V.; Goldstein, L.E. Pathophysiology of Concussion. Semin. Pediatr. Neurol. 2019, 30, 14–25. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvorak, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef]
- Lunkova, E.; Guberman, G.I.; Ptito, A.; Saluja, R.S. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum. Brain Mapp. 2021, 42, 5477–5494. [Google Scholar] [CrossRef]
- Mutch, W.A.; Ellis, M.J.; Graham, M.R.; Wourms, V.; Raban, R.; Fisher, J.A.; Mikulis, D.; Leiter, J.; Ryner, L. Brain MRI CO2 stress testing: A pilot study in patients with concussion. PLoS ONE 2014, 9, e102181. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Lucke-Wold, B.; Patel, C.; Abou-Al-Shaar, H.; Moor, R.; Mehkri, Y.; Still, M.; Goldman, M.; Miller, P.; Robicsek, S. What are we measuring? A refined look at the process of disrupted autoregulation and the limitations of cerebral perfusion pressure in preventing secondary injury after traumatic brain injury. Clin. Neurol. Neurosurg. 2022, 221, 107389. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Charron, J.; Soto-Catalan, C.; Marcotte L’Heureux, V.; Comtois, A.S. Unclear outcomes of heart rate variability following a concussion: A systematic review. Brain Inj. 2021, 35, 987–1000. [Google Scholar] [CrossRef]
- Neary, J.P.; Singh, J.; Bishop, S.A.; Dech, R.T.; Butz, M.J.A.; Len, T.K. An Evidence-Based Objective Study Protocol for Evaluating Cardiovascular and Cerebrovascular Indices Following Concussion: The Neary Protocol. Methods Protoc. 2019, 2, 23. [Google Scholar] [CrossRef]
- Singh, J.; Bhagaloo, L.; Piskorski, J.; Neary, J.P. Effects of phytocannabinoids on heart rate variability and blood pressure variability in female post-concussion syndrome patients: Case series. Can. J. Physiol. Pharmacol. 2022, 100, 192–196. [Google Scholar] [CrossRef]
- La Fountaine, M.F.; Hohn, A.N.; Testa, A.J.; Weir, J.P. Attenuation of Spontaneous Baroreceptor Sensitivity after Concussion. Med. Sci. Sports Exerc. 2019, 51, 792–797. [Google Scholar] [CrossRef]
- Swenne, C.A. Baroreflex sensitivity: Mechanisms and measurement. Neth. Heart J. 2013, 21, 58–60. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Wesseling, K.H.; Wykretowicz, A.; Wysocki, H. Correlations between the Poincare plot and conventional heart rate variability parameters assessed during paced breathing. J. Physiol. Sci. 2007, 57, 63–71. [Google Scholar] [CrossRef]
- Goldstein, B.; Toweill, D.; Lai, S.; Sonnenthal, K.; Kimberly, B. Uncoupling of the autonomic and cardiovascular systems in acute brain injury. Am. J. Physiol. 1998, 275, R1287–R1292. [Google Scholar] [CrossRef]
- Papaioannou, V.; Giannakou, M.; Maglaveras, N.; Sofianos, E.; Giala, M. Investigation of heart rate and blood pressure variability, baroreflex sensitivity, and approximate entropy in acute brain injury patients. J. Crit. Care 2008, 23, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Neary, J.P.; Singh, J.; Christiansen, J.P.; Teckchandani, T.A.; Potter, K.L. Causal Link between Ventricular Ectopy and Concussion. Case Rep. Med. 2020, 2020, 7154120. [Google Scholar] [CrossRef] [PubMed]
- Krzyzaniak, H.; Fatehi Hassanabad, A. Cardiovascular sequelae of sports-related concussions. PMR 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Krauze, T.; Narkiewicz, K.; Wykretowicz, A.; Wysocki, H. Asymmetric features of short-term blood pressure variability. Hypertens. Res. 2010, 33, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Saul, J.P.; Di Rienzo, M.; Mancia, G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 1995, 25, 1276–1286. [Google Scholar] [CrossRef]
- Ellingson, C.J.; Singh, J.; Ellingson, C.A.; Dech, R.; Piskorski, J.; Neary, J.P. The influence of external stressors on physiological testing: Implication for return-to-play protocols. Curr. Res. Physiol. 2022, 5, 240–245. [Google Scholar] [CrossRef]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): Background and rationale. Br. J. Sports Med. 2017, 51, 848–850. [Google Scholar] [CrossRef]
- Burma, J.S.; Lapointe, A.P.; Soroush, A.; Oni, I.K.; Smirl, J.D.; Dunn, J.F. The validity and reliability of an open source biosensing board to quantify heart rate variability. Heliyon 2021, 7, e07148. [Google Scholar] [CrossRef]
- Smolensky, M.H.; Hermida, R.C.; Portaluppi, F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med. Rev. 2017, 33, 4–16. [Google Scholar] [CrossRef]
- Laguna, P.; Moody, G.B.; Mark, R.G. Power spectral density of unevenly sampled data by least-square analysis: Performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 1998, 45, 698–715. [Google Scholar] [CrossRef]
- Mercier, L.J.; Batycky, J.; Campbell, C.; Schneider, K.; Smirl, J.; Debert, C.T. Autonomic dysfunction in adults following mild traumatic brain injury: A systematic review. NeuroRehabilitation 2022, 50, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Nunan, D.; Sandercock, G.R.; Brodie, D.A. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol. 2010, 33, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Ellingson, C.J.; Ellingson, C.A.; Scott, P.; Neary, J.P. Cardiac cycle timing and contractility following acute sport-related concussion. Res. Sports Med. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
Baseline | Acute | Z-Statistic | p-Value | |
---|---|---|---|---|
LF-HRV (ms2) | 60.5 (60.2) | 61.8 (80.7) | −1.1 | 0.28 |
HF-HRV (ms2) | 4.8 (8.0) | 5.5 (7.9) | −1.1 | 0.26 |
TP-HRV (ms2) | 72.7 (69.5) | 75.5 (87.9) | −1.1 | 0.26 |
LF/HF | 12.1 (11.6) | 13.3 (6.0) | −0.3 | 0.77 |
SDNN * (ms) | 112.5 (41.2) | 107.9 (46.4) | −2.0 | 0.045 |
SD1 (ms) | 46.4 (32.4) | 43.5 (38.1) | −1.4 | 0.17 |
SD2 * (ms) | 151.6 (54.3) | 147.2 (58.4) | −2.1 | 0.039 |
BRS-down * (ms/mmHg) | 14.5 (6.2) | 16.3 (9.1) | −2.1 | 0.036 |
BRS-up * (ms/mmHg) | 20.7 (14.4) | 26.0 (11.7) | −2.0 | 0.050 |
BRS-pooled (ms/mmHg) | 17.4 (8.4) | 21.3 (10.7) | −1.9 | 0.060 |
HF-BPV (mmHg2) | 4.2 (4.8) | 3.8 (4.7) | −1.1 | 0.250 |
LF-BPV ** (mmHg2) | 88.3 (57.5) | 69.4 (67.6) | −2.6 | 0.009 |
TP-BPV * (mmHg2) | 107.2 (79.4) | 106.0 (82.3) | −2.3 | 0.020 |
SCAT Symptoms | 95% CI (0,1) | 95% CI (4,15) | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellingson, C.J.; Singh, J.; Ellingson, C.A.; Sirant, L.W.; Krätzig, G.P.; Dorsch, K.D.; Piskorski, J.; Neary, J.P. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life 2022, 12, 1400. https://doi.org/10.3390/life12091400
Ellingson CJ, Singh J, Ellingson CA, Sirant LW, Krätzig GP, Dorsch KD, Piskorski J, Neary JP. Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion. Life. 2022; 12(9):1400. https://doi.org/10.3390/life12091400
Chicago/Turabian StyleEllingson, Chase J., Jyotpal Singh, Cody A. Ellingson, Luke W. Sirant, Gregory P. Krätzig, Kim D. Dorsch, Jaroslaw Piskorski, and J. Patrick Neary. 2022. "Alterations in Baroreflex Sensitivity and Blood Pressure Variability Following Sport-Related Concussion" Life 12, no. 9: 1400. https://doi.org/10.3390/life12091400