Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance
Abstract
:1. Basics of Biochemistry, Physiology and Diagnostic Contribution of Cardiac Troponins
Materials and Methods
2. Arterial Hypertension as a Significant Cause of Increased CTs: Mechanisms of CMCs Damage and CTs Increase
2.1. Myocardial Hypertrophy
2.2. Apoptosis of CMCs
2.3. Damage to CMCs Cell Membranes and Increased Permeability
2.4. Effect of Blood Pressure on Glomerular Filtration Rate and Elimination of CTs from the Bloodstream
3. Predictive Significance of CTs in Patients with Arterial Hypertension
4. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2018, 16, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Grigorieva, Y.V.; Pavlova, T.V.; Duplyakov, D.V. Diagnostic significance of complete blood count in cardiovascular patients; Samara State Medical University. Russ. J. Cardiol. 2020, 25, 3923. [Google Scholar] [CrossRef]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Diagnostic role and methods of detection of cardiac troponins: An opinion from historical and current points of view. Curr. Cardiol. Rev. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Hasić, S.; Kiseljaković, E.; Jadrić, R.; Radovanović, J.; Winterhalter-Jadrić, M. Cardiac troponin I: The gold standard in acute myocardial infarction diagnosis. Bosn. J. Basic Med. Sci. 2003, 3, 41–44. [Google Scholar] [CrossRef]
- Santaló, M.; Martin, A.; Velilla, J.; Povar, J.; Temboury, F.; Balaguer, J.; Muñoz, M.; Calmarza, P.; Ortiz, C.; Carratalá, A.; et al. Using High-sensitivity Troponin T: The Importance of the Proper Gold Standard. Am. J. Med. 2013, 126, 709–717. [Google Scholar] [CrossRef]
- Chaulin, A.; Duplyakov, D. Analytical Review of Modern Information on the Physiological and Pathochemical Mechanisms of the Release of Cardiospecific Proteins from Muscle Tissue, Methodology and Technologies of Their Research, Interpretation of the Results. East. Eur. 2022, 11, 78–97. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Marston, S.; Zamora, J.E. Troponin structure and function: A view of recent progress. J. Muscle Res. Cell Motil. 2019, 41, 71–89. [Google Scholar] [CrossRef]
- Chaulin, A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination. Vasc. Health Risk Manag. 2021, 17, 299–316. [Google Scholar] [CrossRef]
- Chaulin, A.M. False-Positive Causes in Serum Cardiac Troponin Levels. J. Clin. Med. Res. 2022, 14, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Parvatiyar, M.S.; Pinto, J.R.; Dweck, D.; Potter, J.D. Cardiac Troponin Mutations and Restrictive Cardiomyopathy. J. Biomed. Biotechnol. 2010, 2010, 350706. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, J.; Hey, T.; Lambrecht, S. A Systematic Review of Phenotypic Features Associated With Cardiac Troponin I Mutations in Hereditary Cardiomyopathies. Can. J. Cardiol. 2015, 31, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Duplyakov, D.V.; Chaulin, A.M. Mutations of heart troponines, associated with cardiomyopathies. Kardiol. Nov. Mneniya Obuchenie Cardiol. News Opin. Train. 2019, 7, 8–17. (In Russian) [Google Scholar]
- Tobacman, L.S.; Cammarato, A. Cardiomyopathic troponin mutations predominantly occur at its interface with actin and tropomyosin. J. Gen. Physiol. 2021, 153, e202012815. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC); American College of Cardiology (ACC); American Heart Association (AHA); et al. Task Force for the Universal Definition of Myocardial Infarction. Fourth Univers. Defin. Myocard. Infarct. Circ. 2018, 138, e618–e651. [Google Scholar]
- Cardiology, R.S.O. 2020 Clinical practice guidelines for Acute ST-segment elevation myocardial infarction. Russ. J. Cardiol. 2020, 25, 4103. [Google Scholar] [CrossRef]
- Barbarash, O.L.; Duplyakov, D.V.; Zateischikov, D.A.; Panchenko, E.P.; Shakhnovich, R.M.; Yavelov, I.S.; Yakovlev, A.N.; Abugov, S.A.; Alekyan, B.G.; Arkhipov, M.V.; et al. 2020 Clinical practice guidelines for Acute coronary syndrome without ST segment elevation. Russ. J. Cardiol. 2021, 26, 4449. (In Russian) [Google Scholar] [CrossRef]
- Dubin, R.F.; The CRIC Study Investigators; Li, Y.; He, J.; Jaar, B.G.; Kallem, R.; Lash, J.P.; Makos, G.; Rosas, E.S.; Soliman, E.Z.; et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: A cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013, 14, 229. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Comorbidity in chronic obstructive pulmonary disease and cardiovascular disease. Cardiovasc. Ther. Prev. 2021, 20, 2539. (In Russian) [Google Scholar] [CrossRef]
- Nolte, P.D.D.C.H.; Scheitz, J.; Endres, M. Troponinerhöhung nach ischämischem Schlaganfall. Med. Klin. Intensiv. Notfallmedizin 2015, 112, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russ. Open Med. J. 2020, 9, 305. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Arrhythmogenic effects of doxorubicin. Complex Issues Cardiovasc. Dis. 2020, 9, 69–80. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. Cardioprotective Strategies for Doxorubicin-induced Cardiotoxicity: Present and Future. Ration. Pharmacother. Cardiol. 2022, 18, 103–112. (In Russian) [Google Scholar] [CrossRef]
- Rezende, P.C.; Everett, B.M.; Brooks, M.; Vlachos, H.; Orchard, T.J.; Frye, R.L.; Bhatt, D.L.; Hlatky, M.A. Hypoglycemia and Elevated Troponin in Patients With Diabetes and Coronary Artery Disease. J. Am. Coll. Cardiol. 2018, 72, 1778–1786. [Google Scholar] [CrossRef]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. Life 2021, 11, 1175. [Google Scholar] [CrossRef]
- Eggers, K.M.; Lindahl, B. Application of Cardiac Troponin in Cardiovascular Diseases Other Than Acute Coronary Syndrome. Clin. Chem. 2017, 63, 223–235. [Google Scholar] [CrossRef]
- Chaulin, A.M. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int. J. Mol. Sci. 2021, 22, 10928. [Google Scholar] [CrossRef]
- Stavroulakis, G.A.; George, K.P. Exercise-induced release of troponin. Clin. Cardiol. 2020, 43, 872–881. [Google Scholar] [CrossRef]
- Chaulin, A.M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life 2021, 11, 914. [Google Scholar] [CrossRef]
- Lindner, G.; Pfortmueller, C.; Braun, C.T.; Exadaktylos, A.K. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: A cross-sectional analysis. Intern. Emerg. Med. 2013, 9, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Dupliakov, D.V. Physical Activity And Cardiac Markers: Part 1. Human. Sport Med. 2022, 22, 15–28. [Google Scholar] [CrossRef]
- Lazzarino, A.I.; Hamer, M.; Gaze, D.; Collinson, P.; Steptoe, A. The Association Between Cortisol Response to Mental Stress and High-Sensitivity Cardiac Troponin T Plasma Concentration in Healthy Adults. J. Am. Coll. Cardiol. 2013, 62, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Cardiac troponins: Current information on the main analytical characteristics of determination methods and new diagnostic possibilities. Medwave 2021, 21, e002132. [Google Scholar] [CrossRef]
- Rocco, E.; La Rosa, G.; Liuzzo, G.; Biasucci, L.M. High-sensitivity cardiac troponin assays and acute coronary syndrome: A matter of sex? J. Cardiovasc. Med. 2019, 20, 504–509. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakova, P.D.; Duplyakov, D.V. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russ. J. Cardiol. 2020, 25, 4061. (In Russian) [Google Scholar] [CrossRef]
- Van Der Linden, N.; Hilderink, J.M.; Cornelis, T.; Kimenai, D.M.; Klinkenberg, L.J.; Van Doorn, W.P.; Litjens, E.J.; Van Suijlen, J.D.; van Loon, L.J.; Bekers, O.; et al. Twenty-Four-Hour Biological Variation Profiles of Cardiac Troponin I in Individuals with or without Chronic Kidney Disease. Clin. Chem. 2017, 63, 1655–1656. [Google Scholar] [CrossRef]
- Zaninotto, M.; Padoan, A.; Mion, M.M.; Marinova, M.; Plebani, M. Short-term biological variation and diurnal rhythm of cardiac troponin I (Access hs-TnI) in healthy subjects. Clin. Chim. Acta 2020, 504, 163–167. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. High-sensitivity cardiac troponins: Circadian rhythms. Cardiovasc. Ther. Prev. 2021, 20, 2639. [Google Scholar] [CrossRef]
- Clerico, A.; Ripoli, A.; Zaninotto, M.; Masotti, S.; Musetti, V.; Ciaccio, M.; Aloe, R.; Rizzardi, S.; Dittadi, R.; Carrozza, C.; et al. Head-to-head comparison of plasma cTnI concentration values measured with three high-sensitivity methods in a large Italian population of healthy volunteers and patients admitted to emergency department with acute coronary syndrome: A multi-center study. Clin. Chim. Acta 2019, 496, 25–34. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Padoan, A.; Masotti, S.; Musetti, V.; Prontera, C.; Ndreu, R.; Zucchelli, G.; Passino, C.; Migliardi, M.; et al. Evaluation of analytical performance of immunoassay methods for cTnI and cTnT: From theory to practice. Adv. Clin. Chem. 2019, 93, 239–262. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Christenson, R.H.; Greene, D.N.; Jaffe, A.S.; Kavsak, P.A.; Ordonez-Llanos, J.; Apple, F.S. Clinical Laboratory Practice Recommendations for the Use of Cardiac Troponin in Acute Coronary Syndrome: Expert Opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2018, 64, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: A review from the historical and modern points of view. Orv. Hetil. 2022, 163, 12–20. [Google Scholar] [CrossRef]
- Clerico, A.; Padoan, A.; Zaninotto, M.; Passino, C.; Plebani, M. Clinical relevance of biological variation of cardiac troponins. Clin. Chem. Lab. Med. 2020, 59, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Lyngbakken, M.N.; Vigen, T.; Ihle-Hansen, H.; Brynildsen, J.; Berge, T.; Rønning, O.M.; Tveit, A.; Røsjø, H.; Omland, T. Cardiac troponin I measured with a very high sensitivity assay predicts subclinical carotid atherosclerosis: The Akershus Cardiac Examination 1950 Study. Clin. Biochem. 2021, 93, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Wu, Y.; Hazen, S.L.; Tang, W.H.W. Prognostic value of subclinical myocardial necrosis using high-sensitivity cardiac troponin T in patients with prediabetes. Cardiovasc. Diabetol. 2021, 20, 171. [Google Scholar] [CrossRef]
- Laufer, E.M.; Hofstra, L. Subclinical Thrombotic Events as a Mechanism for Troponin Release? J. Am. Coll. Cardiol. 2018, 71, 1056. [Google Scholar] [CrossRef]
- Hayama, H.; Ide, S.; Moroi, M.; Kitami, Y.; Bekki, N.; Kubota, S.; Uemura, Y.; Hara, H.; Kutsuna, S.; Ohmagari, N.; et al. Elevated high-sensitivity troponin is associated with subclinical cardiac dysfunction in patients recovered from coronavirus disease 2019. Glob. Health Med. 2021, 3, 95–101. [Google Scholar] [CrossRef]
- Chaulin, A.M. Current understanding of cardiac troponins metabolism: A narrative review. Curr. Med. Chem. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, S.; Kobat, M.A.; Kalayci, M.; Eren, M.N.; Yilmaz, M.; Kuloglu, T.; Gul, E.; Secen, O.; Alatas, O.D.; et al. Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides 2014, 56, 141–145. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Karslyan, L.S.; Bazyuk, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia 2019, 59, 66–75. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary troponin I as an indicator of myocardial infarction. Indian J. Med Res. 2013, 138, 861–865. [Google Scholar] [PubMed]
- Chaulin, A.M.; Duplyakova, P.D.; Bikbaeva, G.R.; Tukhbatova, A.A.; Grigorieva, E.V.; Duplyakov, D.V. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russ. J. Cardiol. 2020, 25, 3814. (In Russian) [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2012, 19, 180–184. [Google Scholar] [CrossRef]
- Klichowska-Palonka, M.; Załęska-Chromińska, K.; Bachanek, T. Possibility of using saliva as a diagnostic test material in cardiovascular diseases. Wiadomości Lek. 2015, 68, 354–357. [Google Scholar]
- Chen, J.-Y.; Lee, S.-Y.; Li, Y.-H.; Lin, C.-Y.; Shieh, M.-D.; Ciou, D.-S. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J. Clin. Med. 2020, 9, 3917. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Austria, J.A.; Pierce, G.N. Alarming Prevalence of Emergency Hypertension Levels in the General Public Identified by a Hypertension Awareness Campaign. Am. J. Hypertens. 2017, 30, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Harvell, B.; Henrie, N.; Ernst, A.A.; Weiss, S.J.; Oglesbee, S.; Sarangarm, D.; Hernandez, L. The meaning of elevated troponin I levels: Not always acute coronary syndromes. Am. J. Emerg. Med. 2015, 34, 145–148. [Google Scholar] [CrossRef]
- Uçar, H.; Gür, M.; Kivrak, A.; Koyunsever, N.Y.; Seker, T.; Akilli, R.E.; Türkoğlu, C.; Kaypakli, O.; Sahin, D.Y.; Elbasan, Z.; et al. High-sensitivity cardiac troponin T levels in newly diagnosed hypertensive patients with different left ventricle geometry. Blood Press. 2013, 23, 240–247. [Google Scholar] [CrossRef]
- Afonso, L.; Bandaru, H.; Rathod, A.; Badheka, A.; Kizilbash, M.A.; Zmily, H.; Jacobsen, G.; Chattahi, J.; Mohamad, T.; Koneru, J.; et al. Prevalence, Determinants, and Clinical Significance of Cardiac Troponin-I Elevation in Individuals Admitted for a Hypertensive Emergency. J. Clin. Hypertens. 2011, 13, 551–556. [Google Scholar] [CrossRef]
- Pervan, P.; Svaguša, T.; Prkačin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae A J. Intensiv. Care Emerg. Med. 2017, 13, 3917. [Google Scholar] [CrossRef]
- Chaulin, A.M. Diagnostic value of highly sensitive cardiac troponins and mechanisms of their increase in serum and urine in arterial hypertension. Riv. Ital. Med. Lab. 2021, 17, 99–107. [Google Scholar]
- Potkonjak, A.M.; Rudman, S.S.; Gabaj, N.N.; Kuna, K.; Košec, V.; Stanec, Z.; Zovak, M.; Tučkar, N.; Djaković, I.; Prkačin, I.; et al. Urinary troponin concentration as a marker of cardiac damage in pregnancies complicated with preeclampsia. Med. Hypotheses 2020, 144, 110252. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.; Bergmann, O. Dating the Heart: Exploring Cardiomyocyte Renewal in Humans. Physiology 2017, 32, 33–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for Cardiomyocyte Renewal in Humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef]
- Chaulin, A.; Karslyan, L.S.; Grigorieva, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Metabolism of cardiac troponins (literature review). Complex Issues Cardiovasc. Dis. 2019, 8, 103–115. [Google Scholar] [CrossRef]
- Gore, M.O.; Seliger, S.L.; Defilippi, C.R.; Nambi, V.; Christenson, R.H.; Hashim, I.A.; Hoogeveen, R.; Ayers, C.R.; Sun, W.; McGuire, D.K.; et al. Age- and Sex-Dependent Upper Reference Limits for the High-Sensitivity Cardiac Troponin T Assay. J. Am. Coll. Cardiol. 2014, 63, 1441–1448. [Google Scholar] [CrossRef]
- Giannitsis, E.; Mueller-Hennessen, M.; Zeller, T.; Schuebler, A.; Aurich, M.; Bieneram, M.; Vafaie, M.; Stoyanov, K.M.; Ochs, M.; Riffel, J.; et al. Gender-specific reference values for high-sensitivity cardiac troponin T and I in well-phenotyped healthy individuals and validity of high-sensitivity assay designation. Clin. Biochem. 2019, 78, 18–24. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc. Ther. Prev. 2021, 20, 2590. (In Russian) [Google Scholar] [CrossRef]
- Neal, R.C.; Ferdinand, K.C.; Ycas, J.; Miller, E. Relationship of Ethnic Origin, Gender, and Age to Blood Creatine Kinase Levels. Am. J. Med. 2009, 122, 73–78. [Google Scholar] [CrossRef]
- McEvoy, J.W.; Chen, Y.; Nambi, V.; Ballantyne, C.M.; Sharrett, A.R.; Appel, L.J.; Post, W.S.; Blumenthal, R.S.; Matsushita, K.; Selvin, E. High-Sensitivity Cardiac Troponin T and Risk of Hypertension. Circulation 2015, 132, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Stabouli, S.; Kotsis, V.; Rizos, Z.; Toumanidis, S.; Karagianni, C.; Constantopoulos, A.; Zakopoulos, N. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr. Nephrol. 2009, 24, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Li, B.; Kajstura, J.; Li, P.; Wolin, M.S.; Sonnenblick, E.H.; Hintze, T.H.; Olivetti, G.; Anversa, P. Stretch-induced programmed myocyte cell death. J. Clin. Investig. 1995, 96, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Weil, B.R.; Suzuki, G.; Young, R.F.; Iyer, V.; Canty, J.M. Troponin Release and Reversible Left Ventricular Dysfunction After Transient Pressure Overload. J. Am. Coll. Cardiol. 2018, 71, 2906–2916. [Google Scholar] [CrossRef] [PubMed]
- Dalal, S.; Connelly, B.; Singh, M.; Singh, K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS ONE 2018, 13, e0196626. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Xiao, L.; Remondino, A.; Sawyer, D.B.; Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J. Cell. Physiol. 2001, 189, 257–265. [Google Scholar] [CrossRef]
- Nikonorova, M.A.; Karbysheva, N.V.; Kozhevnikova, G.M.; Mamaev, A.N.; Shevchenko, V.V.; Beskhlebova, O.V. Parenteral viral hepatitis in people with hemophilia: Ways to solve the problem. Bull. Med. Sci. 2019, 1, 52–56. [Google Scholar] [CrossRef]
- Evdokimova, N.E.; Tsygankova, O.V.; Latyntseva, L.D. Evaluation of plasma creatine phosphokinase as a diagnostic dilemma. Russ. Med. J. 2021, 29, 18–25. [Google Scholar]
- Fournier, S.; Iten, L.; Marques-Vidal, P.; Boulat, O.; Bardy, D.; Beggah, A.; Calderara, R.; Morawiec, B.; Lauriers, N.; Monney, P.; et al. Circadian rhythm of blood cardiac troponin T concentration. Clin. Res. Cardiol. 2017, 106, 1026–1032. [Google Scholar] [CrossRef]
- Suárez-Barrientos, A.; López-Romero, P.; Vivas, D.; Castro-Ferreira, F.; Núñez-Gil, I.; Franco, E.; Ruiz-Mateos, B.; García-Rubira, J.C.; Fernández-Ortiz, A.; Macaya, C.; et al. Circadian variations of infarct size in acute myocardial infarction. Heart 2011, 97, 970–976. [Google Scholar] [CrossRef]
- Chaulin, A.; Duplyakov, D. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers. Int. J. Biomed. 2020, 10, 198–205. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Duplyakov, D.V. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae A J. Intensiv. Care Emerg. Med. 2021, 17, 79–84. [Google Scholar] [CrossRef]
- Kapiotis, S.; Jilma, B.; Quehenberger, P.; Ruzicka, K.; Handler, S.; Speiser, W. Morning Hypercoagulability and Hypofibrinolysis. Circulation 1997, 96, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Salvagno, G.L.; Lippi, G. Circadian Variation within Hemostasis: An Underrecognized Link between Biology and Disease? Semin. Thromb. Hemost. 2009, 35, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins: Current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa 2021, 63, 486–493. [Google Scholar] [CrossRef]
- Zenina, O.Y.; I Makarova, I.; Ignatova, Y.P.; Aksenova, A.V. Chronophysiology and chronopathology of cardiovascular system (Literature Review). Hum. Ecol. 2017, 24, 25–33. [Google Scholar] [CrossRef]
- Tsareva, Y.O.; Mayskova, E.A.; Fedotov, E.A.; Shvarts, Y.G. Circadian rhythms of thyroid hormones in patients with ischemic heart disease, arterial hypertension, and atrial fibrillation. Kardiologiia 2019, 59, 23–29. [Google Scholar] [CrossRef]
- Chaulin, A.M.; Grigorieva, J.V.; Suvorova, G.N.; Duplyakov, D.V. Experimental Modeling Of Hypothyroidism: Principles, Methods, Several Advanced Research Directions in Cardiology. Russ. Open Med. J. 2021, 10, 311. [Google Scholar] [CrossRef]
- Chaulin, A.M. Biology of Cardiac Troponins: Emphasis on Metabolism. Biology 2022, 11, 429. [Google Scholar] [CrossRef]
- Hessel, M.H.M.; Atsma, D.E.; van der Valk, E.J.M.; Bax, W.H.; Schalij, M.J.; van der Laarse, A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2007, 455, 979–986. [Google Scholar] [CrossRef]
- Chaulin, A.M. Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis. Int. J. Biomed. 2021, 11, 250–259. [Google Scholar] [CrossRef]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care 2017, 7, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Cardinaels, E.P.M.; Mingels, A.M.A.; van Rooij, T.; Collinson, P.O.; Prinzen, F.W.; van Dieijen-Visser, M.P. Time-Dependent Degradation Pattern of Cardiac Troponin T Following Myocardial Infarction. Clin. Chem. 2013, 59, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Mingels, A.M.; Cardinaels, E.P.; Broers, N.J.; van Sleeuwen, A.; Streng, A.S.; van Dieijen-Visser, M.P.; Kooman, J.P.; Bekers, O. Cardiac Troponin T: Smaller Molecules in Patients with End-Stage Renal Disease than after Onset of Acute Myocardial Infarction. Clin. Chem. 2017, 63, 683–690. [Google Scholar] [CrossRef]
- Vroemen, W.H.; Mezger, S.T.; Masotti, S.; Clerico, A.; Bekers, O.; de Boer, D.; Mingels, A. Cardiac Troponin T: Only Small Molecules in Recreational Runners After Marathon Completion. J. Appl. Lab. Med. 2019, 3, 909–911. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Kazmi, S.; Jalal-Ud-Din, M.; Qasim, M.I.; Jadoon, Z.G. Frequency of Elevated Troponin T in Patients of Hronic Renal Failure Without Clinically Suspected Acute Myocardial Infarction. J. Ayub. Med. Coll. Abbottabad. 2019, 31, 364–367. [Google Scholar]
- Long, B.; Belcher, C.N.; Koyfman, A.; Bronner, J.M. Interpreting troponin in renal disease: A narrative review for emergency clinicians. Am. J. Emerg. Med. 2019, 38, 990–997. [Google Scholar] [CrossRef]
- Zou, L.; Sun, W. Human Urine Proteome: A Powerful Source for Clinical Research. Adv. Exp. Med. Biol. 2014, 845, 31–42. [Google Scholar] [CrossRef]
- Maeda, H.; Michiue, T.; Zhu, B.-L.; Ishikawa, T.; Quan, L. Analysis of cardiac troponins and creatine kinase MB in cerebrospinal fluid in medicolegal autopsy cases. Leg. Med. 2009, 11, S266–S268. [Google Scholar] [CrossRef]
- Wang, Q.; Michiue, T.; Ishikawa, T.; Zhu, B.-L.; Maeda, H. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg. Med. 2011, 13, 226–232. [Google Scholar] [CrossRef]
- Katrukha, I.A.; Kogan, A.E.; Vylegzhanina, A.V.; Serebryakova, M.V.; Koshkina, E.V.; Bereznikova, A.V.; Katrukha, A.G. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin. Chem. 2017, 63, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Derhaschnig, U.; Testori, C.; Riedmueller, E.; Aschauer, S.; Wolzt, M.; Jilma, B. Hypertensive emergencies are associated with elevated markers of inflammation, coagulation, platelet activation and fibrinolysis. J. Hum. Hypertens 2013, 27, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Bunin, V.A.; Kozlov, K.L.; Linkova, N.S.; Paltseva, E.M. An increase in troponin-I concentration in the saliva of patients with coronary heart disease correlates with the stage of disease development. Kompleks. Probl. Serdecno-Sosud. Zabol. 2017, 6, 13–14. (In Russian) [Google Scholar]
- Joharimoghadam, A.; Tajdini, M.; Bozorgi, A. Salivary B-type natriuretic peptide: A new method for heart failure diagnosis and follow-up. Kardiologia Polska 2017, 75, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M.; Duplyakov, D.V. Increased natriuretic peptides not associated with heart failure. Russ. J. Cardiol. 2021, 25, 4140. [Google Scholar] [CrossRef]
- Acosta, G.; Amro, A.; Aguilar, R.; Abusnina, W.; Bhardwaj, N.; Koromia, G.A.; Studeny, M.; Irfan, A. Clinical Determinants of Myocardial Injury, Detectable and Serial Troponin Levels among Patients with Hypertensive Crisis. Cureus 2020, 12, e6787. [Google Scholar] [CrossRef]
- Pattanshetty, D.J.; Bhat, P.K.; Aneja, A.; Pillai, D.P. Elevated troponin predicts long-term adverse cardiovascular outcomes in hypertensive crisis: A retrospective study. J. Hypertens. 2012, 30, 2410–2415. [Google Scholar] [CrossRef]
- Talha Ayub, M.; Torres, C.; Del Cid, J.; Khan, M.S.; Rasool, W.; Talha, A.; Putta, A.; Singh, S.; Doukky, R. The prognostic significance of highly sensitive cardiac troponin i elevation in patients presenting with hypertensive crisis. Circulation 2019, 140, A16333. [Google Scholar]
Number of Patients, Diagnosis | Body Fluid under Study | Prevalence and Degree of CTs Increase in the Case of Arterial Hypertension, Predictive Significance | Source |
---|---|---|---|
Arterial hypertension, n = 306 | Blood serum | Increased CT-T levels were observed in 47% of patients and were associated with left ventricular hypertrophy and poor long-term prognosis. | H. Uçar et al. [59] |
Arterial hypertension, n = 467 | Blood serum | Increased CT-I levels were observed in 15% of patients and were associated with the risk of chronic HF. | G. Acosta et al. [106] |
Arterial hypertension, n = 171 | Blood serum | Increased CT-I levels were observed in 32% of patients and were associated with the increased risk of major adverse cardiac events (MACE) and the risk of CHD. | D. Pattanshetty et al. [107] |
Arterial hypertension, n = 929 | Blood serum | Increased CT-I levels were observed in 31% of patients and were associated with the risk of MI and pulmonary edema. | M. Talha Ayub et al. [108] |
Arterial hypertension, n = 20 | Urine | CT-I levels in the urine of patients with hypertension were significantly higher than in patients with normal blood pressure. Reference intervals for CTs levels in the urine have not yet been established. | P. Pervan et al. [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaulin, A.M. Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance. Life 2022, 12, 1448. https://doi.org/10.3390/life12091448
Chaulin AM. Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance. Life. 2022; 12(9):1448. https://doi.org/10.3390/life12091448
Chicago/Turabian StyleChaulin, Aleksey Michailovich. 2022. "Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance" Life 12, no. 9: 1448. https://doi.org/10.3390/life12091448
APA StyleChaulin, A. M. (2022). Cardiac Troponins as Biomarkers of Cardiac Myocytes Damage in Case of Arterial Hypertension: From Pathological Mechanisms to Predictive Significance. Life, 12(9), 1448. https://doi.org/10.3390/life12091448