Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Materials
2.2. Study Location and Experiment Set Up
2.3. Parameters Measurement
2.4. Statistical Analysis
3. Results
3.1. Effect of Cd Doses on Morphological Attributes of Safflower
3.2. Effect of Cd Doses on Biochemical Attributes of Safflower
3.3. Effect of Cd Doses on Macro and Micro Element Content of Safflower
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kobuk, M.; Ekinci, K.; Erbaş, S. Determination of physico-chemical characteristics in safflower (Carthamus tinctorius L.) genotypes. J. Agric. Nat. 2019, 22, 89–96. [Google Scholar]
- Nazir, M.; Arif, S.; Ahmed, I.; Khalid, N. Safflower (Carthamus tinctorius) seed. In Oilseeds: Health Attributes and Food Applications; Springer: Singapore, 2021; pp. 427–453. [Google Scholar]
- Akbari, G.A.; Heshmati, S.; Soltani, E.; Amini Dehaghi, M. Influence of Seed Priming on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Grown Under Water Deficit. Int. J. Plant Prod. 2020, 14, 245–258. [Google Scholar] [CrossRef]
- Culpan, E.; Arslan, B. Recent Developments of Safflower Production in Turkey. In Proceedings of the International Agricultural, Biological and Life Science Conference, Edirne, Turkey, 2–5 September 2018; p. 115. [Google Scholar]
- Manvelian, J.; Weisany, W.; Tahir, N.A.; Jabbari, H.; Diyanat, M. Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress. Ind. Crops Prod. 2021, 172, 114069. [Google Scholar] [CrossRef]
- Moatshe, O.G.; Emongor, V.E.; Balole, T.V.; Tshwenyane, S.O. Safflower genotype by plant density on yield and phenological characteristics. Afr. Crop Sci. J. 2020, 28, 145–163. [Google Scholar] [CrossRef]
- Pourghasemian, N.; Landberg, T.; Ehsanzadeh, P.; Greger, M. Different response to Cd stress in domesticated and wild safflower (Carthamus spp.). Ecotoxicol. Environ. Saf. 2019, 171, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Adrees, M.; Rizvi, H.; Rehman, M.Z.; Hannan, F.; Qayyum, M.F.; Hafeez, F.; OK, Y.S. Cadmium stress in rice: Toxic effects, tolerance mechanisms and management: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 17859–17879. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Srivastava, S.; Tripathi, R.D.; Govindarajan, R.; Kuriakose, S.V.; Prasad, M.N.V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 2006, 44, 25–37. [Google Scholar] [CrossRef]
- Gill, S.S.; Hasanuzzaman, M.; Nahar, K.; Macovei, A.; Tuteja, N. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol. Biochem. 2013, 63, 254–261. [Google Scholar] [CrossRef]
- Grant, C.A.; Sheppard, S.C. Fertilizer impacts on cadmium availability in agricultural soils and crops. Hum. Ecol. Risk Assess Int. J. 2008, 14, 210–228. [Google Scholar] [CrossRef]
- Fryzova, R.; Pohanka, M.; Martinkova, P.; Cihlarova, H.; Brtnicky, M.; Hladky, J.; Kynicky, J. Oxidative Stress and Heavy Metals in Plants. In Reviews of Environmental Contamination and Toxicology; De Voogt, P., Ed.; Springer: Cham, Switzerland, 2017; Volume 245. [Google Scholar] [CrossRef]
- Özkutlu, F.; Erdem, H. The Effect of Zinc Application Doses to Bread and Durum Wheat on Cadmium Uptake. Turk. J. Agric.-Food Sci. Technol. 2018, 6, 1713–1717. [Google Scholar]
- Friberg, L. Cadmium in the Environment; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, X.; Cui, X.; Liu, C.; Fan, Y.; McBride, M.B.; Li, Y.; Li, Z.; Zhuang, P. Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil. Plant Growth Regul. 2020, 90, 29–40. [Google Scholar] [CrossRef]
- Nabaei, M.; Amooaghaie, R. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. Environ. Sci. Pollut. Res. 2020, 27, 6981–6994. [Google Scholar] [CrossRef] [PubMed]
- Özbek, H.; Kaya, Z.; Gök, M.; Kaptan, H. Soil Science. In General Release No: 73, Textbooks Publication No: 16; Çukurova University, Faculty of Agriculture: Adana, Turkey, 1995. [Google Scholar]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Taleisnik, E.; Peyrano, G.; Arias, C. Response of Chloris gayana cultivars to salinity. 1. Germination and early vegetative growth. Trop. Grass 1997, 31, 232–240. [Google Scholar]
- Sairam, R.K.; Saxena, D.C. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop. Sci. 2000, 184, 55–61. [Google Scholar] [CrossRef]
- Asri, F.Ö.; Sönmez, F. Ağır metal toksisitesinin bitki metabolizması üzerine etkileri. Derim 2006, 23, 36–45. [Google Scholar]
- Guo, J.; Dai, X.; Xu, W.; Ma, M. Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 2008, 72, 1020–1026. [Google Scholar] [CrossRef]
- Chaffei, C.; Pageau, K.; Suzuki, A.; Gouia, H.; Ghorbel, M.H.; Masclaux-Daubresse, C. Cadmium Toxicity Induced Changes in Nitrogen Management in Lycopersicon esculentum Leading to a Metabolic Safeguard Through an Amino Acid Storage Strategy. Plant Cell Physiol. 2004, 45, 1681–1693. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Cadmium induced oxidative stres influence on glutathione metabolic genes of Camellia sinensis (L.). Environ. Toxicol. 2007, 22, 368–374. [Google Scholar] [CrossRef]
- Akar, M.; Atış, İ. The effects of priming treatments on germination and seedling growth of red fescue under nickel and cadmium stress. Gümüşhane Uni. J. Sci. Technol. 2019, 9, 26–36. [Google Scholar]
- Tunçtürk, R.; Tunçtürk, M.; Nohutçu, L. Investigation of some growth and physiological parameters of Trigonella foenumgraecum L. plant grown under cadmium stress. COMU J. Agric. Fac. 2020, 8, 455–464. [Google Scholar]
- Souza-Santos, P.; Ramos, R.S.; Ferreira, S.T.; CarvalhoAlves, P.C. Iron-induced oxidative damage of corn root plasma membrane H+ATPase. Biochim. Et Biophys. Acta (BBA) 2001, 1512, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Soudek, P.; Katrušáková, A.; Sedláček, L.; Petrová, Š.; Kočí, V.; Maršík, P.; Griga, M.; Vaněk, T. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Arch. Env. Contam. Toxicol. 2010, 59, 194–203. [Google Scholar] [CrossRef]
- Leon, A.M.; Palma, J.M.; Corpas, F.J.; Gomez, M.; Romero-Puertas, M.C.; Chatterjee, D.; Mateos, R.M.; del Rio, L.A.; Sandalio, L.M. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol. Biochem. 2002, 40, 813–820. [Google Scholar] [CrossRef]
- Nwugo, C.C.; Huerta, A.J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 2008, 311, 73–86. [Google Scholar] [CrossRef]
- Shute, T.; Macfie, S.M. Cadmium and zinc accumulation in soybean: A threat to food safety. Sci. Total Environ. 2006, 371, 63–73. [Google Scholar] [CrossRef]
- Güler, E.A. Determination of the Effects of Increasing Levels of Cadmium and Lead Applied to the Nutrient Solution on the Development and Mineral Content of Some Corn and Sunflower Genotypes. Ph.D. Thesis, Atatürk University, Erzurum, Turkey, 2011. [Google Scholar]
- Mehmood, S.; Saeed, D.A.; Rizwan, M.; Khan, M.N.; Aziz, O.; Bashir, S.; Shaheen, A. Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol. Biochem. 2018, 132, 345–355. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Ke, L.; Tam, N.F.Y. Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquat. Bot. 2010, 92, 112–118. [Google Scholar] [CrossRef]
- Demirbaş, A.; Coşkan, A.; Jawad, A.A. Influence of selected bacteria isolates on sugar beet growth and nutrient uptake in cadmium enriched soil. Turkey 13th National, 1st International Field Crops Congress Special Issue. Agric. Fac. J. 2020, 95–102. [Google Scholar]
- Veselov, D.; Kudoyarova, G.; Symonyan, M.; Veselov, S. Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seedlings. Bulg. J. Plant Physiol. 2003, 29, 353–359. [Google Scholar]
- Ezhilvannan, D.; Sharavanan, P.S. Influences of cadmium on nutrient contents of bengal gram (Cicer arietinum L.). Am. J. Environ. Eng. Sci. 2015, 2, 28–31. [Google Scholar]
- Kunene, S.S. The Effect of Chicken Manure Applied in Increasing Amounts to Soil Contaminated with Cadmium and Lead on the Development of Spinach and Lettuce Plants and Some Nutrient Content. Master’s Thesis, Bursa Uludağ University, Graduate School of Natural and Applied Sciences, Bursa, Turkey, 2020. [Google Scholar]
- Vijayaragavan, M.; Vijayarengan, P. Changes in nutrient contents of radish under cadmium toxicity. Int. J. Plant Sci. 2010, 5, 230–232. [Google Scholar]
- Hill, J.; Robson, A.D.; Loneragan, J.F. The effect of copper supply on the senescence and the retranslocation of nutrients of the oldest leaf of wheat. Ann. Bot. 1979, 44, 279–287. [Google Scholar] [CrossRef]
- Afzal, J.; Hu, C.; Imtiaz, M.; Elyamine, A.M.; Rana, M.S.; Imran, M.; Farag, M.A. Cadmium tolerance in rice cultivars associated with antioxidant enzymes activities and Fe/Zn concentrations. Int. J. Environ. Sci. Technol. 2019, 16, 4241–4252. [Google Scholar] [CrossRef]
- Bottrill, D.E.; Possingham, J.V.; Kriedmann, P.E. The effect of nutrient deficiencies on Photosynthesis and respiration in spinach. Plant Soil 1970, 32, 424–438. [Google Scholar] [CrossRef]
- Aksu, E.; Yıldız, N. Determining the response of different tomato cultivars to Cd and Pb ions applied to nutrıent solutions at increasing levels. Atatürk Uni. J. Agric. Fac. 2007, 38, 163–172. [Google Scholar]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J. Hazard. Mater. 2021, 402, 123546. [Google Scholar] [CrossRef]
- Hussain, B.; Ashraf, M.N.; Abbas, A.; Li, J.; Farooq, M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar] [CrossRef]
Cd Doses (mg/L) | Morphological Attributes | |||||
---|---|---|---|---|---|---|
PH (cm) | RL (cm) | RFW (g) | SFW (g) | LFW (g) | LN | |
Cd-0 | 30.0 a | 24.7 a | 1.32 a | 1.12 a | 3.29 a | 19.5 a |
Cd-25 | 29.1 a | 24.3 a | 1.04 a | 1.07 a | 2.81 a | 19.3 a |
Cd-50 | 28.6 a | 24.0 a | 0.98 b | 1.06 a | 2.68 b | 18.9 b |
Cd-75 | 27.6 b | 23.0 b | 0.92 b | 0.99 b | 2.24 b | 18.3 b |
Cd-100 | 26.7 b | 22.5 b | 0.68 c | 0.91 b | 1.96 c | 17.7 c |
Average | 27.8 | 23.7 | 0.98 | 1.03 | 2.60 | 18.7 |
Cd doses | * | * | ** | * | ** | ** |
CV (%) | 4.35 | 14.6 | 18.7 | 17.3 | 18.9 | 10.3 |
Plant Tissue | Mineral Elements | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | K | Mg | Na | Cd | Cr | Cu | Fe | Mn | Ni | Pb | Se | Zn | |
Leaves | 8.59 b | 4.83 c | 3.23 c | 3.02 b | 13.59 b | 0.29 b | 1.66 b | 181.94 b | 4.24 c | 1.11 b | 2.01 b | 0.54 b | 3.21 b |
Stem | 14.63 a | 8.62 b | 11.43 a | 2.79 b | 14.27 b | 0.56 b | 2.77 b | 52.08 c | 6.38 b | 0.68 b | 1.05 c | 0.45 b | 3.90 b |
Root | 8.48 b | 28.75 a | 6.64 b | 5.62 a | 58.85 a | 3.01 a | 26.19 a | 385.54 a | 28.70 a | 6.39 a | 6.99 a | 1.23 a | 81.92 a |
Entire plant | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Cd doses | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunçtürk, M.; Rezaee Danesh, Y.; Tunçtürk, R.; Oral, E.; Najafi, S.; Nohutçu, L.; Jalal, A.; da Silva Oliveira, C.E.; Filho, M.C.M.T. Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations. Life 2023, 13, 135. https://doi.org/10.3390/life13010135
Tunçtürk M, Rezaee Danesh Y, Tunçtürk R, Oral E, Najafi S, Nohutçu L, Jalal A, da Silva Oliveira CE, Filho MCMT. Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations. Life. 2023; 13(1):135. https://doi.org/10.3390/life13010135
Chicago/Turabian StyleTunçtürk, Murat, Younes Rezaee Danesh, Rüveyde Tunçtürk, Erol Oral, Solmaz Najafi, Lütfi Nohutçu, Arshad Jalal, Carlos Eduardo da Silva Oliveira, and Marcelo Carvalho Minhoto Teixeira Filho. 2023. "Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations" Life 13, no. 1: 135. https://doi.org/10.3390/life13010135
APA StyleTunçtürk, M., Rezaee Danesh, Y., Tunçtürk, R., Oral, E., Najafi, S., Nohutçu, L., Jalal, A., da Silva Oliveira, C. E., & Filho, M. C. M. T. (2023). Safflower (Carthamus tinctorius L.) Response to Cadmium Stress: Morpho-Physiological Traits and Mineral Concentrations. Life, 13(1), 135. https://doi.org/10.3390/life13010135