Is the 4C Score Still a Valid Item to Predict In-Hospital Mortality in People with SARS-CoV-2 Infections in the Omicron Variant Era?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Outcome
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Guo, Y.; Mao, R.; Zhang, J. Proportion of asymptomatic coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Med. Virol. 2020, 93, 820–830. [Google Scholar] [CrossRef]
- De Vito, A.; Fiore, V.; Princic, E.; Geremia, N.; Napodano, C.M.P.; Muredda, A.A.; Maida, I.; Madeddu, G.; Babudieri, S. Predictors of infection, symptoms development, and mortality in people with SARS-CoV-2 living in retirement nursing homes. PLoS ONE 2021, 16, e0248009. [Google Scholar] [CrossRef] [PubMed]
- Geremia, N.; De Vito, A.; Gunnella, S.; Fiore, V.; Princic, E.; Napodano, C.P.; Madeddu, G.; Babudieri, S. A Case of Vasculitis-Like Skin Eruption Associated with COVID-19. Infect. Dis. Clin. Pract. 2020, 28, e30–e31. Available online: https://journals.lww.com/infectdis/Fulltext/9000/A_Case_of_Vasculitis_Like_Skin_Eruption_Associated.98743.aspx (accessed on 23 October 2020). [CrossRef]
- Vaira, L.A.; De Vito, A.; Lechien, J.R.; Chiesa-Estomba, C.M.; Mayo-Yàñez, M.; Calvo-Henrìquez, C.; Saussez, S.; Madeddu, G.; Babudieri, S.; Boscolo-Rizzo, P.; et al. New Onset of Smell and Taste Loss Are Common Findings Also in Patients with Symptomatic COVID-19 after Complete Vaccination. Laryngoscope 2022, 132, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- King, J.T., Jr.; Yoon, J.S.; Rentsch, C.T.; Tate, J.P.; Park, L.S.; Kidwai-Khan, F.; Skanderson, M.; Hauser, R.G.; Jacobson, D.A.; Erdos, J.; et al. Development and validation of a 30-day mortality index based on pre-existing medical administrative data from 13,323 COVID-19 patients: The Veterans Health Administration COVID-19 (VACO) Index. PLoS ONE 2020, 15, e0241825. [Google Scholar] [CrossRef]
- Garibaldi, B.T.; Fiksel, J.; Muschelli, J.; Robinson, M.L.; Rouhizadeh, M.; Perin, J.; Schumock, G.; Nagy, P.; Gray, J.H.; Malapati, H.; et al. Patient Trajectories among Persons Hospitalized for COVID-19: A Cohort Study. Ann. Intern. Med. 2021, 174, 33–41. [Google Scholar] [CrossRef]
- Goodacre, S.; Thomas, B.; Sutton, L.; Burnsall, M.; Lee, E.; Bradburn, M.; Loban, A.; Waterhouse, S.; Simmonds, R.; Biggs, K.; et al. Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort study. PLoS ONE 2021, 16, e0245840. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020, 369, 29. [Google Scholar] [CrossRef] [Green Version]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, 22. Available online: https://www.bmj.com/content/370/bmj.m3339 (accessed on 16 October 2022). [CrossRef]
- Jones, A.; Pitre, T.; Junek, M.; Kapralik, J.; Patel, R.; Feng, E.; Dawson, L.; Tsang, J.L.Y.; Duong, M.; Ho, T.; et al. External validation of the 4C mortality score among COVID-19 patients admitted to hospital in Ontario, Canada: A retrospective study. Sci. Rep. 2021, 11, 18638. Available online: https://www.nature.com/articles/s41598-021-97332-1 (accessed on 16 October 2022). [CrossRef]
- Chi, W.-Y.; Li, Y.-D.; Huang, H.-C.; Chan, T.E.H.; Chow, S.-Y.; Su, J.-H.; Ferrall, L.; Hung, C.-F.; Wu, T.-C. COVID-19 vaccine update: Vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J. Biomed. Sci. 2022, 29, 82. Available online: https://pubmed.ncbi.nlm.nih.gov/36243868/ (accessed on 16 October 2022). [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. Available online: http://www.thelancet.com/article/S1473309922003206/fulltext (accessed on 26 November 2022). [CrossRef] [PubMed]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. Lancet 2022, 399, 1303–1312. Available online: http://www.thelancet.com/article/S0140673622004627/fulltext (accessed on 17 October 2022). [CrossRef] [PubMed]
- Ughi, N.; Bernasconi, D.P.; Del Gaudio, F.; Dicuonzo, A.; Maloberti, A.; Giannattasio, C.; Tarsia, P.; Puoti, M.; Scaglione, F.; Beltrami, L.; et al. Trends in all-cause mortality of hospitalized patients due to SARS-CoV-2 infection from a monocentric cohort in Milan (Lombardy, Italy). J. Public Health 2022, 30, 1985–1993. Available online: https://pubmed.ncbi.nlm.nih.gov/35004128/ (accessed on 22 December 2022). [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2116044 (accessed on 15 March 2022). [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N. Engl. J. Med. 2022, 386, 1397–1408. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2118542 (accessed on 15 March 2022). [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2116846 (accessed on 15 March 2022). [CrossRef]
- De Vito, A.; Colpani, A.; Saderi, L.; Puci, M.; Zauli, B.; Fiore, V.; Fois, M.; Meloni, M.C.; Bitti, A.; Di Castri, C.; et al. Impact of Early SARS-CoV-2 Antiviral Therapy on Disease Progression. Viruses 2023, 15, 71. Available online: https://www.mdpi.com/1999-4915/15/1/71/htm (accessed on 3 January 2023). [CrossRef]
- Malone, B.; Campbell, E.A. Molnupiravir: Coding for catastrophe. Nat. Struct. Mol. Biol. 2021, 28, 706–708. Available online: https://www.nature.com/articles/s41594-021-00657-8 (accessed on 15 March 2022). [CrossRef]
- De Vito, A.; Colpani, A.; Bitti, A.; Zauli, B.; Meloni, M.C.; Fois, M.; Denti, L.; Bacciu, S.; Marcia, C.; Maida, I.; et al. Safety and efficacy of molnupiravir in SARS-CoV-2 infected patients: A real-life experience. J. Med. Virol. 2022, 94, 5582–5588. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.28011 (accessed on 1 August 2022). [CrossRef]
- Gentile, I.; Scotto, R.; Shiano Moriello, N.; Pinchera, B.; Villari, R.; Trucillo, E.; Ametrano, L.; Fusco, L.; Castaldo, G.; Buonomo, A.R.; et al. Nirmatrelvir/Ritonavir and Molnupiravir in the Treatment of Mild/Moderate COVID-19: Results of a Real-Life Study. Vaccines 2022, 10, 1731. Available online: http://www.ncbi.nlm.nih.gov/pubmed/36298596 (accessed on 1 December 2022). [CrossRef]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet 2022, 400, 1213–1222. Available online: http://www.thelancet.com/article/S0140673622015860/fulltext (accessed on 31 October 2022). [PubMed]
- Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and Nirmatrelvir-Ritonavir: Oral COVID Antiviral Drugs. Clin. Infect. Dis. 2022. Available online: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciac180/6542722 (accessed on 15 March 2022).
- Abani, O.; Abbas, A.; Abbas, F.; Abbas, M.; Abbasi, S.; Abbass, H.; Abbott, A.; Abdallah, N.; Abdelaziz, A.; Abdelfattah, M.; et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 665–676. Available online: http://www.thelancet.com/article/S0140673622001635/fulltext (accessed on 16 October 2022).
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. Available online: https://jamanetwork.com/journals/jama/fullarticle/2790246 (accessed on 16 October 2022). [CrossRef] [PubMed]
- Ginde, A.A.; Paredes, R.; Murray, T.A.; Engen, N.; Grandits, G.; Vekstein, A.; Ivey, N.; Mourad, A.; Sandkovsky, U.; Gottlieb, R.L.; et al. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. Available online: http://www.thelancet.com/article/S2213260022002156/fulltext (accessed on 26 November 2022).
- Takashita, E.; Yamayoshi, S.; Simon, V.; van Bakel, H.; Sordillo, E.M.; Pekosz, A.; Fukushi, S.; Suzuki, T.; Maeda, K.; Halfmann, P.; et al. Efficacy of Antibodies and Antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 Subvariants. N. Engl. J. Med. 2022, 387, 468–470. Available online: https://www.nejm.org/doi/full/10.1056/NEJMc2207519 (accessed on 26 November 2022). [CrossRef]
- De Vito, A.; Poliseno, M.; Colpani, A.; Zauli, B.; Puci, M.V.; Santantonio, T.; Meloni, M.C.; Fois, M.; Fanelli, C.; Saderi, L.; et al. Reduced risk of death in people with SARS-CoV-2 infection treated with remdesivir: A nested case-control study. Curr. Med. Res. Opin. 2022, 38, 2029–2033. Available online: https://pubmed.ncbi.nlm.nih.gov/36170020/ (accessed on 16 October 2022). [CrossRef]
- De Vito, A.; Saderi, L.; Fiore, V.; Geremia, N.; Princic, E.; Fanelli, C.; Muredda, A.A.; Napodano, C.P.; Moi, G.; Maida, I.; et al. Early treatment with low-molecular-weight heparin reduces mortality rate in SARS-CoV-2 patients. Panminerva Med. 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/35622392/ (accessed on 1 August 2022). [CrossRef]
- Rodriguez-Guerra, M.; Jadhav, P.; Vittorio, T.J. Current treatment in COVID-19 disease: A rapid review. Drugs Context 2021, 10, 2020-10-3. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7850293/ (accessed on 16 October 2022). [CrossRef]
- Mazzitelli, M.; Arrighi, E.; Serapide, F.; Pelle, M.C.; Tassone, B.; Lionello, R.; Marrazzo, G.; Laganà, D.; Costanzo, F.S.; Matera, G.; et al. Use of subcutaneous tocilizumab in patients with COVID-19 pneumonia. J. Med. Virol. 2021, 93, 32–34. Available online: https://pubmed.ncbi.nlm.nih.gov/32410234/ (accessed on 28 June 2022). [CrossRef] [PubMed]
- Balena, F.; Bavaro, D.F.; Fabrizio, C.; Bottalico, I.F.; Calamo, A.; Santoro, C.R.; Brindicci, G.; Bruno, G.; Mastroianni, A.; Greco, S.; et al. Tocilizumab and corticosteroids for COVID-19 treatment in elderly patients. J. Gerontol. Geriatr. 2020, 68, 197–203. Available online: http://www.jgerontology-geriatrics.com/article/view/283 (accessed on 9 August 2022). [CrossRef]
Variables | Total (n = 1186) | Survived (n = 1026) | Died (n = 160) | p-Value | ||
---|---|---|---|---|---|---|
Males, n (%) | 644 (54.3) | 545 (53.1) | 99 (61.9) | 0.04 | ||
Median (IQR) age, years | 74 (62–83) | 73 (60–83) | 81.5 (70–88) | <0.0001 | ||
Median (IQR) 4C score | 10 (6–12) | 9 (6–12) | 13 (11–16) | <0.0001 | ||
4C risk groups | Low (0–3) | 137 (11.6) | 136 (13.3) | 1 (0.6) | <0.0001 | |
Intermediate (4–8) | 302 (25.5) | 289 (28.2) | 13 (8.1) | |||
High (9–14) | 596 (50.3) | 513 (50.0) | 83 (51.9) | |||
Very high (≥ 15) | 151 (12.7) | 88 (8.6) | 63 (39.4) | |||
Respiratory rate | < 20 | 788 (66.4) | 723 (70.5) | 65 (40.6) | <0.0001 | |
20–29 | 296 (25.0) | 241 (23.5) | 55 (34.4) | |||
≥ 30 | 102 (8.6) | 62 (6.0) | 102 (8.6) | |||
Glasgow Coma Scale < 15 | 219 (18.5) | 156 (15.2) | 63 (39.4) | <0.0001 | ||
Peripheral oxygen < 92% | 218 (18.4) | 155 (15.1) | 63 (39.4) | <0.0001 | ||
BMI > 30 kg/m2, n (%) | 291 (24.5) | 251 (24.5) | 40 (25.0) | 0.88 | ||
Chronic renal disease, n (%) | 195 (16.4) | 155 (15.1) | 40 (25.0) | 0.002 | ||
Rheumatological disease, n (%) | 63 (5.3) | 60 (5.9) | 3 (1.9) | 0.04 | ||
Decompensated diabetes, n (%) | 180 (15.2) | 149 (14.5) | 31 (19.4) | 0.11 | ||
Diabetes, n (%) | 264 (22.3) | 224 (21.8) | 40 (25.0) | 0.37 | ||
Chronic liver disease, n (%) | 67 (5.7) | 54 (5.3) | 13 (8.1) | 0.14 | ||
COPD/emphysema, n (%) | 237 (20.0) | 193 (18.8) | 44 (27.5) | 0.01 | ||
Hemoglobinopathies, n (%) | 5 (0.4) | 5 (0.5) | 0 (0.0) | 1.00 | ||
Neurodevelopmental/neurodegenerative diseases, n (%) | 315 (26.6) | 251 (24.5) | 64 (40.0) | <0.0001 | ||
Dementia, n (%) | 177 (14.9) | 132 (12.9) | 45 (28.1) | <0.0001 | ||
Cerebrovascular events, n (%) | 133 (11.2) | 110 (10.7) | 23 (14.4) | 0.17 | ||
Oncological disease, n (%) | 209 (17.6) | 177 (17.3) | 32 (20.0) | 0.40 | ||
Hematological tumors, n (%) | 76 (6.4) | 59 (5.8) | 17 (10.6) | 0.02 | ||
Solid tumors in chemotherapy, n (%) | 33 (2.8) | 29 (2.8) | 4 (2.5) | 1.00 | ||
Hematological tumors in chemotherapy, n (%) | 55 (4.6) | 42 (4.1) | 13 (8.1) | 0.02 | ||
Cardiovascular diseases, n (%) | 452 (38.1) | 366 (35.7) | 86 (53.8) | <0.0001 | ||
Heart failure, n (%) | 403 (34.0) | 321 (31.4) | 82 (51.3) | <0.0001 | ||
Previous myocardial infarction, n (%) | 146 (12.3) | 126 (12.3) | 20 (12.5) | 0.94 | ||
Median (IQR) number of comorbidities | 2 (1–3) | 2 (1–3) | 3 (2–4) | <0.0001 | ||
Vaccine, n (%) | 938 (79.1) | 826 (80.5) | 112 (70.0) | 0.002 | ||
N. Vaccine doses, n (%) | 0 | 248 (20.9) | 200 (19.5) | 48 (30.0) | 0.02 | |
1 | 32 (2.7) | 26 (2.5) | 6 (3.8) | |||
2 | 208 (17.5) | 179 (17.5) | 29 (18.1) | |||
3 | 676 (57.0) | 601 (58.6) | 75 (46.9) | |||
4 | 22 (1.9) | 20 (2.0) | 2 (1.3) | |||
Median (IQR) time, last dose | 128.5 (76–186) | 127 (76–181) | 151.5 (81–223.5) | 0.02 | ||
In-hospital infection, n (%) | 256 (21.6) | 211 (20.6) | 45 (28.1) | 0.03 | ||
Symptoms | ||||||
Fever, n (%) | 569 (48.0) | 486 (47.4) | 83 (51.9) | 0.29 | ||
Cough, n (%) | 455 (38.4) | 383 (37.3) | 72 (45.0) | 0.06 | ||
Pharyngodynia, n (%) | 160 (13.5) | 146 (14.2) | 14 (8.8) | 0.06 | ||
Asthenia, n (%) | 389 (32.8) | 330 (32.2) | 59 (36.9) | 0.24 | ||
Headache, n (%) | 136 (11.5) | 125 (12.2) | 11 (6.9) | 0.05 | ||
Myalgia, n (%) | 184 (15.5) | 160 (15.6) | 24 (15.0) | 0.85 | ||
Gastrointestinal symptoms, n (%) | 167 (14.1) | 149 (14.5) | 18 (11.3) | 0.27 | ||
Dyspnea, n (%) | 380 (32.0) | 292 (28.5) | 88 (55.0) | <0.0001 | ||
Anosmia, n (%) | 22 (1.9) | 19 (1.9) | 3 (1.9) | 1.00 | ||
CT findings | ||||||
GGO, n (%) | 451 (39.8) | 355 (36.4) | 96 (60.8) | <0.0001 | ||
Consolidation, n (%) | 275 (24.3) | 206 (21.1) | 69 (43.7) | <0.0001 | ||
Pulmonary embolism, n (%) | 25 (2.1) | 21 (2.1) | 4 (2.5) | 0.77 | ||
Laboratory examination | ||||||
Median (IQR) urea | 37 (28–60) | 35 (27–55) | 60.5 (36.5–110.0) | <0.0001 | ||
Median (IQR) CRP | 3 (1.3–7.7) | 2.5 (1.1–6.6) | 8.6 (3.8–16.0) | <0.0001 |
Criterion | SE | 95% CI | SP | 95% CI | +LR | 95% CI | –LR | 95% CI |
---|---|---|---|---|---|---|---|---|
≥ 0 | 100.00 | 97.7–100.0 | 0.00 | 0.0–0.4 | 1.00 | 1.00–1.00 | - | - |
> 0 | 100.00 | 97.7–100.0 | 2.63 | 1.7–3.8 | 1.03 | 1.02–1.04 | 0.00 | - |
> 1 | 100.00 | 97.7–100.0 | 7.12 | 5.6–8.9 | 1.08 | 1.06–1.09 | 0.00 | - |
> 2 | 100.00 | 97.7–100.0 | 10.23 | 8.4–12.3 | 1.11 | 1.09–1.14 | 0.00 | - |
> 3 | 99.37 | 96.6–100.0 | 13.26 | 11.2–15.5 | 1.15 | 1.12–1.18 | 0.047 | 0.01–0.33 |
> 4 | 97.50 | 93.7–99.3 | 17.35 | 15.1–19.8 | 1.18 | 1.14–1.22 | 0.14 | 0.05–0.38 |
> 5 | 96.25 | 92.0–98.6 | 22.61 | 20.1–25.3 | 1.24 | 1.19–1.30 | 0.17 | 0.08–0.37 |
> 6 | 95.00 | 90.4–97.8 | 29.24 | 26.5–32.1 | 1.34 | 1.27–1.42 | 0.17 | 0.09–0.34 |
> 7 | 93.75 | 88.8–97.0 | 34.41 | 31.5–37.4 | 1.43 | 1.35–1.52 | 0.18 | 0.10–0.33 |
> 8 | 91.25 | 85.8–95.1 | 41.42 | 38.4–44.5 | 1.56 | 1.45–1.67 | 0.21 | 0.13–0.35 |
> 9 | 83.12 | 76.4–88.6 | 52.34 | 49.2–55.4 | 1.74 | 1.59–1.92 | 0.32 | 0.23–0.46 |
> 10 | 76.25 | 68.9–82.6 | 62.67 | 59.6–65.6 | 2.04 | 1.82–2.30 | 0.38 | 0.29–0.50 |
> 11 | 66.87 | 59.0–74.1 | 73.88 | 71.1–76.5 | 2.56 | 2.20–2.97 | 0.45 | 0.36–0.56 |
> 12 | 59.38 | 51.3–67.1 | 82.75 | 80.3–85.0 | 3.44 | 2.86–4.14 | 0.49 | 0.41–0.59 |
> 13 | 49.38 | 41.4–57.4 | 88.21 | 86.1–90.1 | 4.19 | 3.33–5.27 | 0.57 | 0.49–0.67 |
> 14 | 39.38 | 31.8–47.4 | 91.42 | 89.5–93.1 | 4.59 | 3.48–6.06 | 0.66 | 0.58–0.75 |
> 15 | 28.75 | 21.9–36.4 | 94.83 | 93.3–96.1 | 5.57 | 3.89–7.96 | 0.75 | 0.68–0.83 |
Low | Intermediate | High | Very High | |
---|---|---|---|---|
Early Antiviral Treatment | 1/29 (3.4) | 2/109 (1.8) | 16/177 (9.0) | 4/13 (30.8) |
No Antiviral Treatment | 0/108 (0.0) | 11/193 (5.7) | 67/419 (16.0) | 59/138 (42.7) |
Overall | 1/137 (0.7) | 13/302 (4.3) | 83/596 (13.9) | 63/151 (41.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vito, A.; Colpani, A.; Saderi, L.; Puci, M.; Zauli, B.; Meloni, M.C.; Fois, M.; Bitti, A.; Di Castri, C.; Fiore, V.; et al. Is the 4C Score Still a Valid Item to Predict In-Hospital Mortality in People with SARS-CoV-2 Infections in the Omicron Variant Era? Life 2023, 13, 183. https://doi.org/10.3390/life13010183
De Vito A, Colpani A, Saderi L, Puci M, Zauli B, Meloni MC, Fois M, Bitti A, Di Castri C, Fiore V, et al. Is the 4C Score Still a Valid Item to Predict In-Hospital Mortality in People with SARS-CoV-2 Infections in the Omicron Variant Era? Life. 2023; 13(1):183. https://doi.org/10.3390/life13010183
Chicago/Turabian StyleDe Vito, Andrea, Agnese Colpani, Laura Saderi, Mariangela Puci, Beatrice Zauli, Maria Chiara Meloni, Marco Fois, Alessandra Bitti, Cosimo Di Castri, Vito Fiore, and et al. 2023. "Is the 4C Score Still a Valid Item to Predict In-Hospital Mortality in People with SARS-CoV-2 Infections in the Omicron Variant Era?" Life 13, no. 1: 183. https://doi.org/10.3390/life13010183