Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Site
2.2. Floral Biology of Pigeonpea
2.3. Breeding System of Pigeonpea
2.4. Floral Visitors of Pigeonpea
2.5. Influence of Blooming Pigeonpea on the Pollinator’s Assemblage of Co-Blooming Crops
2.6. Influence of Blooming Pigeonpea on the Yield of Co-Blooming Crops
2.7. Statistical Analyses
3. Results
3.1. Floral Biology of Pigeonpea
3.2. Mating Systems of Pigeonpea
3.3. Floral Visitors of Pigeonpea
3.4. Influence of Blooming Pigeonpea on Pollinator Assemblage of Neighbouring Crops
3.5. Influence of Blooming Pigeonpea on Yield of Neighbouring Crops
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriduez-Perez, J. Breeding system, flower visitors and seedling survival of two endangered species of Helianthemum (Cistaceaea). Ann. Bot. 2005, 95, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Treands Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Royal Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powney, G.D.; Carvell, C.; Edwards, M.; Morris, R.K.A.; Roy, H.E.; Woodcock, B.A.; Issac, N.J.B. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Layek, U.; Kundu, A.; Bisui, S.; Karmakar, P. Impact of managed stingless and western honey bee colonies on native pollinators and yield of watermelon: A comparative study. Ann. Agric. Sci. 2021, 66, 38–45. [Google Scholar] [CrossRef]
- Layek, U.; Das, A.; Karmakar, P. Supplemental stingless bee pollination in fennel (Foeniculum vulgare Mill.): An assessment of impacts on native pollinators and crop yield. Front. Sustain. Food Syst. 2022, 6, 820264. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. Entomogamy in wildflowers: What level of pollinator biodiversity is required? Acta Oecol. 2021, 111, 103737. [Google Scholar] [CrossRef]
- Cheptou, P.O.; Imbert, E.; Thomann, M. Rapid evolution of selfing syndrome traits in Viola arvensis revealed by resurrection ecology. Am. J. Bot. 2022, 109, 1838–1846. [Google Scholar] [CrossRef]
- Karlidag, H.; Yildirim, E. Strawberry intercropping with vegetables for proper utilization of space and resources. J. Sustain. Agric. 2009, 33, 107–116. [Google Scholar] [CrossRef]
- Saxena, K.B.; Kumar, R.V.; Rao, P.V. Pigeonpea nutrition and its improvement. Quality Improvement in Field Crops. Food Products Press. 2002, 5, 227–260. [Google Scholar]
- Singh, B.; Kaur, S. Review of Cajanus cajan as important medicinal plant. Int. J. Nat. Prod. Sci. 2012, 1, 140. [Google Scholar]
- Aja, P.M.; Alum, E.U.; Ezeani, N.N.; Nwali, B.U.; Edwin, N. Comparative Phytochemical Composition of Cajanus cajan Leaf and Seed. Int. J. Microb. Res. 2015, 6, 42–46. [Google Scholar]
- Layek, U.; Das, A.; Das, U. Floral biology, floral volatile organic compounds and floral visitors of Chromolaena odorata, an invasive alien species in West Bengal, India. Biodiversitas 2022, 23, 2118–2129. [Google Scholar] [CrossRef]
- Erdtman, G. The acetolysis method. A revised description. Sven. Bot. Tidskr. 1960, 54, 561–564. [Google Scholar]
- Dafni, A. Pollination Ecology: A Practical Approach; Oxford University Press: New York, NY, USA, 1992; Volume 46, pp. 250–478. [Google Scholar]
- Norton, J.D. Testing of plum pollen viability with tetrazolium salts. Am. Soc. Hort. Sci. 1966, 89, 132–134. [Google Scholar]
- Layek, U.; Midday, M.; Bisui, S.; Kundu, A.; Karmakar, P. Floral biology, breeding system and pollination ecology of Justicia betonica L. (Acanthaceae): An assessment of its low reproductive success in West Bengal, India. Plant Species Biol. 2022, 37, 278–293. [Google Scholar] [CrossRef]
- Raduski, A.R.; Haney, E.B.; Igic, B. The expression of self-incompatibility in angiosperms is bimodal. Evolution 2011, 66, 1275–1283. [Google Scholar] [CrossRef]
- Layek, U.; Kundu, A.; Karmakar, P. Floral ecology, floral visitors and breeding system of Gandharaj lemon (Citrus × limon L. Osbeck). Bot Pac. 2020, 9, 113–119. [Google Scholar] [CrossRef]
- Kar, S.; Datta, B.K. Floral biology of Cajanus cajan (L.) Millsp. [Leguminosae] in Tripura (India). Pleione 2017, 11, 104–105. [Google Scholar]
- Layek, U.; Bisui, S.; Mondal, R.; Das, N.; De, S.B.; Karmakar, P. Floral traits and chemical cues associated with rock bee (Apisdorsata Fabricius) for the host selection in West Bengal, India. Grana 2021, 60, 310–323. [Google Scholar] [CrossRef]
- Singh, A.K. Pollinating efficiency of native bee pollinators of pigeonpea (Cajanus cajan) in Nagaland. Russ. J. Ecol. 2016, 47, 310–314. [Google Scholar] [CrossRef]
- Bennett, A.B.; Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS ONE 2019, 14, e0212034. [Google Scholar] [CrossRef] [Green Version]
- Layek, U.; Bera, K.; Bera, B.; Bisui, S.; Pattanayek, S.K.; Karmakar, P. Assessment of yield enhancement in cashew (Anacardium occidentale L.) by the pollinator sharing effect of magnetic bee-friendly plants in India. Acta Ecol. Sin. 2021, 41, 243–252. [Google Scholar] [CrossRef]
- Grab, H.; Blitzer, E.; Danforth, B.; Loeb, G.; Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 2017, 7, 45296. [Google Scholar] [CrossRef] [Green Version]
- Holzschuh, A.; Dormann, C.F.; Tscharntke, T.; Steffan-Dewenter, I. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc. Royal Soc. B Biol. Sci. 2011, 278, 3444–3451. [Google Scholar] [CrossRef] [Green Version]
- Layek, U.; Das, U.; Karmakar, P. The pollination efficiency of a pollinator depends on its foraging strategy, flowering phenology, and the flower characteristics of a plant species. J. Asia-Pac. Entomol. 2022, 25, 101882. [Google Scholar] [CrossRef]
VOCs | Empirical Formula | Molecular Weight | Retention Time (min) |
---|---|---|---|
Pentanal | C5H10O | 86 | 4.30 |
Hexanal | C6H12O | 100 | 6.19 |
Heptanal | C7H14O | 114 | 8.37 |
1-pentanol | C5H12O | 88 | 9.86 |
cis-Hept-2-enal | C7H12O | 112 | 11.54 |
Nonanal | C9H18O | 142 | 13.10 |
(E)-2-Octen-1-al | C8H14O | 126 | 13.87 |
4-Bromo-1-cyclohexene | C6H9Br | 160 | 15.27 |
Pentyl glycolate | C7H14O3 | 146 | 17.18 |
trans-2-Decenal | C10H18O | 154 | 18.27 |
2,4-Decadienal | C10H16O | 152 | 21.42 |
Caproic acid | C6H12O2 | 116 | 22.01 |
Benzenemethanol | C6H8O | 108 | 22.56 |
4-methoxy-4-methyl-1,2-pentadiene | C7H12O | 112 | 23.87 |
Thujaketone | C9H16O | 140 | 24.35 |
2-Nonadecanone | C19H38O | 282 | 24.96 |
(z)-3-Phenylacrylaldehyde | C9H8O | 182 | 25.35 |
n-Caprylic acid | C8H16O2 | 144 | 25.64 |
4-Methyl-3-heptanone | C8H16O | 128 | 28.86 |
Diethyl phthalate | C12H14O4 | 222 | 30.39 |
n-Propionylurea | C4H8N2O2 | 116 | 30.99 |
Methyl (2E)-2-methoxy-2-butenoate | C6H10O3 | 130 | 31.89 |
1-Methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methylbut-2-enyl)-cyclohexane | C15H26O | 222 | 32.04 |
1-Hexyl-2-nitrocyclohexane | C12H23NO2 | 213 | 32.71 |
(2E)-2-[(4-Nitrophenyl) imino]-1-phenylethanone | C14H10N2O3 | 254 | 33.47 |
2-Oxo-2-phenylethyl formate | C9H8O3 | 164 | 33.86 |
Parameters | Time Hour after Open of Flower | ||||
---|---|---|---|---|---|
0 h | 6 h | 12 h | 18 h | 24 h | |
Pollen viability | |||||
Staining with TTC (%; n = 10 flowers/time-slots) | 81.24 ± 5.63 | 73.52 ± 5.46 | 67.87 ± 5.76 | 58.43 ± 5.74 | 50.09 ± 6.53 |
In vitro germination (%; n = 10 flowers/time-slots) | 73.98 ± 5.55 | 68.70 ± 5.25 | 60.65 ± 5.25 | 54.84 ± 4.95 | 47.05 ± 4.05 |
Stigma receptivity | |||||
Benzidine-H2O2 test (%; n = 100 stigma/time-slot) | 85 ± 10.80 | 74 ± 10.75 | 64 ± 9.66 | 53 ± 9.49 | 41 ± 11.97 |
Treatment | Fruit Set (%) | |||
---|---|---|---|---|
Morph-1 | Morph-2 | Morph-3 | Average | |
Spontaneous autogamy (n = 100 per morphotype) | 28 ± 7.89 | 31 ± 9.94 | 24 ± 8.43 | 27.67 d ± 8.98 |
Openpollination (n = 200 per morphotype) | 52 ± 13.61 | 57.50 ± 16.50 | 45 ± 8.89 | 51.50 c ± 14.12 |
Manual geitonogamy (n = 100 per morphotype) | 58 ± 14.76 | 59 ± 11.97 | 55 ± 10.80 | 57.33 bc ± 12.30 |
Manual cross-pollination (n = 100 per morphotype) | 60 ± 14.91 | 61 ± 11.97 | 58 ± 13.17 | 59.67 ab ± 12.99 |
Supplementary pollination (n = 100 per morphotype) | 64 ± 13.50 | 66 ± 14.30 | 60 ± 10.54 | 63.33 a ± 12.69 |
Visitors | Relative Abundance | Floral Resources | Visitation Rate | Time Spent/Flower | APV |
---|---|---|---|---|---|
Coleoptera | |||||
Aulacophora cincta | 0.89 | fl | - | - | - |
Coccinella sexmaculata | 1.28 | fl | - | - | - |
Curculio sp. | 1.18 | fl | - | - | - |
Diptera | |||||
Episyrphus balteatus | 3.16 | p | 2.30 | 16.55 ± 3.80 | 3.63 |
Eristalinus megacephalus | 2.67 | p | 1.80 | 19.83 ± 5.23 | 2.40 |
Stomorhina sp. | 0.79 | p | - | - | - |
Hemiptera | |||||
Chinavia hilaris | 0.69 | n | - | - | - |
Leptocorisa acuta | 0.49 | n | - | - | - |
Hymenoptera | |||||
Allorynchium metalicum | 1.88 | n | 2.93 | 3.78 ± 1.01 | - |
Amegilla zonata | 0.89 | n, p | 6.60 | 2.45 ± 0.51 | 14.68 |
Apis cerana | 0.69 | n, p | 3.77 | 4.20 ± 0.95 | 6.50 |
Apis dorsata | 0.89 | n, p | 4.23 | 4.02 ± 1.04 | 9.41 |
Apis florea | 0.49 | n, p | 3.60 | 4.57 ± 1.09 | 4.41 |
Braconid wasp | 1.58 | - | - | - | - |
Brachymeria sp. | 2.57 | - | 1.87 | - | - |
Camponotus compressus | 1.09 | n | - | - | - |
Ceratina binghami | 2.27 | n, p | 2.40 | 11.62 ± 2.72 | 10.90 |
Halictus acrocephalus | 1.78 | n, p | 2.97 | 9.87 ± 2.11 | 13.22 |
Ichneumon sp. | 1.18 | n | - | - | - |
Lasioglossum funebre | 0.39 | n, p | 2.83 | 9.92 ± 2.20 | - |
Megachile conjuncta | 1.78 | n, p | 3.13 | 6.16 ± 3.28 | 11.14 |
Megachile disjuncta | 15.20 | n, p | 4.03 | 8.10 ± 5.25 | 214.40 |
Megachile lanata | 11.55 | n, p | 4.47 | 6.93 ± 4.02 | 180.70 |
Tetragonula iridipennis | 1.88 | n, p | 0.50 | - | 1.41 |
Xylocopa aestuans | 9.38 | n, p | 6.10 | 3.36 ± 1.25 | 171.65 |
Xylocopa fenestrata | 10.27 | n, p | 5.97 | 3.60 ± 1.32 | 183.94 |
Xylocopa latipes | 2.76 | n, p | 6.33 | 2.97 ± 1.52 | 43.68 |
Lepidoptera | |||||
Castalinus rosimon | 1.68 | n | 0.60 | - | - |
Catochrysops strato | 2.57 | n | 0.44 | - | - |
Jamides bochus | 1.83 | n | 0.38 | - | - |
Pelopidus mathias | 5.73 | n | 0.63 | 80.71 ± 23.43 | 1.80 |
Suastus gremius | 7.01 | n | 0.65 | 72.75 ± 22.72 | 2.27 |
Telicota colon | 1.48 | n | 0.55 | - | - |
Parameters | Yield | |
---|---|---|
Distantly Situated Fields | Closely Situated Fields | |
On Brassica juncea | ||
Seed yield (kg/hectare area) | 1061 ± 50.32 | 1080 ± 56.10 |
On Coriendrum sativum | ||
Fruit yield (kg/hectare area) | 640 ± 57.78 | 667 ± 57.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Layek, U.; Kundu, A.; Das, N.; Mondal, R.; Karmakar, P. Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. Life 2023, 13, 193. https://doi.org/10.3390/life13010193
Layek U, Kundu A, Das N, Mondal R, Karmakar P. Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. Life. 2023; 13(1):193. https://doi.org/10.3390/life13010193
Chicago/Turabian StyleLayek, Ujjwal, Arijit Kundu, Nandita Das, Rajib Mondal, and Prakash Karmakar. 2023. "Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops" Life 13, no. 1: 193. https://doi.org/10.3390/life13010193
APA StyleLayek, U., Kundu, A., Das, N., Mondal, R., & Karmakar, P. (2023). Intercropping with Pigeonpea (Cajanus cajan L. Millsp.): An Assessment of Its Influence on the Assemblage of Pollinators and Yield of Neighbouring Non-Leguminous Crops. Life, 13(1), 193. https://doi.org/10.3390/life13010193