Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science
Abstract
:1. Introduction
2. Four Perspectives on Biological Communications
2.1. Synthetic Biology
2.2. Nanomaterials Science and Nanotechnology
2.3. Communication Engineering
2.4. Philosophy of Science
3. Potential Synergies
3.1. Synergies for Progress toward Technological Visions
3.2. Synergies for Progress in Fundamental Science
4. Challenges in Connecting Communities
4.1. Lost in Translation
4.2. The Gap between Mathematical/Conceptual Frameworks and Experimentation
5. Looking Forward
5.1. Developing a Common Language
5.2. Developing Common Objectives
5.3. Supporting Emerging Synergies
5.4. Training Interdisciplinary Researchers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akan, O.B.; Ramezani, H.; Khan, T.; Abbasi, N.A.; Kuscu, M. Fundamentals of molecular information and communication science. Proc. IEEE 2016, 105, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Rampioni, G.; Mavelli, F.; Damiano, L.; D’Angelo, F.; Messina, M.; Leoni, L.; Stano, P. A synthetic biology approach to bio-chem-ICT: First moves towards chemical communication between synthetic and natural cells. Nat. Comput. 2014, 13, 333–349. [Google Scholar] [CrossRef]
- de Luis, B.; Morellá-Aucejo, Á.; Llopis-Lorente, A.; Godoy-Reyes, T.M.; Villalonga, R.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. A chemical circular communication network at the nanoscale. Chem. Sci. 2021, 12, 1551–1559. [Google Scholar] [CrossRef]
- Cronin, L.; Krasnogor, N.; Davis, B.G.; Alexander, C.; Robertson, N.; Steinke, J.H.; Schroeder, S.L.; Khlobystov, A.N.; Cooper, G.; Gardner, P.M.; et al. The imitation game—A computational chemical approach to recognizing life. Nat. Biotechnol. 2006, 24, 1203–1206. [Google Scholar] [CrossRef]
- Nakano, T.; Eckford, A.W.; Haraguchi, T. Molecular Communication; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Endy, D. Foundations for engineering biology. Nature 2005, 438, 449–453. [Google Scholar] [CrossRef]
- Andrianantoandro, E.; Basu, S.; Karig, D.K.; Weiss, R. Synthetic biology: New engineering rules for an emerging discipline. Mol. Syst. Biol. 2006, 2, 2006-0028. [Google Scholar] [CrossRef] [Green Version]
- Davison, P.A.; Tu, W.; Xu, J.; Della Valle, S.; Thompson, I.P.; Hunter, C.N.; Huang, W.E. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO2 Fixation. ACS Synth. Biol. 2022, 11, 3805–3816. [Google Scholar] [CrossRef]
- Silva-Rocha, R.; de Lorenzo, V. Engineering Multicellular Logic in Bacteria with Metabolic Wires. ACS Synth. Biol. 2014, 3, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.; Pollard, A.M.; Yang, Y.; Jin, F.; Sourjik, V. Engineering Hybrid Chemotaxis Receptors in Bacteria. ACS Synth. Biol. 2016, 5, 989–1001. [Google Scholar] [CrossRef]
- Silverman, A.D.; Akova, U.; Alam, K.K.; Jewett, M.C.; Lucks, J.B. Design and Optimization of a Cell-Free Atrazine Biosensor. ACS Synth. Biol. 2020, 9, 671–677. [Google Scholar] [CrossRef]
- Kruyer, N.S.; Sugianto, W.; Tickman, B.I.; Alba Burbano, D.; Noireaux, V.; Carothers, J.M.; Peralta-Yahya, P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth. Biol. 2021, 10, 670–681. [Google Scholar] [CrossRef]
- Luisi, P.L. Toward the engineering of minimal living cells. Anat. Rec. 2002, 268, 208–214. [Google Scholar] [CrossRef]
- Elani, Y.; Law, R.V.; Ces, O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 2014, 5, 5305. [Google Scholar] [CrossRef] [Green Version]
- Schwille, P.; Spatz, J.; Landfester, K.; Bodenschatz, E.; Herminghaus, S.; Sourjik, V.; Erb, T.J.; Bastiaens, P.; Lipowsky, R.; Hyman, A.; et al. MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angew. Chem. Int. Ed. Engl. 2018, 57, 13382–13392. [Google Scholar] [CrossRef] [PubMed]
- Guindani, C.; da Silva, L.C.; Cao, S.; Ivanov, T.; Landfester, K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew. Chem. Int. Ed. Engl. 2022, 61, e202110855. [Google Scholar] [CrossRef]
- Lentini, R.; Martín, N.Y.; Forlin, M.; Belmonte, L.; Fontana, J.; Cornella, M.; Martini, L.; Tamburini, S.; Bentley, W.E.; Jousson, O.; et al. Two-Way Chemical Communication between Artificial and Natural Cells. ACS Cent. Sci. 2017, 3, 117–123. [Google Scholar] [CrossRef]
- Rampioni, G.; D’Angelo, F.; Leoni, L.; Stano, P. Gene-Expressing Liposomes as Synthetic Cells for Molecular Communication Studies. Front. Bioeng. Biotechnol. 2019, 7, 1. [Google Scholar] [CrossRef]
- Mukwaya, V.; Mann, S.; Dou, H. Chemical communication at the synthetic cell/living cell interface. Commun. Chem. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Karoui, H.; Patwal, P.S.; Pavan Kumar, B.V.V.S.; Martin, N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front. Mol. Biosci. 2022, 9, 880525. [Google Scholar] [CrossRef]
- Leduc, P.R.; Wong, M.S.; Ferreira, P.M.; Groff, R.E.; Haslinger, K.; Koonce, M.P.; Lee, W.Y.; Love, J.C.; McCammon, J.A.; Monteiro-Riviere, N.A.; et al. Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2007, 2, 3–7. [Google Scholar] [CrossRef]
- Diltemiz, S.E.; Tavafoghi, M.; Barros, N.R.d.; Kanada, M.; Heinämäki, J.; Contag, C.; Seidlits, S.K.; Ashammakhi, N. Use of artificial cells as drug carriers. Mater. Chem. Front. 2021, 5, 6672–6692. [Google Scholar] [CrossRef]
- Sato, W.; Zajkowski, T.; Moser, F.; Adamala, K.P. Synthetic cells in biomedical applications. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.; Lim, K.H.; Gonuguntla, S.; Lim, K.W.; Pranantyo, D.; Yong, W.P.; Yam, W.J.T.; Low, Z.; Teo, W.J.; et al. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Adv. Mater. 2019, 31, 1804540. [Google Scholar] [CrossRef]
- Ariga, K.; Leong, D.T.; Mori, T. Nanoarchitectonics for hybrid and related materials for bio-oriented applications. Adv. Funct. Mater. 2018, 28, 1702905. [Google Scholar] [CrossRef]
- Giménez, C.; Climent, E.; Aznar, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M.D.; Amorós, P.; Rurack, K. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 12629–12633. [Google Scholar] [CrossRef] [PubMed]
- De Luis, B.; Llopis-Lorente, A.; Rincón, P.; Gadea, J.; Sancenón, F.; Aznar, E.; Villalonga, R.; Murguía, J.R.; Martínez-Máñez, R. An interactive model of communication between abiotic nanodevices and microorganisms. Angew. Chem. Int. Ed. 2019, 58, 14986–14990. [Google Scholar] [CrossRef]
- De Luis, B.; Morellá-Aucejo, Á.; Llopis-Lorente, A.; Martínez-Latorre, J.; Sancenón, F.; López, C.; Murguía, J.R.; Martínez-Máñez, R. Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms. Nano Lett. 2022, 22, 1836–1844. [Google Scholar] [CrossRef]
- Fichera, L.; Li-Destri, G.; Tuccitto, N. Nanoparticles as suitable messengers for molecular communication. Nanoscale 2020, 12, 22386–22397. [Google Scholar] [CrossRef]
- Arqué, X.; Patino, T.; Sánchez, S. Enzyme-powered micro-and nano-motors: Key parameters for an application-oriented design. Chem. Sci. 2022, 13, 9128–9146. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; García-Fernández, A.; Lucena-Sánchez, E.; Díez, P.; Sancenón, F.; Villalonga, R.; Wilson, D.A.; Martinez-Manez, R. Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chem. Commun. 2019, 55, 13164–13167. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; Garcia-Fernandez, A.; Murillo-Cremaes, N.; Hortelao, A.C.; Patino, T.; Villalonga, R.; Sancenon, F.; Martinez-Manez, R.; Sanchez, S. Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 2019, 13, 12171–12183. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Pierobon, M.; Balasubramaniam, S.; Koucheryavy, Y. The internet of bio-nano things. IEEE Commun. Mag. 2015, 53, 32–40. [Google Scholar] [CrossRef]
- Kuscu, M.; Unluturk, B.D. Internet of bio-nano things: A review of applications, enabling technologies and key challenges. ITU J. Future Evol. Technol. 2021, 2, 1–24. [Google Scholar] [CrossRef]
- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Higgins, M.D.; Leeson, M.S. Diffusion based molecular communications system enhancement using high order hamming codes. In Proceedings of the 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 23–25 July 2014; pp. 438–442. [Google Scholar]
- Dissanayake, M.B.; Deng, Y.; Nallanathan, A.; Ekanayake, E.; Elkashlan, M. Reed solomon codes for molecular communication with a full absorption receiver. IEEE Commun. Lett. 2017, 21, 1245–1248. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Leeson, M.S.; Higgins, M.D. Minimum energy channel codes for molecular communications. Electron. Lett. 2014, 50, 1669–1671. [Google Scholar] [CrossRef] [Green Version]
- Shih, P.J.; Lee, C.H.; Yeh, P.C. Channel codes for mitigating intersymbol interference in diffusion-based molecular communications. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 4228–4232. [Google Scholar]
- Marcone, A.; Pierobon, M.; Magarini, M. Parity-check coding based on genetic circuits for engineered molecular communication between biological cells. IEEE Trans. Commun. 2018, 66, 6221–6236. [Google Scholar] [CrossRef] [Green Version]
- Magarini, M.; Stano, P. Synthetic Cells Engaged in Molecular Communication: An Opportunity for Modelling Shannon- and Semantic-Information in the Chemical Domain. Front. Commun. Netw. 2021, 2, 48. [Google Scholar] [CrossRef]
- Martins, D.P.; Barros, M.T.; O’Sullivan, B.J.; Seymour, I.; O’Riordan, A.; Coffey, L.; Sweeney, J.B.; Balasubramaniam, S. Microfluidic-based Bacterial Molecular Computing on a Chip. IEEE Sens. J. 2022, 22, 16772–16784. [Google Scholar] [CrossRef]
- Luo, T.; Zheng, R.; Song, J.; Lin, L.; Yan, H. A small-scale modulator of electric-to-biological signal conversion for synthetic molecular communications. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Grebenstein, L.; Kirchner, J.; Peixoto, R.S.; Zimmermann, W.; Wicke, W.; Ahmadzadeh, A.; Jamali, V.; Fischer, G.; Weigel, R.; Burkovski, A.; et al. Biological optical-to-chemical signal conversion interface: A small-scale modulator for molecular communications. In Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, Reykjavik, Iceland, 5–7 September 2018; pp. 1–6. [Google Scholar]
- Gardner, P.M.; Winzer, K.; Davis, B.G. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 2009, 1, 377–383. [Google Scholar] [CrossRef]
- Rampioni, G.; D’Angelo, F.; Messina, M.; Zennaro, A.; Kuruma, Y.; Tofani, D.; Leoni, L.; Stano, P. Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 2018, 54, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.O.; Venero, O.M.; Adamala, K.P. Toward synthetic life: Biomimetic synthetic cell communication. Curr. Opin. Chem. Biol. 2021, 64, 165–173. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Pierobon, M.; Balasubramaniam, S. Moving forward with molecular communication: From theory to human health applications [point of view]. Proc. IEEE 2019, 107, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chang, X.; Teymourian, H.; Ramírez-Herrera, D.E.; Esteban-Fernández de Ávila, B.; Lu, X.; Li, J.; He, S.; Fang, C.; Liang, Y.; et al. Bioinspired chemical communication between synthetic nanomotors. Angew. Chem. Int. Ed. 2018, 57, 241–245. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Galloway, K.E.; Smolke, C.D. Synthetic biology: Advancing biological frontiers by building synthetic systems. Genome Biol. 2012, 13, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi-Reyhani, A.; Ces, O.; Elani, Y. Artificial cell mimics as simplified models for the study of cell biology. Exp. Biol. Med. 2017, 242, 1309–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansy, S.S.; Szostak, J.W. Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 47–54. [Google Scholar] [CrossRef]
- Gánti, T. Chemoton Theory: Theory of Living Systems, 2003rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Luisi, P.L. Autopoiesis: A review and a reappraisal. Naturwissenschaften 2003, 90, 49–59. [Google Scholar] [CrossRef]
- Deplazes-Zemp, A. Artificial Cell Research as a Field that Connects Chemical, Biological and Philosophical Questions. Chimia 2016, 70, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Kolchinsky, A.; Wolpert, D.H. Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus 2018, 8, 20180041. [Google Scholar] [CrossRef]
- Frick, R.; Bich, L.; Moreno, A. An organisational approach to biological communication. Acta Biotheor. 2019, 67, 103–128. [Google Scholar] [CrossRef] [PubMed]
- Martin-Sanchez, F.; Maojo, V. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies. Yearb. Med. Inform. 2009, 18, 134–142. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egan, M.; Kuscu, M.; Barros, M.T.; Booth, M.; Llopis-Lorente, A.; Magarini, M.; Martins, D.P.; Schäfer, M.; Stano, P. Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life 2023, 13, 208. https://doi.org/10.3390/life13010208
Egan M, Kuscu M, Barros MT, Booth M, Llopis-Lorente A, Magarini M, Martins DP, Schäfer M, Stano P. Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life. 2023; 13(1):208. https://doi.org/10.3390/life13010208
Chicago/Turabian StyleEgan, Malcolm, Murat Kuscu, Michael Taynnan Barros, Michael Booth, Antoni Llopis-Lorente, Maurizio Magarini, Daniel P. Martins, Maximilian Schäfer, and Pasquale Stano. 2023. "Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science" Life 13, no. 1: 208. https://doi.org/10.3390/life13010208
APA StyleEgan, M., Kuscu, M., Barros, M. T., Booth, M., Llopis-Lorente, A., Magarini, M., Martins, D. P., Schäfer, M., & Stano, P. (2023). Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science. Life, 13(1), 208. https://doi.org/10.3390/life13010208