Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening Putative CEPs in Meloidogyne Species
2.2. Logo Plot and Phylogenetic Analyses
2.3. Root Architecture Analysis
2.4. Nitrate Transporter Analysis
2.5. Nitrogen Uptake Analysis in Nematode Using Mass Spectrometry
3. Results
3.1. Meloidogyne Genomes Encode Suites of CEP-like Peptides
3.2. Role of CEP in Plant Root Architecture
3.3. M. hapla CEP11 Increases Nitrate Transporter Gene Expression
3.4. RKN CEP Increases Nitrogen Uptake and Assimilation in M. hapla Feeding Sites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rutter, W.B.; Franco, J.; Gleason, C. Rooting Out the Mechanisms of Root-Knot Nematode-Plant Interactions. Annu. Rev. Phytopathol. 2022, 60, 43–76. [Google Scholar] [CrossRef]
- Bartlem, D.G.; Jones, M.G.K.; Hammes, U.Z. Vascularization and Nutrient Delivery at Root-Knot Nematode Feeding Sites in Host Roots. J. Exp. Bot. 2014, 65, 1789–1798. [Google Scholar] [CrossRef]
- Hewezi, T. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins. Plant Physiol. 2015, 169, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Bobay, B.G.; Digennaro, P.; Scholl, E.; Imin, N.; Djordjevic, M.A.; McK Bird, D. Solution NMR Studies of the Plant Peptide Hormone CEP Inform Function. FEBS Lett. 2013, 587, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Mitchum, M.G.; Wang, X.; Wang, J.; Davis, E.L. Role of Nematode Peptides and Other Small Molecules in Plant Parasitism. Annu. Rev. Phytopathol. 2012, 50, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, Y.; Sawa, S. Diverse Function of Plant Peptide Hormones in Local Signaling and Development. Curr. Opin. Plant Biol. 2019, 51, 81–87. [Google Scholar] [CrossRef]
- Furumizu, C.; Sawa, S. The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. Front. Plant Sci. 2021, 12, 703012. [Google Scholar] [CrossRef]
- Ogilvie, H.A.; Imin, N.; Djordjevic, M.A. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) Gene Family in Angiosperms, and Evolution of Plant-Family Specific CEP Genes. BMC Genom. 2014, 15, 870. [Google Scholar] [CrossRef]
- Ohyama, K.; Ogawa, M.; Matsubayashi, Y. Identification of a Biologically Active, Small, Secreted Peptide in Arabidopsis by in Silico Gene Screening, Followed by LC-MS-Based Structure Analysis. Plant J. 2008, 55, 152–160. [Google Scholar] [CrossRef]
- Eves-Van Den Akker, S.; Lilley, C.J.; Yusup, H.B.; Jones, J.T.; Urwin, P.E. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) Plant Hormone Domains Evolved de Novo in the Plant Parasite Rotylenchulus Reniformis. Mol, Plant Pathol. 2016, 17, 1265–1275. [Google Scholar] [CrossRef]
- Delay, C.; Imin, N.; Djordjevic, M.A. CEP Genes Regulate Root and Shoot Development in Response to Environmental Cues and Are Specific to Seed Plants. J. Exp. Bot. 2013, 64, 5383–5394. [Google Scholar] [CrossRef]
- Mohd-Radzman, N.A.; Binos, S.; Truong, T.T.; Imin, N.; Mariani, M.; Djordjevic, M.A. Novel MtCEP1 Peptides Produced in Vivo Differentially Regulate Root Development in Medicago Truncatula. J. Exp. Bot. 2015, 66, 5289–5300. [Google Scholar] [CrossRef] [PubMed]
- Imin, N.; Mohd-Radzman, N.A.; Ogilvie, H.A.; Djordjevic, M.A. The Peptide-Encoding CEP1 Gene Modulates Lateral Root and Nodule Numbers in Medicago Truncatula. J. Exp. Bot. 2013, 64, 5395–5409. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Ivanovici, A.; Taleski, M.; Sturrock, C.J.; Ng, J.L.P.; Mohd-Radzman, N.A.; Frugier, F.; Bennett, M.J.; Mathesius, U.; Djordjevic, M.A. CEP Receptor Signalling Controls Root System Architecture in Arabidopsis and Medicago. New Phytol. 2020, 226, 1809–1821. [Google Scholar] [CrossRef] [PubMed]
- Amano, Y.; Tsubouchi, H.; Shinohara, H.; Ogawa, M.; Matsubayashi, Y. Tyrosine-Sulfated Glycopeptide Involved in Cellular Proliferation and Expansion in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 18333–18338. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Matsubayashi, Y.; Sakagami, Y. Peptide Growth Factor Phytosulfokine-Alpha Contributes to the Pollen Population Effect. Planta 2000, 211, 752–755. [Google Scholar] [CrossRef]
- Ito, Y.; Nakanomyo, I.; Motose, H.; Iwamoto, K.; Sawa, S.; Dohmae, N.; Fukuda, H. Dodeca-CLE Peptides as Suppressors of Plant Stem Cell Differentiation. Science 2006, 313, 842–845. [Google Scholar] [CrossRef]
- Matsubayashi, Y. Posttranslationally Modified Small-Peptide Signals in Plants. Annu. Rev. Plant Biol. 2014, 65, 385–413. [Google Scholar] [CrossRef]
- Delay, C.; Chapman, K.; Taleski, M.; Wang, Y.; Tyagi, S.; Xiong, Y.; Imin, N.; Djordjevic, M.A. CEP3 Levels Affect Starvation-Related Growth Responses of the Primary Root. J. Exp. Bot. 2019, 70, 4763–4774. [Google Scholar] [CrossRef]
- Gansel, X.; Muños, S.; Tillard, P.; Gojon, A. Differential Regulation of the NO3- and NH4+ Transporter Genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: Relation with Long-Distance and Local Controls by N Status of the Plant. Plant J. 2001, 26, 143–155. [Google Scholar] [CrossRef]
- Tabata, R.; Sumida, K.; Yoshii, T.; Ohyama, K.; Shinohara, H.; Matsubayashi, Y. Perception of Root-Derived Peptides by Shoot LRR-RKs Mediates Systemic N-Demand Signaling. Science 2014, 346, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, Y.; Tanaka, M.; Tabata, R.; Ogawa-Ohnishi, M.; Matsubayashi, Y. Shoot-to-Root Mobile Polypeptides Involved in Systemic Regulation of Nitrogen Acquisition. Nat. Plants 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Taleski, M.; Imin, N.; Djordjevic, M.A. CEP Peptide Hormones: Key Players in Orchestrating Nitrogen-Demand Signalling, Root Nodulation, and Lateral Root Development. J. Exp. Bot. 2018, 69, 1829–1836. [Google Scholar] [CrossRef]
- Roy, S.; Griffiths, M.; Torres-Jerez, I.; Sanchez, B.; Antonelli, E.; Jain, D.; Krom, N.; Zhang, S.; York, L.M.; Scheible, W.R.; et al. Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. Front. Plant Sci. 2022, 12, 793145. [Google Scholar] [CrossRef] [PubMed]
- Mathesius, U. Conservation and Divergence of Signalling Pathways between Roots and Soil Microbes—The Rhizobium-Legume Symbiosis Compared to the Development of Lateral Roots, Mycorrhizal Interactions and Nematode-Induced Galls. Plant Soil 2003, 255, 105–119. [Google Scholar] [CrossRef]
- Bird, D.M.K. Signaling between Nematodes and Plants. Curr. Opin. Plant Biol. 2004, 7, 372–376. [Google Scholar] [CrossRef]
- Costa, S.R.; Pin Ng, J.L.; Mathesius, U. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Mol. Plant Microbe Interact. 2021, 34, 470–490. [Google Scholar] [CrossRef]
- Mitchum, M.G.; Wang, X.; Davis, E.L. Diverse and Conserved Roles of CLE Peptides. Curr. Opin. Plant Biol. 2008, 11, 75–81. [Google Scholar] [CrossRef]
- Rice, P.; Longden, L.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Schwarz, R.; Dayhoff, M. Matrices for Detecting Distant Relationships. In Atlas of Protein Sequences; Dayhoff, M., Ed.; National Biomedical Research Foundation: Washington, DC, USA, 1979; pp. 353–358. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Fahraeus, G. The Infection of Clover Root Hairs by Nodule Bacteria Studied by a Simple Glass Slide Technique. J. Gen. Microbiol. 1957, 16, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Asai, S.; Rallapalli, G.; Piquerez, S.J.M.; Caillaud, M.C.; Furzer, O.J.; Ishaque, N.; Wirthmueller, L.; Fabro, G.; Shirasu, K.; Jones, J.D.G. Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid. PLoS Pathog. 2014, 10, e1004443. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.; Goffard, N.; Weiller, G.F.; Rolfe, B.G.; Imin, N. Transcriptional Profiling of Medicago Truncatula Meristematic Root Cells. BMC Plant Biol 2008, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Okamoto, S.; Ohnishi, E.; Sato, S.; Takahashi, H.; Nakazono, M.; Tabata, S.; Kawaguchi, M. Nod Factor/Nitrate-Induced CLE Genes That Drive HAR1-Mediated Systemic Regulation of Nodulation. Plant Cell Physiol. 2009, 50, 67–77. [Google Scholar] [CrossRef]
- Mortier, V.; den Herder, G.; Whitford, R.; van de Velde, W.; Rombauts, S.; D’haeseleer, K.; Holsters, M.; Goormachtig, S. CLE Peptides Control Medicago Truncatula Nodulation Locally and Systemically. Plant Physiol. 2010, 153, 222–237. [Google Scholar] [CrossRef]
- Frei dit Frey, N.; Favery, B. Plant-Parasitic Nematode Secreted Peptides Hijack a Plant Secretory Pathway. New Phytol. 2021, 229, 11–13. [Google Scholar] [CrossRef]
- Ejima, C.; Uwatoko, T.; Thi Ngan, B.; Honda, H.; Shimizu, N.; Kiyohara, S.; Hamasaki, R.; Sawa, S. SNPs of CLAVATA Receptors in Tomato, in the Context of Root-Knot Nematode Infection. Nematol. Res. 2011, 41, 35–40. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, S.; Zhang, Y.; He, Y.; Du, M.; ÓReilly, A.O.; Wu, S.; Yang, Y.; Wu, Y. Single Amino Acid Variations Drive Functional Divergence of Cytochrome P450s in Helicoverpa Species. Insect Biochem. Mol. Biol. 2022, 146. [Google Scholar] [CrossRef]
- Jiang, Y.; MacLean, D.E.; Perry, G.E.; Marsolais, F.; Hill, B.; Pauls, K.P. Evaluation of Beneficial and Inhibitory Effects of Nitrate on Nodulation and Nitrogen Fixation in Common Bean (Phaseolus Vulgaris). Legume Sci. 2020, 2, e45. [Google Scholar] [CrossRef]
- Mergaert, P.; Kereszt, A.; Kondorosi, E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago Truncatula and Other Nodulating Plants. Plant Cell 2020, 32, 42–68. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, R.R.; Bird, D.M.K.; Allen, N.S. Root-Knot Nematodes and Bacterial Nod Factors Elicit Common Signal Transduction Events in Lotus Japonicus. Proc. Natl. Acad. Sci. USA 2005, 102, 3147–3152. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; MacCoss, M.J.; Howell, K.E.; Matthews, D.E.; Yates, J.R. Metabolic Labeling of Mammalian Organisms with Stable Isotopes for Quantitative Proteomic Analysis. Anal. Chem. 2004, 76, 4951–4959. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, R.; Stitt, M.; Sonnewald, U.; Boldt, R. Pyrimidine and Purine Biosynthesis and Degradation in Plants. Annu. Rev. Plant Biol. 2006, 57, 805–836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.; Hu, W.; DiGennaro, P. Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation. Life 2023, 13, 2020. https://doi.org/10.3390/life13102020
Mishra S, Hu W, DiGennaro P. Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation. Life. 2023; 13(10):2020. https://doi.org/10.3390/life13102020
Chicago/Turabian StyleMishra, Shova, Weiming Hu, and Peter DiGennaro. 2023. "Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation" Life 13, no. 10: 2020. https://doi.org/10.3390/life13102020
APA StyleMishra, S., Hu, W., & DiGennaro, P. (2023). Root-Knot-Nematode-Encoded CEPs Increase Nitrogen Assimilation. Life, 13(10), 2020. https://doi.org/10.3390/life13102020