Bowiea volubilis: From “Climbing Onion” to Therapeutic Treasure—Exploring Human Health Applications
Abstract
:1. Introduction
2. Methodology
3. Description, Distribution, and Habitat of B. volubilis
4. Traditional Use of B. volubilis
5. Phytochemistry of B. volubilis
6. Biological Activity of B. volubilis
6.1. Antibacterial Activity of B. volubilis
6.2. Antifungal Activity of B. volubilis
6.3. Anti-Inflammatory Activity of B. volubilis
6.4. Antiviral Activity of B. volubilis
7. Toxicological Data of B. volubilis
8. Bowiea volubilis as a Potential Therapeutic Drug: Addressing the Major Challenges toward Human Diseases
9. Conservation Statues of B. volubilis
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaptchouang Tchatchouang, C.D.; Fri, J.; Montso, P.K.; Amagliani, G.; Schiavano, G.F.; Manganyi, M.C.; Baldelli, G.; Brandi, G.; Ateba, C.N. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Birhan, Y.S.; Kitaw, S.L.; Alemayehu, Y.A.; Mengesha, N.M. Medicinal plants with traditional healthcare importance to manage human and livestock ailments in Enemay District, Amhara Region, Ethiopia. Acta Ecol. Sin. 2023, 43, 382–399. [Google Scholar] [CrossRef]
- Van Jaarsveld, E.J. Bowiea volubilis-an overlooked South African ornamental plant. Veld Flora 1992, 78, 63–64. [Google Scholar]
- Stafford, G.I.; Jäger, A.K.; Van Staden, J. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. J. Ethnopharmacol. 2005, 97, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2005, 19, 999–1006. [Google Scholar] [CrossRef]
- Shokoohinia, Y.; Sadeghi-aliabadi, H.; Mosaddegh, M.; Abdollahi, M. Review on the potential therapeutic roles of Bowiea volubilis. J. Evid.-Based Complement. Altern. Med. 2018, 23, 662–669. [Google Scholar]
- Zavala, M.A.; Hulme, P.E. The diversity and biogeography of alien plants in novel ecosystems: Insights from a global quantitative analysis. Plant Syst. Evo. 2015, 17, 588–597. [Google Scholar]
- Manning, J.; Goldblatt, P. Plants of the Greater Cape Floristic Region 1: The Core Cape Flora. Strelitzia; South African National Biodiversity Institute: Pretoria, South Africa, 2012; Volume 29. [Google Scholar]
- Manning, J.C.; Goldblatt, P. Plants of the Greater Cape Floristic Region 2: The Extra Cape Flora. Strelitzia; South African National Biodiversity Institute: Pretoria, South Africa, 2013; Volume 30, pp. 91–94. [Google Scholar]
- Hulley, P.E.; Van Wyk, B.E. Plants of the Klein Karoo; Umdaus Press: Pretoria, South Africa, 2011. [Google Scholar]
- Ndlovu, M.; Masika, P.J. The genus Bowiea: Review of ethnobotanical, phytochemical and pharmacological properties. J. Med. Plants Res. 2011, 5, 3981–3988. [Google Scholar]
- Pourakbari, R.; Taher, S.M.; Mosayyebi, B.; Ayoubi-Joshaghani, M.H.; Ahmadi, H.; Aghebati-Maleki, L. Implications for glycosylated compounds and their anti-cancer effects. Int. J. Biol. Macromol. 2020, 163, 1323–1332. [Google Scholar] [CrossRef]
- Zacchino, S.; Yunes, R.; Cechinel, V.; Enriz, R.; Kouznetsov, V.; Ribas, J.C. The need for new antifungal drugs: Screening for antifungal compounds with a selective mode of action with emphasis on the inhibitors of the fungal cell wall. In Plant Derived Antimycotics; Haworth Press: New York, NY, USA, 2003; pp. 1–47. [Google Scholar]
- Rasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef]
- Mir, R.A.; Mir, M.U. Plant osmolytes: Potential for crop improvement under adverse conditions. Inter. J. Agric. Environ. Biotechnol. 2015, 8, 719–728. [Google Scholar]
- Mugivhisa, L.L.; Hackleton, C.M. Bowiea volubilis Harv. Ex Hook, F. as a potential candidate for land restoration in South Africa. Afr. J. Range Forage Sci. 2017, 34, 147–153. [Google Scholar]
- Ndlovu, L.R.; Chimonyo, M.; Okoh, A.I.; Muchenje, V. Nutritional value of Bowiea volubilis as a potential feed supplement for small ruminants: Rumen fermentation and in vitro digestibility. Trop. Anim. Health Prod. 2008, 40, 1–9. [Google Scholar]
- Xego, S.; Kambizi, L.; Nchu, F. Threatened medicinal plants of South Africa: Case of the family. Afr. J. Tradit. Complement. Altern. Med. 2016, 13. [Google Scholar] [CrossRef]
- Koorbanally, C.; Crouch, N.R.; Mulholland, D.A. The phytochemistry and ethnobotany of the southern African genus Eucomis (Hyacinthaceae: Hyacinthoideae). In Phytochemistry: Advances in Research; Research Signpost: Kerala, India, 2006; pp. 69–85. ISBN 81-308-0034-9. [Google Scholar]
- Afolayan, A.J.; Adebola, P.O. In vitro propagation: A biotechnological tool capable of solving the problem of medicinal plants decimation in South Africa. Afr. J. Biotech. 2004, 3, 683–687. [Google Scholar]
- Afzal, S.; Singh, N.K.; Singh, N.; Sohrab, S.; Rani, M.; Mishra, S.K.; Agarwal, S.C. Effect of metals and metalloids on the physiology and biochemistry of medicinal and aquatic plants. In Metals Metalloids Soil Plant Water Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 199–216. [Google Scholar]
- Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother. 2016, 84, 1036–1041. [Google Scholar] [CrossRef]
- Mander, M.; Wynberg, R.; Schroeder, D. The socio-economic contribution of wild harvested plants in South Africa: A case study of the rooibos industry. J. Environ. Manag. 2020, 264, 110456. [Google Scholar]
- Philander, L.A. An ethnobotany of Western Cape Rasta bush medicine. J. Ethnopharmacol. 2011, 138, 578–594. [Google Scholar] [CrossRef]
- Hutchings, A. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996. [Google Scholar]
- Symmonds, R.; Bircher, C.; Crouch, N. Bulb scaling and seed success with Bowiea volubilis. Plant Life 1997, 17, 25–26. [Google Scholar]
- Pooley, E. A Field Guide to Wildflowers: KwaZulu-Natal and the Eastern Region; Natal Flora Publications Trust: Durban, South Africa, 1998. [Google Scholar]
- Raimondo, D.; Von Staden, L.; Foden, W.; Victor, J.E.; Helme, N.A.; Tuner, R.C.; Kamundi, D.A. (Eds.) Red List of South African Plants. Strelitzia 25; South African National Biodiversity Institute: Pretoria, South Africa, 2009. [Google Scholar]
- Ördögh, M.; Farkas, D. The Effect of Different Substrates on Morphological Characteristics of Acclimatized Bowiea volubilis. Rev. Agri. Rural Dev. 2021, 10, 9–15. [Google Scholar]
- Rasethe, M.T.; Semenya, S.S.; Maroyi, A. Medicinal plants traded in informal herbal medicine markets of the Limpopo Province, South Africa. Evid.-Based Complement. Altern. Med. 2019, 11, 2609532. [Google Scholar] [CrossRef]
- Bisi-Johnson, M.A.; Obi, C.L.; Kambizi, L.; Nkomo, M. A survey of indigenous herbal diarrhoeal remedies of OR Tambo district, Eastern Cape Province, South Africa. Afr. J. Biotechnol. 2010, 9. [Google Scholar] [CrossRef]
- Hutchings, A.; Van Staden, J. Plants used for stress-related ailments in traditional Zulu, Xhosa and Sotho medicine. Part 1: Plants used for headaches. J. Ethnopharmacol. 1994, 43, 89–124. [Google Scholar] [CrossRef]
- Hannweg, K.F. Development of Micropropagation Protocols for Selected Indigenous Plant Species. Doctoral Dissertation, University of Kwazulu-Natal, Pietermaritzburg, South Africa, 1995. [Google Scholar]
- Maroyi, A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J. Ethnobiol. Ethnomed. 2017, 13, 43. [Google Scholar] [CrossRef]
- Ndawonde, B.G.; Zobolo, A.M.; Dlamini, E.T.; Siebert, S.J. A survey of plants sold by traders at Zululand muthi markets, with a view to selecting popular plant species for propagation in communal gardens. Afr. J. Range Forage Sci. 2007, 24, 103–107. [Google Scholar] [CrossRef]
- Van Der Bijl, P.; Van Der Bijl, P. Cardiotoxicity of plants in South Africa. Cardiovasc. J. Afr. 2012, 23, 476–477. [Google Scholar]
- Van Vuuren, S.F.; Naidoo, D. An antimicrobial investigation of plants used traditionally in Southern Africa to treat sexually transmitted infections. J. Ethnopharmacol. 2010, 130, 552–558. [Google Scholar] [CrossRef]
- Sagbo, I.; Mbeng, W. Plants used for cosmetics in the Eastern Cape Province of South Africa: A case study of skin care. Pharmacogn. Rev. 2018, 12, 139–156. [Google Scholar] [CrossRef]
- Husen, A. (Ed.) Environmental Pollution and Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ramarumo, L.; Maroyi, A.; Tshisikhawe, M.P. Bowiea volubilis Harv. ex Hook.f. subsp. volubilis: A therapeutic plant species used by the traditional healers in the Soutpansberg Region, Vhembe Biosphere Reserve, Limpopo Province, South Africa. J. Pharm. Sci. Res. 2019, 11, 2538–2542. [Google Scholar]
- Njoroge, G.N.; Bussmann, R.W. Herbal usage and informant consensus in ethnoveterinary management of cattle diseases among the Kikuyus (Central Kenya). J. Ethnopharmacol. 2008, 108, 332–339. [Google Scholar] [CrossRef]
- Aremu, A.O.; Moyo, M.; Amoo, S.O.; Van Staden, J. Ethnobotany, therapeutic value, phytochemistry and conservation status of Bowiea volubilis: A widely used bulbous plant in southern Africa. J. Ethnopharmacol. 2015, 174, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.B. Plants of Xhosa people in the Transkei region of Eastern Cape (South Africa) with major pharmacological and therapeutic properties. J. Med. Plants Res. 2013, 7, 1474–1480. [Google Scholar]
- Street, R.A. Heavy Metals in South African Medicinal Plants. Doctoral Dissertation, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2008. [Google Scholar]
- Asare, G.A.; Ongong’a, R.O.; Anang, Y.; Asmah, R.H.; Rahman, H. Effect of a Benign Prostatic Hyperplasia (BPH) Xenobiotic-Croton membranaceus Müll. Arg. Root Extract on CYP1A2, CYP3A4, CYP2D6, and GSTM1 Drug Metabolizing Enzymes in Rat Model. 2020; preprint. [Google Scholar]
- Cimi, P.V.; Campbell, E.E. An investigation of medicinal and cultural use of plants by Grahamstown community members in the Eastern Cape Province of South Africa. S. Afr. Mus. Assoc. 2017, 39, 1–9. [Google Scholar]
- Cock, I.; Mavuso, N.; Van Vuuren, S. A review of Plant-Based therapies for the treatment of urinary tract infections in traditional Southern African Medicines. Evid. Based Compleme. Altern. Med. 2021, 2021, 7341124. [Google Scholar] [CrossRef]
- Coopoosamy, R.; Naidoo, K. An ethnobotanical study of medicinal plants used by tradictional healers in Durban, South Africa. Afr. J. Pharm. Pharmacol. 2012, 6, 818–823. [Google Scholar] [CrossRef]
- Amusan, O.O.G.; Dlamini, P.S.; Msonthi, L.P.; Makhubu, L.P. Some herbal remedies from Manzini region of Swaziland. J. Ethnopharmacol. 2002, 79, 109–112. [Google Scholar] [CrossRef]
- Buwa, L.V.; Van Staden, J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. J. Ethnopharmacol. 2006, 103, 139–142. [Google Scholar] [CrossRef]
- Mongalo, N.I. Petlophorum africanum Sond [Mesetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. J. Med. Plants Res. 2013, 7, 3484–3491. [Google Scholar]
- Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manag. 2017, 193, 211–220. [Google Scholar] [CrossRef]
- Steenkamp, V. Traditional herbal remedies used by South African women for gynaecological complaints. J. Ethnopharmacol. 2003, 86, 97–108. [Google Scholar] [CrossRef]
- Veale, D.J.; Furman, K.I.; Oliver, D.W. South African traditional herbal medicines used during pregnancy and childbirth. J. Ethnopharmacol. 1992, 36, 185–191. [Google Scholar] [CrossRef]
- Masondo, N.A.; Ndhlala, A.R.; Aremu, A.O.; Van Staden, J.; Finnie, J.F. A comparison of the pharmacological properties of garden cultivated and muthi market-sold Bowiea volubilis. S. Afr. J. Bot. 2013, 86, 135–138. [Google Scholar] [CrossRef]
- Finnie, J.F.; Drewes, F.E.; Van Staden, J. Bowiea volubilis Harv. ex hook. f.(sea onion): In vitro culture and the production of cardiac glycosides. In Medicinal and Aromatic Plants VII; Springer: Berlin/Heidelberg, Germany, 1994; pp. 84–97. [Google Scholar]
- Taylor, J.L.S.; Rabe, T.; Mcgaw, L.J.; Jäger, A.K.; Van Staden, J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001, 34, 23–37. [Google Scholar] [CrossRef]
- Aremu, A.O.; Van Staden, J.; Finnie, J.F. Does micropropagation influence the antimicrobial properties of Bowiea volubilis? S. Afr. J. Bot. 2013, 86, 157–158. [Google Scholar]
- Ewhea, A.S.; Morah, F.; Obeten, A.U. Anti-microbial and anthelminthic activities of Spilanthes filicaulis (Schum. & Thonn.) CD Adams. World Sci. News 2023, 175, 1–12. [Google Scholar]
- Jäger, A.K.; Hutchings, A.; Van Staden, J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. J. Ethnopharmacol. 1996, 52, 95–100. [Google Scholar] [CrossRef]
- Steyn, P.S.; Van Heerden, F.R. Bufadienolides of plant and animal origin. Nat. Prod. Rep. 1998, 15, 397–413. [Google Scholar] [CrossRef]
- Winnicka, K.A.; Bielawski, K.R.; Bielawska, A.N. Cardiac glycosides in cancer research and cancer therapy. Acta Pol. Pharm. 2006, 63, 109–115. [Google Scholar]
- Eshun, R.I.; Atangwho, D.G.; Asiedu-Gyekye, R.N. Ethnobotanical, Phytochemical, and Pharmacological Profile of Bowiea volubilis Harv. ex Hook.f. J. Complement. Integr. Med. 2014, 11, 253–261. [Google Scholar]
- Salim, K.P.; Anto, R.J.; Chetty, A.S.; Sen, S. Anti-inflammatory effect of the saponin isolated from Bowiea volubilis—A sea onion. J. Ethnopharmacol. 2009, 124, 569–572. [Google Scholar]
- Cheok, C.Y.; Salman, H.A.K.; Sulaiman, R. Extraction and quantification of saponins: A review. Food Res. Inter. 2014, 59, 16–40. [Google Scholar] [CrossRef]
- Boatwright, J.S.; De Lange, M.S.; Van der Merwe, A.L. The Genus Bowiea (Hyacinthaceae: Urgineoideae) in Southern Africa: Morphology, Taxonomy, and Conservation. Taxon. 2008, 57, 1255–1264. [Google Scholar]
- Phambu, N.M.; Nthambeleni, C.M.; Happi, E.E.E. An overview of the medicinal importance of Bowiea volubilis. J. Ethnopharmacol. 2020, 246, 112202. [Google Scholar]
- Guleria, P.; Tiku, V.N.; Singh, R. Phytochemical analysis and antimicrobial activity of Bowiea volubilis Harv. ex Hook.f. J. Appl. Pharm. Sci. 2013, 3, 120–124. [Google Scholar]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Bio. Res. 2017, 7, 108–123. [Google Scholar]
- Oueslati, S.; Ksouri, R.; Falleh, H.; Pichette, A.; Abdelly, C.; Legault, J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012, 132, 943–947. [Google Scholar] [CrossRef]
- Ndhlala, A.; Ncube, B.; Okem, A.; Mulaudzi, R.; van Staden, J. Toxicology of some important medicinal plants in southern Africa. Food Chem. Toxicol. 2013, 62, 609–621. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Motlhatlego, K.E.; Netshia, V. Traditionally used polyherbals in a southern African therapeutic context. J. Ethnopharmacol. 2022, 288, 114977. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Heisey, R.; Gorham, B.K. Antimicrobial effects of plant extracts on Streptococcus mutans, Candida albicans, Trichophyton rubrum and other micro-organisms. Lett. Appl. Microbiol. 1992, 14, 136–139. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Eloff, J.N. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. J. Ethnopharmacol. 2015, 160, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, E.I.; Adeyemi, O.; Adebiyi, O.; Adeniji, O.O.; Abolaji, A.; Akinyemi, J.O. Antiviral Activity of Bowiea volubilis Against Herpes Simplex Virus Type 1. J. Pure Appl. Microbiol. 2018, 12, 2287–2294. [Google Scholar]
- Tran, N.-L.; Park, J.-H.; Lee, B.-H.; Tung, T.T.; Yang, E.-J.; Oh, W.K. Antiviral Activity of Bowiea volubilis Extract and Compounds against Dengue Virus. J. Nat. Prod. 2017, 80, 2215–2220. [Google Scholar]
- Barrientos, A.G.; Juma, J.O.; Okinda Owuor, E.M.; Anzala, J.O.; Holman, M.J. Evaluation of the antiviral activity of a crude extract from Bowiea volubilis Harv. against HIV-1 using a PBMC-based assay. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 287–292. [Google Scholar]
- Feng, R.; Yu, H.; Wang, X.-L.; Hou, W. Antiviral activity of extracts from the bulb of Bowiea volubilis against respiratory syncytial virus (RSV). J. Ethnopharmacol. 2014, 153, 101–107. [Google Scholar]
- Ali, S.I.; Sheikh, W.M.; Rather, M.A.; Venkatesalu, V.; Bashir, S.M.; Nabi, S.U. Medicinal plants: Treasure for antiviral drug discovery. Phytother. Res. 2021, 35, 3447–3483. [Google Scholar] [CrossRef]
- Iwalewa, E.O.; Mcgaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar]
- Emamzadeh-Yazdi, S. Antiviral, Antibacterial, and Cytotoxic Activities of South African Plants Containing Cardiac Glycosides. Masters Dissertation, University of Pretoria, Plant Science, Pretoria, South Africa, 2013. [Google Scholar]
- Fasinu, P.; Bouic, P.J.; Rosenkranz, B. The Inhibitory activity of the extract of popular medicinal herbs on CYP1A2, 2C9, 2C19 and 2A4 and the implications for herb-drug interaction. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 54–61. [Google Scholar] [CrossRef]
- Kuek, L.E.; Lee, R.J. First contact: The role of respiratory cilia in host-pathogen interactions in the airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L603–L619. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Cerceo, E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Meawed, T.E.; Ahmed, S.M.; Mowafy, S.M.; Samir, G.M.; Anis, R.H. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J. Infect. Public Health 2021, 14, 1375–1380. [Google Scholar] [CrossRef]
- Mulholland, D.A.; Nuzillard, J.M.; Stermitz, F.R. Cardenolides from Bowiea volubilis. Phytochem. 2013, 96, 295–301. [Google Scholar]
- Salminen, K.A.; Meyer, A.; Bernal, M.R.; Schuster, D.; Karonen, M. Alkaloids as inhibitors of human cytochrome P450 3A4, 2D6, and 2C9: Implications in drug development. Front. Pharmacol. 2011, 2, 28. [Google Scholar]
- Smith, D.J.; Bi, H.; Hamman, J.; Ma, X.; Mitchell, C.; Nyirenda, K.; Monera-Penduka, T.; Oketch-Rabah, H.; Paine, M.F.; Pettit, S.; et al. Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries. Front. Pharmacol. 2023, 14, 1210579. [Google Scholar] [CrossRef] [PubMed]
- Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Infect. Dis. 2005, 5, 718–725. [Google Scholar] [CrossRef]
- Moghadami, M. A narrative review of influenza: A seasonal and pandemic disease. Iran. J. Med. Sci. 2017, 42, 2. [Google Scholar]
- Rustamovich, T.D.; Alisherovna, K.M.; Nizamitdinovich, K.S.; Djamshedovna, K.D. Gastrointestinal Conditions in Rheumatoid Arthritis Patients. Texas J. Med. Sci. 2022, 15, 68–72. [Google Scholar]
- Parker, C.H.; Naliboff, B.D.; Shih, W.; Presson, A.P.; Kilpatrick, L.; Gupta, A.; Liu, C.; Keefer, L.A.; Sauk, J.S.; Hirten, R.; et al. The role of resilience in irritable bowel syndrome, other chronic gastrointestinal conditions, and the general population. J. Gastroenterol. Hepatol. 2021, 19, 2541–2550. [Google Scholar] [CrossRef]
- Mangoale, R.M.; Afolayan, A.J. Comparative phytochemical constituents and antioxidant activity of wild and cultivated Alepidea amatymbica Eckl & Zeyh. BioMed Res. Inter. 2020, 2020, 5808624. [Google Scholar]
- Casado-Bedmar, M.; Viennois, E. MicroRNA and gut microbiota: Tiny but mighty—Novel insights into their cross-talk in inflammatory bowel disease pathogenesis and therapeutics. J. Crohn’s Colitis 2022, 16, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Chung, I.M.; Rajakumar, G.; Alzohairy, M.A.; Alomary, M.N.; Thiruvengadam, M.; Pottoo, F.H.; Ahmad, N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy—A review. Curr. Pharm. Des. 2020, 26, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, R.; Srivastava, N.; Kushwaha, P. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. Recent Pat. Nanotechnol. 2022, 16, 283–294. [Google Scholar]
- Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023, 162, 114643. [Google Scholar] [CrossRef]
- Mofokeng, M.M.; du Plooy, C.P.; Araya, H.T.; Amoo, S.O.; Mokgehle, S.N.; Pofu, K.M.; Mashela, P.W. Medicinal plant cultivation for sustainable use and commercialisation of high-value crops. S. Afr. J. Sci. 2022, 118, 1–7. [Google Scholar] [CrossRef]
- Rani, H.; Srivastava, A.K. Phytomedicines and Their Prospects in Treatment of Common Skin Diseases. Adv. Pharm. Biotechnol. Recent Prog. Future Appl. 2020, 289–315. [Google Scholar] [CrossRef]
- Richard, M.A.; Paul, C.; Nijsten, T.; Gisondi, P.; Salavastru, C.; Taieb, C.; Trakatelli, M.; Puig, L.; Stratigos, A. EADV Burden of Skin Diseases Project Team, Prevalence of most common skin diseases in Europe: A population-based study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1088–1096. [Google Scholar] [CrossRef]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut–skin axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021, 47, 70–180. [Google Scholar] [CrossRef]
- Boxberger, M.; Cenizo, V.; Cassir, N.; La Scola, B. Challenges in exploring and manipulating the human skin microbiome. Microbiome 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Shaskolskiy, B.; Dementieva, E.; Leinsoo, A.; Runina, A.; Vorobyev, D.; Plakhova, X.; Kubanov, A.; Deryabin, D.; Gryadunov, D. Drug resistance mechanisms in bacteria causing sexually transmitted diseases and associated with vaginosis. Front. Microbiol. 2016, 7, 747. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). News-Room. Key Facts. Sexually Transmitted Infections (STIs). 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis)#:~:text=Scope%20of%20the%20problem,and%20trichomoniasis%20(156%20million) (accessed on 16 August 2023).
- Haese, E.C.; Thai, V.C.; Kahler, C.M. Vaccine candidates for the control and prevention of the sexually transmitted disease gonorrhea. Vaccines 2021, 9, 804. [Google Scholar] [CrossRef] [PubMed]
- Tien, V.; Punjabi, C.; Holubar, M.K. Antimicrobial resistance in sexually transmitted infections. J. Travel Med. 2020, 27, taz101. [Google Scholar] [CrossRef] [PubMed]
- Kacholi, D.S.; Mvungi, H.A. Plants Used by Nyamwezi Traditional Health Practitioners To Remedy Sexually Transmitted Infections in Sikonge, Tanzania. J. Educ. Humanit. Sci. 2021, 10, 89–101. [Google Scholar]
- Hashemi, N.; Ommi, D.; Kheyri, P.; Khamesipour, F.; Setzer, W.N.; Benchimol, M. A review study on the anti-trichomonas activities of medicinal plants. Int. J. Parasitol. Drugs Drug Resist. 2021, 15, 92–104. [Google Scholar] [CrossRef]
Plant Part | Extraction Solvent | Bioactive Compounds | Biological Properties | Activity Level | Ref. |
---|---|---|---|---|---|
Bulb | Water | N/A | Antifungal | >25 mg/mL | [12] |
Bulb | Water | N/A | Antibacterial | >16.0 mg/mL | [37] |
Bulb | Methanol | N/A | Antibacterial | 1.4–4.0 mg/mL | [37] |
Bulb, leaves | Cardiac glycosides | Anti-inflammatory | [38] | ||
Leaf | Petrolium ether | Glycosides of bovogenin A | Antifungal | 0.5 mg/mL | [42] |
Bulb | Water | N/A | Antibacterial | >12.5 mg/mL | [50] |
Bulb | Ethanol | N/A | Antibacterial | 3.125 mg/mL | [50] |
Bulb | Ethyl acetate | N/A | Antibacterial | No value | [50] |
Bulb | Water extract | Cardiac glycoside | Antibacterial | [54] | |
Bulb | Ethanol | Cardiac glycoside | Antifungal | 3.13 mg/mL (BG) and 12.50 mg/mL (MM) | [55] |
Bulb | Ethanol | Cardiac glycoside | Antibacterial | 1.56–6.25 mg/mL | [72] |
Bulb | Petroleum ether | Cardiac glycoside | Antifungal | 12. 50 mg/mL (BG and MM) | [73] |
Bulb | Dichloromethene (DCM) | Cardiac glycoside | Antifungal | 12.50 mg/mL (BG and MM) | [73] |
Bulb | Water | Cardiac glycoside | Antifungal | 3.13 mg/mL (BG) and 1.56 mg/mL (MM) | [73] |
Bulb | Petroleum ether | Cardiotoxic glycosides of the bufadienolide group | Anti-inflammatory | COX-1 = 100% (MM) | [73] |
Bulb | Petroleum ether | Cardiotoxic glycosides of the bufadienolide group | Anti-inflammatory | COX-2 = 100% (BG) | [73] |
Bulb | Methanol extract | N/A | Antiviral | IC50 = 0.34 mg/mL | [78] |
Bulb | Aqueous extracts | N/A | Antiviral | IC50 = 0.13 μg/mL | [81] |
Bulb | Ethanol | Prostaglandin | Anti-inflammatory | COX-1 = 100% | [83] |
Bulb | Water | Cardiac glycosides | Anti-inflammatory | COX-1 = 45% | [83] |
Respiratory infections | Lungs, airways, and other related structures |
Pneumonia | |
COVID-19 | |
Coughs and colds, nasal congestion, sore throat, sneezing, and coughing. | |
Gastrointestinal disorders | Digestive tract, including the stomach, intestines, liver, gallbladder, and pancreas Abdominal pain, bloating, diarrhoea, constipation, nausea, and vomiting |
Cancer | |
Skin conditions | Eczema, psoriasis, and acne |
Sexually transmitted diseases (STDs) | Antifungal, antibacterial, and antiviral properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwanya, H.; Cawe, S.; Egbichi, I.; Gxaba, N.; Mbuyiswa, A.-A.; Zonyane, S.; Mbolekwa, B.; Manganyi, M.C. Bowiea volubilis: From “Climbing Onion” to Therapeutic Treasure—Exploring Human Health Applications. Life 2023, 13, 2081. https://doi.org/10.3390/life13102081
Gwanya H, Cawe S, Egbichi I, Gxaba N, Mbuyiswa A-A, Zonyane S, Mbolekwa B, Manganyi MC. Bowiea volubilis: From “Climbing Onion” to Therapeutic Treasure—Exploring Human Health Applications. Life. 2023; 13(10):2081. https://doi.org/10.3390/life13102081
Chicago/Turabian StyleGwanya, Hlalanathi, Sizwe Cawe, Ifeanyi Egbichi, Nomagugu Gxaba, Afika-Amazizi Mbuyiswa, Samkele Zonyane, Babalwa Mbolekwa, and Madira C. Manganyi. 2023. "Bowiea volubilis: From “Climbing Onion” to Therapeutic Treasure—Exploring Human Health Applications" Life 13, no. 10: 2081. https://doi.org/10.3390/life13102081
APA StyleGwanya, H., Cawe, S., Egbichi, I., Gxaba, N., Mbuyiswa, A. -A., Zonyane, S., Mbolekwa, B., & Manganyi, M. C. (2023). Bowiea volubilis: From “Climbing Onion” to Therapeutic Treasure—Exploring Human Health Applications. Life, 13(10), 2081. https://doi.org/10.3390/life13102081