Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Brine Salt Experiments
2.3. Analysis Methods
2.3.1. Physicochemical Analysis
Colour Measurement
Texture Analysis
2.3.2. Nutritional Analysis
2.3.3. Microbiological Analysis
2.4. Morphological and Elemental Analysis
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of C. lentillifera
3.2. Nutritional Composition of C. lentillifera Stability
3.3. Food Safety
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- Stuthmann, L.E.; Achuthan, R.; Pribbernow, M.; Du, H.T.; Springer, K.; Kunzmann, A. Improving the nutritional value of edible Caulerpa lentillifera (Chlorophyta) using high light intensities. A realistic tool for sea grape farmers. Algal Res. 2022, 66, 102785. [Google Scholar] [CrossRef]
- Morris, C.; Bala, S.; South, G.R.; Lako, J.; Lober, M.; Simos, T. Supply chain and marketing of sea grapes, Caulerpa racemosa (Forsskål) J. Agardh (Chlorophyta: Caulerpaceae) in Fiji, Samoa and Tonga. J. Appl. Phycol. 2014, 26, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.; Draisma, S.G.A.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise review of the genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular: Rome, Italy, 2021. [Google Scholar]
- de Gaillande, C.; Payri, C.; Remoissenet, G.; Zubia, M. Caulerpa consumption, nutritional value and farming in the Indo-Pacific region. J. Appl. Phycol. 2017, 29, 2249–2266. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.R.K.; Jha, B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J. Food Compos. Anal. 2011, 24, 270–278. [Google Scholar] [CrossRef]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Koirala, P.; Jung, H.A.; Choi, J.S. Recent advances in pharmacological research on Ecklonia species: A review. Arch. Pharmacal Res. 2017, 40, 981–1005. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Cavas, L.; Baskin, Y.; Yurdakoc, K.; Olgun, N. Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J. Exp. Mar. Biol. Ecol. 2006, 339, 111–119. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Rustad, T.; Sandbakken, I.; Fleurence, J.; Chapman, A. Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. J. Appl. Phycol. 2017, 29, 2417–2426. [Google Scholar] [CrossRef]
- del Olmo, A.; Picon, A.; Nuñez, M. The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiol. 2018, 70, 224–231. [Google Scholar] [CrossRef]
- Perry, J.J.; Brodt, A.; Skonberg, D.I. Influence of dry salting on quality attributes of farmed kelp (Alaria esculenta) during long-term refrigerated storage. LWT 2019, 114, 108362. [Google Scholar] [CrossRef]
- Albarracín, W.; Sánchez, I.C.; Grau, R.; Barat, J.M. Salt in food processing; usage and reduction: A review. Int. J. Food Sci. Technol. 2011, 46, 1329–1336. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Hou, Z.; Hu, X.; Wang, Y.; Wang, C.; Yang, S.; Cui, H.; Zhu, L. Microbial Regulation of Deterioration and Preservation of Salted Kelp under Different Temperature and Salinity Conditions. Foods 2021, 10, 1723. [Google Scholar] [CrossRef]
- Chang, H.S.; Song, K.Y.; Kim, Y.J.; Chon, J.W.; Kim, H.; Jang, K.I.; Kim, E.S.; Seo, K.H. Influence of sodium reduction and storage temperature on the growth of total microbes and Bacillus cereus in naturally contaminated hamburger patty and loaf bread. Food Sci. Biotechnol. 2020, 29, 1433–1438. [Google Scholar] [CrossRef]
- Taormina, P.J. Implications of salt and sodium reduction on microbial food safety. Crit. Rev. Food Sci. Nutr. 2010, 50, 209–227. [Google Scholar] [CrossRef]
- McGuire, S. Institute of Medicine. 2010. Strategies to Reduce Sodium Intake in the United States. Washington, DC: The National Academies Press. Adv. Nutr. 2010, 1, 49–50. [Google Scholar] [CrossRef]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef] [PubMed]
- Miguel, E.; Marta, L.; Ana Cristina, A.-S.; Maria Eduarda, P. The Role of Salt on Food and Human Health. In Salt in the Earth; Mualla Cengiz, Ç., Savas, K., Eds.; IntechOpen: Rijeka, Croatia, 2019; p. Ch.2. [Google Scholar]
- Biango-Daniels, M.N.; Hodge, K.T. Sea salts as a potential source of food spoilage fungi. Food Microbiol. 2018, 69, 89–95. [Google Scholar] [CrossRef]
- Dupree, D.E.; Price, R.E.; Burgess, B.A.; Andress, E.L.; Breidt, F. Effects of Sodium Chloride or Calcium Chloride Concentration on the Growth and Survival of Escherichia coli O157:H7 in Model Vegetable Fermentations. J. Food Prot. 2019, 82, 570–578. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, R.; Fleming, H. Effect of calcium ions on the thermodynamics of cucumber tissue softening. J. Food Sci. 1990, 55, 446–449. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Arroyo-López, F.N.; López-López, A.; Garrido-Fernández, A. Effect of chloride salt mixtures on selected attributes and mineral content of fermented cracked Aloreña olives. LWT-Food Sci. Technol. 2011, 44, 120–129. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Pan-utai, W.; Pantoa, T.; Roytrakul, S.; Praiboon, J.; Kosawatpat, P.; Tamtin, M.; Thongdang, B. Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae. Life 2022, 13, 86. [Google Scholar] [CrossRef]
- Bacteriological Analytical Manual (BAM). Chapter 3: Aerobic Plate Count; FDA: Beltsville, MD, USA, 2001.
- Bacteriological Analytical Manual (BAM). Chapter 18: Yeasts, Molds and Mycotoxins; FDA: Beltsville, MD, USA, 2001.
- Bacteriological Analytical Manual (BAM). BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria; FDA: Beltsville, MD, USA, 2020.
- Khan, M.; Al-Absi, R.S.; Khraisheh, M.; Al-Ghouti, M.A. A better understanding of seawater reverse osmosis brine: Characterizations, uses, and energy requirements. Case Stud. Chem. Environ. Eng. 2021, 4, 100165. [Google Scholar] [CrossRef]
- Figueroa, V.; Farfán, M.; Aguilera, J.M. Seaweeds as Novel Foods and Source of Culinary Flavors. Food Rev. Int. 2023, 39, 1–26. [Google Scholar] [CrossRef]
- Wendin, K.; Undeland, I. Seaweed as food—Attitudes and preferences among Swedish consumers. A pilot study. Int. J. Gastron. Food Sci. 2020, 22, 100265. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. The rise of seaweed gastronomy: Phycogastronomy. Bot. Mar. 2019, 62, 195–209. [Google Scholar] [CrossRef]
- Sulaimana, A.S.; Chang, C.-K.; Hou, C.-Y.; Yudhistira, B.; Punthi, F.; Lung, C.-T.; Cheng, K.-C.; Santoso, S.P.; Hsieh, C.-W. Effect of oxidative stress on physicochemical quality of taiwanese seagrape (Caulerpa lentillifera) with the application of alternating current electric field (ACEF) during post-harvest storage. Processes 2021, 9, 1011. [Google Scholar] [CrossRef]
- Tapotubun, A.M.; Matrutty, T.E.A.A.; Riry, J.; Tapotubun, E.J.; Fransina, E.G.; Mailoa, M.N.; Riry, W.A.; Setha, B.; Rieuwpassa, F. Seaweed Caulerpa sp position as functional food. IOP Conf. Ser. Earth Environ. Sci. 2020, 517, 012021. [Google Scholar] [CrossRef]
- Sholicha, F.; Dewi, E.N.; Purnamayati, L. Application of Caulerpa racemosa extract as a natural colourant in raw noodles. Food Res. 2021, 5, 62–69. [Google Scholar] [CrossRef]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Troy, D.J. Seaweed sustainability–food and nonfood applications. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–6. [Google Scholar]
- Moreira-Leite, B.; Antunes, R.; Cotas, J.; Martins, N.; Costa, N.; Noronha, J.P.; Mata, P.; Diniz, M. Modified Atmosphere Packaging (MAP) for Seaweed Conservation: Impact on Physicochemical Characteristics and Microbiological Activity. Foods 2023, 12, 2736. [Google Scholar] [CrossRef]
- Han, D.; Cui, H.-L. Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie Van Leeuwenhoek 2015, 107, 217–223. [Google Scholar] [CrossRef]
- Kasmiati, K.; Syahrul, S.; Badraeni, B.; Rahmi, M.H. Proximate and mineral compositions of the green seaweeds Caulerpa lentilifera and Caulerpa racemosa from South Sulawesi Coast, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1119, 012049. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, F.; Wang, W.; Zhang, P.; Yuan, Y.; Yao, H.; Sun, X.; Wang, F. A reasonable strategy for Caulerpa lentillifera J. Agardh (Bryopsidales, Chlorophyta) transportation based on the biochemical and photophysiological responses to dehydration stress. Algal Res. 2021, 56, 102304. [Google Scholar] [CrossRef]
- Min, S.; Kim, H.J.; Gwak, S.; Shin, S.; Jang, S.; Jeong, J. Comprehensive analysis to determine the differences of solar salt produced in South Korea and China. Food Sci. Biotechnol. 2020, 29, 323–329. [Google Scholar] [CrossRef]
- Stergiou, C.; Karageorgiou, S.; Theodoridou, S.; Giouri, K.; Papadopoulou, L.; Melfos, V. Composition and morphological evaluation of edible salts: Preliminary results. Bull. Geol. Soc. 2016, 50, 2018–2024. [Google Scholar]
- Yao, Y.; Han, R.; Li, F.; Tang, J.; Jiao, Y. Mass transfer enhancement of tuna brining with different NaCl concentrations assisted by ultrasound. Ultrason. Sonochem. 2022, 85, 105989. [Google Scholar] [CrossRef] [PubMed]
- Ripolles-Avila, C.; Martínez-Garcia, M.; Capellas, M.; Yuste, J.; Fung, D.Y.C.; Rodríguez-Jerez, J.J. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1877–1907. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Abdel-Aziz, S.M.; Aeron, A. Microbes in Food and Health; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
L* | |||
0 | 29.92 d ± 0.34 | 29.92 e ± 0.34 | 29.92 e ± 0.34 |
2 | 25.76 b ± 0.38 | 24.61 b ± 0.08 | 24.85 c ± 0.37 |
4 | 25.83 b ± 0.31 | 24.64 bc ± 0.11 | 24.46 b ± 0.13 |
6 | 26.33 c ± 0.18 | 25.13 d ± 0.39 | 25.39 d ± 0.29 |
8 | 25.74 b ± 0.36 | 24.98 cd ± 0.35 | 25.27 d ± 0.14 |
10 | 21.49 a ± 0.16 | 19.86 a ± 0.35 | 20.39 a ± 0.15 |
12 | 21.52 a ± 0.14 | 19.75 a ± 0.11 | 20.46 a ± 0.16 |
a* | |||
0 | −1.01 a ± 0.18 | −1.01 a ± 0.18 | −1.01 a ± 0.18 |
2 | 0.72 d ± 0.04 | 0.67 d ± 0.05 | 0.81 d ± 0.01 |
4 | 0.54 c ± 0.04 | 0.13 b ± 0.02 | −0.14 b ± 0.03 |
6 | 0.35 b ± 0.07 | 0.68 d ± 0.07 | 0.42 c ± 0.07 |
8 | 0.42 b ± 0.08 | 0.50 c ± 0.06 | 0.51 c ± 0.07 |
10 | 1.61 f ± 0.06 | 1.51 e ± 0.03 | 1.39 e ± 0.10 |
12 | 1.50 e ± 0.07 | 1.56 e ± 0.07 | 1.48 e ± 0.11 |
b* | |||
0 | 2.87 a ± 0.79 | 2.87 a ± 0.79 | 2.87 a ± 0.79 |
2 | 7.27 e ± 0.26 | 4.29 c ± 0.19 | 5.80 c ± 0.32 |
4 | 4.86 c ± 0.20 | 3.76 b ± 0.05 | 3.57 b ± 0.07 |
6 | 4.05 b ± 0.27 | 3.68 b ± 0.08 | 3.55 b ± 0.07 |
8 | 3.71 b ± 0.13 | 3.70 b ± 0.06 | 3.59 b ± 0.04 |
10 | 6.41 d ± 0.16 | 6.23 d ± 0.18 | 5.78 c ± 0.17 |
12 | 6.41 d ± 0.13 | 6.29 d ± 0.09 | 5.87 c ± 0.33 |
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
L* | |||
0 | 29.92 c ± 0.34 | 29.92 d ± 0.34 | 29.92 d ± 0.34 |
2 | 30.07 c ± 0.42 | 25.79 c ± 0.35 | 26.55 c ± 0.10 |
4 | 30.07 c ± 0.42 | 25.79 c ± 0.35 | 26.55 c ± 0.10 |
6 | 24.95 b ± 0.38 | 24.97 b ± 0.35 | 25.88 b ± 0.27 |
8 | 25.19 b ± 0.22 | 24.98 b ± 0.32 | 26.04 b ± 0.46 |
10 | 22.50 a ± 0.13 | 22.74 a ± 0.39 | 22.62 a ± 0.29 |
12 | 22.41 a ± 0.17 | 22.75 a ± 0.21 | 22.47 a ± 0.09 |
a* | |||
0 | −1.01 a ± 0.18 | −1.01 a ± 0.18 | −1.01 a ± 0.18 |
2 | 0.92 d ± 0.13 | −0.54 bc ± 0.08 | −0.43 b ± 0.07 |
4 | 0.86 d ± 0.06 | −0.58 b ± 0.07 | −0.43 b ± 0.0 |
6 | 0.67 c ± 0.13 | −0.43 c ± 0.13 | −0.41 b ± 0.07 |
8 | 0.54 b ± 0.07 | −0.30 d ± 0.08 | −0.30 c ± 0.06 |
10 | 0.54 b ± 0.07 | 0.57 e ± 0.07 | 0.62 d ± 0.05 |
12 | 0.50 b ± 0.07 | 0.59 e ± 0.10 | 0.62 d ± 0.04 |
b* | |||
0 | 2.87 a ± 0.79 | 2.87 a ± 0.79 | 2.87 a ± 0.79 |
2 | 5.07 b ± 0.18 | 3.52 b ± 0.19 | 2.86 a ± 0.22 |
4 | 5.07 b ± 0.18 | 3.52 b ± 0.19 | 2.86 a ± 0.22 |
6 | 5.45 bc ± 0.13 | 3.92 c ± 0.20 | 3.22 a ± 0.32 |
8 | 5.25 b ± 0.09 | 4.12 c ± 0.16 | 3.27 a ± 0.24 |
10 | 5.46 bc ± 0.17 | 5.22 d ± 0.05 | 5.61 b ± 0.49 |
12 | 5.64 c ± 0.08 | 5.26 d ± 0.06 | 5.57 b ± 0.07 |
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
L* | |||
0 | 29.92 d ± 0.34 | 29.92 f ± 0.34 | 29.92 d ± 0.34 |
2 | 24.97 b ± 0.37 | 24.91 d ± 0.30 | 25.21 b ± 0.14 |
4 | 25.49 c ± 0.10 | 25.59 e ± 0.14 | 25.72 c ± 0.11 |
6 | 25.57 c ± 0.06 | 25.47 e ± 0.15 | 25.59 c ± 0.06 |
8 | 21.57 a ± 0.06 | 20.44 a ± 0.09 | 21.60 a ± 0.04 |
10 | 21.56 a ± 0.08 | 20.72 b ± 0.18 | 21.61 a ± 0.05 |
12 | 21.48 a ± 0.06 | 21.40 c ± 0.30 | 21.56 a ± 0.09 |
a* | |||
0 | −1.01 a ± 0.18 | −1.01 a ± 0.18 | −1.01 a ± 0.18 |
2 | 0.27 b ± 0.05 | −0.35 b ± 0.06 | −0.55 b ± 0.06 |
4 | 0.36 b ± 0.05 | 0.56 c ± 0.05 | 0.41 c ± 0.06 |
6 | 0.31 b ± 0.06 | 0.53 c ± 0.08 | 0.42 c ± 0.07 |
8 | 1.50 cd ± 0.08 | 1.42 d ± 0.06 | 1.23 d ± 0.05 |
10 | 1.59 d ± 0.03 | 1.49 de ± 0.07 | 1.30 d ± 0.09 |
12 | 1.45 c ± 0.09 | 1.55 e ± 0.10 | 1.33 d ± 0.08 |
b* | |||
0 | 2.87 a ± 0.79 | 2.87 a ± 0.79 | 2.87 a ± 0.79 |
2 | 3.62 b ± 0.04 | 3.88 b ± 0.11 | 3.49 b ± 0.09 |
4 | 4.33 c ± 0.05 | 3.89 b ± 0.21 | 3.57 b ± 0.08 |
6 | 4.46 c ± 0.13 | 3.76 b ± 0.18 | 3.57 b ± 0.05 |
8 | 6.32 d ± 0.10 | 6.40 c ± 0.10 | 3.52 b ± 0.07 |
10 | 6.38 d ± 0.05 | 6.43 c ± 0.07 | 3.55 b ± 0.11 |
12 | 6.40 d ± 0.05 | 6.37 c ± 0.11 | 4.14 c ± 0.23 |
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
Hardness (g force) | |||
0 | 1150.71 b ± 44.36 | 1150.71 b ± 44.36 | 1150.71 b ± 44.36 |
2 | 1240.52 c ± 47.41 | 1374.27 d ± 61.60 | 1265.11 c ± 72.33 |
4 | 1039.01 a ± 46.85 | 1056.16 a ± 69.67 | 1130.91 ab ± 96.98 |
6 | 1143.69 b ± 68.83 | 1228.41 c ± 79.83 | 1098.68 a ± 76.83 |
8 | 1074.67 a ± 78.21 | 1192.22 bc ± 70.99 | 1280.18 c ± 37.88 |
10 | 1265.03 c ± 87.11 | 1324.83 d ± 72.87 | 1401.26 d ± 51.88 |
12 | 1275.24 c ± 100.30 | 1324.45 d ± 73.45 | 1411.15 d ± 38.08 |
Firmness (g/s) | |||
0 | 423.35 a ± 10.88 | 423.35 a ± 10.88 | 423.35 a ± 10.88 |
2 | 625.88 c ± 19.63 | 665.46 c ± 26.50 | 624.21 b ± 24.78 |
4 | 525.21 b ± 22.23 | 492.63 b ± 38.61 | 600.40 b ± 38.70 |
6 | 660.21 d ± 50.06 | 758.30 e ± 46.99 | 673.29 c ± 46.99 |
8 | 603.74 c ± 40.32 | 696.31 d ± 49.47 | 731.83 d ± 41.48 |
10 | 724.16 e ± 22.44 | 817.98 f ± 31.83 | 908.95 f ± 42.14 |
12 | 749.99 e ± 43.57 | 816.38 f ± 45.69 | 872.88 e ± 47.80 |
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
Hardness (g force) | |||
0 | 1150.71 de ± 44.36 | 1150.71 a ± 44.36 | 1150.71 a ± 44.36 |
2 | 996.70 a ± 70.46 | 1174.58 a ± 79.31 | 1226.40 b ± 59.05 |
4 | 1126.79 bcd ± 90.21 | 1200.75 a ± 64.44 | 1341.72 c ± 49.24 |
6 | 1155.77 cde ± 38.28 | 1191.21 a ± 33.84 | 1337.69 c ± 48.51 |
8 | 1113.60 bc ± 30.06 | 1169.82 a ± 79.12 | 1322.73 c ± 42.75 |
10 | 1094.19 b ± 42.87 | 1213.47 a ± 83.87 | 1437.19 d ± 74.55 |
12 | 1197.61 e ± 68.18 | 1284.46 b ± 45.82 | 1437.79 d ± 72.56 |
Firmness (g/s) | |||
0 | 423.35 a ± 10.88 | 423.35 a ± 10.88 | 423.35 a ± 10.88 |
2 | 573.74 cd ± 40.76 | 738.54 e ± 64.72 | 745.92 d ± 41.60 |
4 | 559.95 c ± 23.46 | 577.58 b ± 39.11 | 633.01 b ± 16.33 |
6 | 656.40 e ± 36.17 | 641.52 c ± 27.47 | 767.23 d ± 26.91 |
8 | 587.22 d ± 16.77 | 616.38 c ± 23.39 | 721.78 c ± 39.45 |
10 | 532.65 b ± 21.39 | 639.67 c ± 34.23 | 749.26 d ± 36.08 |
12 | 632.97 e ± 33.70 | 707.05 d ± 40.37 | 836.89 e ± 31.48 |
Weeks | Salt Concentration | ||
---|---|---|---|
10% | 20% | 30% | |
Hardness (g force) | |||
0 | 1150.71 c ± 44.36 | 1150.71 b ± 44.36 | 1150.71 a ± 44.36 |
2 | 1051.52 b ± 63.62 | 1214.46 c ± 64.50 | 1336.53 c ± 74.39 |
4 | 1075.39 b ± 62.36 | 1071.75 a ± 63.69 | 1314.33 c ± 85.23 |
6 | 1000.21 a ± 52.28 | 1233.60 c ± 61.72 | 1220.43 b ± 28.67 |
8 | 1420.99 e ± 70.43 | 1525.51 e ± 51.71 | 1513.72 d ± 78.39 |
10 | 1244.70 d ± 65.30 | 1381.62 d ± 86.76 | 1347.16 c ± 68.99 |
12 | 1072.65 b ± 65.36 | 1251.98 c ± 64.38 | 1330.71 c ± 93.13 |
Firmness (g/s) | |||
0 | 423.35 a ± 10.88 | 423.35 a ± 10.88 | 423.35 a ± 10.88 |
2 | 513.18 bc ± 30.03 | 574.67 c ± 18.24 | 652.26 c ± 27.06 |
4 | 494.32 b ± 35.14 | 507.51 b ± 29.89 | 611.04 b ± 33.07 |
6 | 499.53 b ± 29.90 | 663.45 e ± 26.22 | 689.33 d ± 31.88 |
8 | 805.03 e ± 43.36 | 809.37 g ± 33.28 | 870.71 f ± 43.63 |
10 | 666.96 d ± 33.75 | 752.54 f ± 32.88 | 724.30 e ± 34.93 |
12 | 526.01 c ± 26.79 | 641.61 d ± 36.15 | 685.44 d ± 60.74 |
Composition | Fresh | 10% | 20% | 30% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Week 0 | Week 4 | Week 8 | Week 12 | Week 4 | Week 8 | Week 12 | Week 4 | Week 8 | Week 12 | |
Moisture content (% wet weight) | 95.14 ± 0.10 | 98.45 ± 0.20 | 98.69 ± 0.01 | 98.20 ± 0.02 | 98.24 ± 0.06 | 98.34 ± 0.35 | 98.27 ± 0.03 | 98.08 ± 0.17 | 98.63 ± 0.05 | 97.96 ± 0.49 |
Ash (% DW) | 65.64 ± 0.54 | 21.49 ± 2.22 | 23.07 ± 0.15 | 41.78 ± 0.12 | 27.46 ± 3.53 | 18.33 ± 1.41 | 37.88 ± 2.01 | 31.68 ± 2.19 | 28.32 ± 4.74 | 30.09 ± 4.70 |
Crude fat (% DW) | 6.29 ± 0.75 | 12.38 ± 2.60 | 15.36 ± 5.04 | 11.66 ± 4.06 | 20.38 ± 5.88 | 18.27 ± 3.03 | 13.48 ± 3.34 | 17.04 ± 3.74 | 13.73 ± 0.83 | 28.45 ± 3.68 |
Crude protein (%DW) | 4.92 ± 0.49 | 16.32 ± 0.04 | 17.59 ± 0.09 | 12.08 ± 1.12 | 14.37 ± 1.07 | 13.01 ± 2.77 | 18.65 ± 0.19 | 13.24 ± 0.42 | 17.36 ± 0.52 | 11.19 ± 2.21 |
Crude fibre (%DW) | 4.06 ± 0.09 | 15.72 ± 0.93 | 17.59 ± 0.56 | 12.84 ± 1.12 | 14.70 ± 2.25 | 14.84 ± 3.03 | 15.46 ± 0.05 | 14.68 ± 2.92 | 16.34 ± 2.35 | 12.36 ± 2.36 |
Carbohydrate (% DW) | 19.09 ± 0.78 | 34.09 ± 3.85 | 26.39 ± 5.65 | 21.64 ± 3.17 | 23.09 ± 15.67 | 35.56 ± 1.24 | 14.52 ± 1.43 | 23.36 ± 18.42 | 24.26 ± 5.74 | 17.91 ± 3.80 |
Weeks | Table Salt Concentration | Sea Salt Concentration | Flower Salt Concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 10% | 20% | 30% | 10% | 20% | 30% | |
Aerobic plate count, (CFU/g) | |||||||||
0 | 1.90 × 102 | 2.08 × 102 | 2.43 × 102 | 2.90 × 102 | 3.15 × 102 | 3.15 × 102 | 1.74 × 102 | 1.54 × 102 | 3.70 × 102 |
4 | <10 | <10 | <10 | 1.74 × 102 | 1.48 × 102 | 1.00 × 102 | <10 | <10 | <10 |
12 | 3.26 × 102 | 2.08 × 102 | <10 | 3.26 × 102 | 1.54 × 102 | <10 | 3.26 × 102 | 1.98 × 102 | <10 |
Yeast, (CFU/g) | |||||||||
0 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
4 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
12 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
Mould, (CFU/g) | |||||||||
0 | 1.70 × 102 | 1.23 × 102 | <10 | 1.70 × 102 | 2.04 × 102 | 1.60 × 102 | <10 | <10 | <10 |
4 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | 1.63 × 102 | 1.95 × 102 |
12 | <10 | <10 | <10 | <10 | <10 | <10 | 2.00 × 102 | 2.40 × 102 | 2.46 × 102 |
Coliform bacteria, (MPN/g) | |||||||||
0 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
4 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
12 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
Elements | Sample Type | Weight (%) | Atomic (%) |
---|---|---|---|
Oxygen (O) | Table salt | 2.02 | 3.73 |
Sea salt | 14.41 | 24.20 | |
Flower salt | 8.61 | 15.12 | |
Sodium (Na) | Table salt | 32.58 | 41.83 |
Sea salt | 25.14 | 29.38 | |
Flower salt | 27.93 | 34.13 | |
Chlorine (Cl) | Table salt | 65.40 | 54.44 |
Sea salt | 57.09 | 43.27 | |
Flower salt | 61.17 | 48.46 | |
Magnesium (Mg) | Table salt | - | - |
Sea salt | 1.70 | 1.88 | |
Flower salt | 1.29 | 1.49 | |
Sulphur (S) | Table salt | - | - |
Sea salt | 0.88 | 0.74 | |
Flower salt | 0.54 | 0.47 | |
Potassium (K) | Table salt | - | - |
Sea salt | 0.46 | 0.32 | |
Flower salt | 0.46 | 0.33 | |
Calcium (Ca) | Table salt | - | - |
Sea salt | 0.31 | 0.21 | |
Flower salt | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan-utai, W.; Satmalee, P.; Saah, S.; Paopun, Y.; Tamtin, M. Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties. Life 2023, 13, 2112. https://doi.org/10.3390/life13112112
Pan-utai W, Satmalee P, Saah S, Paopun Y, Tamtin M. Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties. Life. 2023; 13(11):2112. https://doi.org/10.3390/life13112112
Chicago/Turabian StylePan-utai, Wanida, Prajongwate Satmalee, Safiah Saah, Yupadee Paopun, and Montakan Tamtin. 2023. "Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties" Life 13, no. 11: 2112. https://doi.org/10.3390/life13112112
APA StylePan-utai, W., Satmalee, P., Saah, S., Paopun, Y., & Tamtin, M. (2023). Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties. Life, 13(11), 2112. https://doi.org/10.3390/life13112112