Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients
Abstract
:1. Introduction
- (1)
- Can the interrelation between serum levels of 8-iso-PGF2α and TNF-α, IL-6, IL-10, hs-CRP, and PTX3 modulate the appearance of PE in the second half of pregnancy (22–28 weeks) compared to that of pregnant women without PE?
- (2)
- Does the assessment of serum 8-iso-PGF2α levels have the diagnostic accuracy (using receiver-operator characteristic curve analysis, ROC) required to discriminate between the PE and normal patients?
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
2.2.1. Diagnosis of Hypertension
2.2.2. Estimation of Proteinuria
2.2.3. Obtaining and Processing of Blood Samples
2.3. Immunological Assessment
2.4. Statistical Analysis
3. Results
3.1. Biological Parameters of the Study Subjects
3.2. Patients with PE Exhibited Significantly Elevated Levels of 8-Iso-Prostaglandin F2alpha
3.3. Inflammatory Status Biomarkers in the Study Groups
3.4. 8-iso-PGF2α Levels Associated Positively with Inflammatory Mediators (TNF-α, IL-6, IL-10, hs-CRP, and PTX3)
3.5. Diagnostic Accuracy of the Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACOG. Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, 1. [Google Scholar] [CrossRef]
- Ghulmiyyah, L.; Sibai, B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 2012, 36, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Chaemsaithong, P.; Yeo, L.; Romero, R. Pre-eclampsia part 1: Current understanding of its pathophysiology. Nat. Rev. Nephrol. 2014, 10, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Peraçoli, J.C.; Bannwart-Castro, C.F.; Romao, M.; Weel, I.C.; Ribeiro, V.R.; Borges, V.T.; Rudge, M.V.; Witkin, S.S.; Peraçoli, M.T. High levels of heat shock protein 70 are associated with pro-inflammatory cytokines and may differentiate early- from late-onset preeclampsia. J. Reprod. Immunol. 2013, 100, 129–134. [Google Scholar] [CrossRef]
- Helmo, F.R.; Lopes, A.M.M.; Carneiro, A.C.D.M.; Campos, C.G.; Silva, P.B.; Monteiro, M.L.G.d.R.; Rocha, L.P.; dos Reis, M.A.; Etchebehere, R.M.; Machado, J.R.; et al. Angiogenic and antiangiogenic factors in preeclampsia. Pathol.-Res. Pract. 2018, 214, 7–14. [Google Scholar] [CrossRef]
- Umapathy, A.; Chamley, L.W.; James, J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis 2020, 23, 105–117. [Google Scholar] [CrossRef]
- Freeman, D.J.; McManus, F.; Brown, E.A.; Cherry, L.; Norrie, J.; Ramsay, J.E.; Clark, P.; Walker, I.D.; Sattar, N.; Greer, I.A.; et al. Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension 2004, 44, 708–714. [Google Scholar] [CrossRef]
- LaMarca, B.; Cornelius, D.C.; Wallace, K.; Webster, L.M.; Gill, C.; Seed, P.T.; Bramham, K.; Wiesender, C.; Nelson-Piercy, C.; Myers, J.E.; et al. Elucidating immune mechanisms causing hypertension during pregnancy. Physiology 2013, 28, 225–233. [Google Scholar] [CrossRef]
- Cornelius, D.C.; Hogg, J.P.; Scott, J.; Wallace, K.; Herse, F.; Moseley, J.; Wallukat, G.; Dechend, R.; LaMarca, B. Administration of interleukin-17 soluble receptor c suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension 2013, 2, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.G.; Sargent, I.L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 2010, 63, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Irani, R.A.; Zhang, Y.; Zhou, C.C.; Blackwell, S.C.; Hicks, M.J.; Ramin, S.M.; Xia, Y. Autoantibody-mediated angiotensin receptor activation contributes to preeclampsia through tumor necrosis factor-α signaling. Hypertension 2010, 55, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Miko, E.; Szereday, L.; Barakonyi, A.; Jarkovich, A.; Varga, P.; Szekeres-Bartho, J. Immunoactivation in preeclampsia: Vδ2+ and regulatory T cells during the inflammatory stage of disease. J. Reprod. Immunol. 2009, 80, 100–108. [Google Scholar] [CrossRef]
- Prins, J.R.; Boelens, H.M.; Heimweg, J.; Van der Heide, S.; Dubois, A.E.; Van Oosterhout, A.J.; Erwich, J.J.H. Preeclampsia is associated with lower percentages of regulatory T cells in maternal blood. Hypertens. Pregnancy 2009, 28, 300–311. [Google Scholar] [CrossRef]
- Santner-Nanan, B.; Peek, M.J.; Khanam, R.; Richarts, L.; Zhu, E.; Groth, B.F.d.S.; Nanan, R. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 2009, 183, 7023–7030. [Google Scholar] [CrossRef]
- Wallace, K.; Richards, S.; Dhillon, P.; Weimer, A.; Edholm, E.-S.; Bengten, E.; Wilson, M.; Martin, J.N.; LaMarca, B. CD4+ T-helper cells stimulated in response to placental ischemia mediate hypertension during pregnancy. Hypertension 2011, 57, 949–955. [Google Scholar] [CrossRef]
- Luppi, P.; DeLoia, J.A. Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin. Immunol. 2006, 118, 268–275. [Google Scholar] [CrossRef]
- Peraçoli, J.C.; Rudge, M.V.C.; Peraçoli, M.T.S. Tumor necrosis factor-alpha in gestation and puerperium of women with gestational hypertension and pre-eclampsia. Am. J. Reprod. Immunol. 2007, 57, 177–185. [Google Scholar] [CrossRef]
- Raghupathy, R. Cytokines as key players in the pathophysiology of preeclampsia. Med. Princ. Pract. 2013, 22 (Suppl. S1), 8–19. [Google Scholar] [CrossRef]
- Aggarwal, R.; Jain, A.K.; Mittal, P.; Kohli, M.; Jawanjal, P.; Rath, G. Association of pro- and anti-inflammatory cytokines in preeclampsia. J. Clin. Lab. Anal. 2019, 33, e22834. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Zheng, H.; Fu, X.; Peng, T.; Liao, C.; Liu, J.; Liu, M.; An, G. Clinical Outcomes and Live Birth Rate Resulted from Microdissection Testicular Sperm Extraction with ICSI-IVF in Non-Obstructive Azoospermia: A Single-Center Cohort Study. Front. Endocrinol. 2022, 13, 893679. [Google Scholar] [CrossRef]
- Văduva, C.C.; Constantinescu, C.; Radu, M.M.; Văduva, A.R.; Pănuş, A.; Ţenovici, M.; DiŢescu, D.; Albu, D.F. Pregnancy resulting from IMSI after testicular biopsy in a patient with obstructive azoospermia. Romanian J. Morphol. Embryol. 2016, 57 (Suppl. S2), 879–883. [Google Scholar]
- Stern, J.E.; Farland, L.V.; Hwang, S.S.; Dukhovny, D.; Coddington, C.C.; Cabral, H.J.; Missmer, S.A.; Declercq, E.; Diop, H. Assisted Reproductive Technology or Infertility: What underlies adverse outcomes? Lessons from the Massachusetts Outcome Study of Assisted Reproductive Technology. F&S Rev. 2022, 3, 242–255. [Google Scholar] [CrossRef]
- Kennedy, A.L.; Stern, C.J.; Tong, S.; Hastie, R.; Agresta, F.; Walker, S.P.; Brownfoot, F.C.; MacLachlan, V.; Vollenhoven, B.J.; Lindquist, A.C. The incidence of hypertensive disorders of pregnancy following sperm donation in IVF: An Australian state-wide retrospective cohort study. Hum. Reprod. 2019, 34, 2541–2548. [Google Scholar] [CrossRef]
- Ulkumen, B.A.; Silfeler, D.B.; Sofuoglu, K.; Silfeler, I.; Dayicioglu, V. The incidence of preeclampsia in ICSI pregnancies. Pak. J. Med. Sci. 2014, 30, 101–105. [Google Scholar] [CrossRef]
- Conrad, K.P.; Benyo, D.F. Placental Cytokines and the Pathogenesis of Preeclampsia. Am. J. Reprod. Immunol. 1997, 37, 240–249. [Google Scholar] [CrossRef]
- Dhillion, P.; Wallace, K.; Herse, F.; Scott, J.; Wallukat, G.; Heath, J.; Mosely, J.; Martin, J.N., Jr.; Dechend, R.; LaMarca, B.; et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Integr. Comp. Physiol. 2012, 303, R353–R358. [Google Scholar] [CrossRef]
- Granger, J.P.; Alexander, B.T.; Llinas, M.T.; Bennett, W.A.; Khalil, R.A. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension 2001, 38 Pt 2, 718–722. [Google Scholar] [CrossRef]
- LaMarca, B.D.; Alexander, B.T.; Gilbert, J.S.; Ryan, M.J.; Sedeek, M.; Murphy, S.R.; Granger, J.P. Pathophysiology of hypertension in response to placental ischemia during pregnancy: A central role for endothelin? Gend. Med. 2008, 5 (Suppl. A), S133–S138. [Google Scholar] [CrossRef] [PubMed]
- Herse, F.; LaMarca, B. Angiotensin II type 1 receptor autoantibody (AT1-AA)-mediated pregnancy hypertension. Am. J. Reprod. Immunol. 2013, 69, 413–418. [Google Scholar] [CrossRef] [PubMed]
- LaMarca, B.; Wallace, K.; Granger, J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr. Opin. Pharmacol. 2011, 11, 175–179. [Google Scholar] [CrossRef]
- Parrish, M.R.; Ryan, M.J.; Glover, P.; Brewer, J.; Ray, L.; Dechend, R.; Martin, J.N., Jr.; Lamarca, B.B. Angiotensin II type 1 autoantibody induced hypertension during pregnancy is associated with renal endothelial dysfunction. Gend. Med. 2011, 8, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, K.; Rajakumar, A.; Haase, H.; Geusens, N.; Hubner, N.; Schulz, H.; Brewer, J.; Roberts, L.; Hubel, C.A.; Herse, F.; et al. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension 2011, 58, 77–84. [Google Scholar] [CrossRef]
- Zhou, C.C.; Ahmad, S.; Mi, T.; Abbasi, S.; Xia, L.; Day, M.-C.; Ramin, S.M.; Ahmed, A.; Kellems, R.E.; Xia, Y.; et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 2008, 51, 1010–1019. [Google Scholar] [CrossRef]
- Zarkovic, N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020, 9, 767. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.-L.; Liu, H.-X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021, 11, 4839–4857. [Google Scholar] [CrossRef]
- Myatt, L.; Cui, X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004, 122, 369–382. [Google Scholar] [CrossRef]
- Guichardant, M.; Bacot, S.; Molière, P.; Lagarde, M. Hydroxy-Alkenals from the Peroxidation of n-3 and n-6 Fatty Acids and Urinary Metabolites. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, J.M.; Barden, A.E.; Croft, K.D.; Galano, J.M.; Durand, T.; Bultel-Poncé, V.; Giera, M.; Mori, T.A. HDL Is the Major Lipoprotein Carrier of Plasma F2-Isoprostanes. J. Lipid. Res. 2009, 50, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-M.; Hsieh, C.-J.; Huang, J.-C.; Huang, I.-C. Acute and Chronic Fluctuations in Blood Glucose Levels Can Increase Oxidative Stress in Type 2 Diabetes Mellitus. Acta Diabetol. 2012, 49, S171–S177. [Google Scholar] [CrossRef] [PubMed]
- Niedowicz, D.M.; Daleke, D.L. The role of oxidative stress in diabetic complications. Cell Biochem. Biophys. 2005, 43, 289–330. [Google Scholar] [CrossRef]
- Roberts, L., 2nd; Morrow, J. Products of the isoprostane pathway: Unique bioactive compounds and markers of lipid peroxidation. Cell. Mol. Life Sci. 2002, 59, 808–820. [Google Scholar] [CrossRef]
- Basu, S. Isoprostanes: Novel bioactive products of lipid peroxidation. Free Radic. Res. 2004, 38, 105–122. [Google Scholar] [CrossRef]
- Patrono, C.; FitzGerald, G.A. Isoprostanes: Potential markers of oxidant stress in atherothrombotic disease. Arter. Thromb. Vasc. Biol. 1997, 17, 2309–2315. [Google Scholar] [CrossRef]
- Ishihara, O.; Hayashi, M.; Osawa, H.; Kobayashi, K.; Takeda, S.; Vessby, B.; Basu, S. Isoprostanes, prostaglandins and tocopherols in pre-eclampsia, normal pregnancy and non-pregnancy. Free Radic. Res. 2004, 38, 913–918. [Google Scholar] [CrossRef]
- Tranguch, S.; Chakrabarty, A.; Guo, Y.; Wang, H.; Dey, S.K. Maternal pentraxin 3 deficiency compromises implantation in mice. Biol. Reprod. 2007, 77, 425–432. [Google Scholar] [CrossRef]
- Rovere-Querini, P.; Antonacci, S.; Dell’antonio, G.; Angeli, A.; Almirante, G.; Cin, E.D.; Valsecchi, L.; Lanzani, C.; Sabbadini, M.G.; Doglioni, C.; et al. Plasma and tissue expression of the long pentraxin 3 during normal pregnancy and preeclampsia. Obstet. Gynecol. 2006, 108, 148–155. [Google Scholar] [CrossRef]
- Castiglioni, M.T.; Scavini, M.; Cavallin, R.; Pasi, F.; Rosa, S.; Sabbadini, M.G.; Rovere-Querini, P. Elevation of plasma levels of the long pentraxin 3 precedes preeclampsia in pregnant patients with type 1 diabetes. Autoimmunity 2009, 42, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Cozzi, V.; Pasqualini, F.; Nebuloni, M.; Garlanda, C.; Vago, L.; Pardi, G.; Mantovani, A. Elevated maternal levels of the long pentraxin 3 (PTX3) in preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 2006, 194, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Cozzi, V.; Papageorghiou, A.T.; Maina, V.; Montanelli, A.; Garlanda, C.; Thilaganathan, B. First trimester PTX3 levels in women who subsequently develop preeclampsia and fetal growth restriction. Acta Obstet. Gynecol. Scand. 2009, 88, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Akolekar, R.; Casagrandi, D.; Livanos, P.; Tetteh, A.; Nicolaides, K.H. Maternal plasma pentraxin 3 at 11 to 13 weeks of gestation in hypertensive disorders of pregnancy. Prenat. Diagn. 2009, 29, 934–938. [Google Scholar] [CrossRef]
- Hamad, R.R.; Eriksson, M.J.; Berg, E.; Larsson, A.; Bremme, K. Impaired endothelial function and elevated levels of pentraxin 3 in early-onset preeclampsia. Acta Obstet. Gynecol. Scand. 2012, 91, 50–56. [Google Scholar] [CrossRef]
- Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [CrossRef]
- Tranquilli, A.L.; Dekker, G.; Magee, L.; Roberts, J.; Sibai, B.M.; Steyn, W.; Zeeman, G.G.; Brown, M.A. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens 2014, 4, 97–104. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Esteve-Valverde, E.; Ferrer-Oliveras, R.; Llurba, E.; Gris, J.M. Tumor Necrosis Factor-Alpha and Pregnancy: Focus on Biologics. An Updated and Comprehensive Review. Clin. Rev. Allergy Immunol. 2017, 53, 40–53. [Google Scholar] [CrossRef]
- Wisniewski, H.-G.; Vilček, J. Cytokine-induced gene expression at the crossroads of innate immunity, inflammation and fertility: TSG-6 and PTX3/TSG-14. Cytokine Growth Factor Rev. 2004, 15, 129–146. [Google Scholar] [CrossRef]
- Scholaske, L.; Buss, C.; Wadhwa, P.D.; Entringer, S. Acculturation and interleukin (IL)-6 concentrations across pregnancy among Mexican-American women. Brain Behav. Immun. 2018, 73, 731–735. [Google Scholar] [CrossRef]
- Mohaupt, M. Molecular aspects of preeclampsia. Mol. Asp. Med. 2007, 28, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L.; Webster, R.P. Vascular biology of preeclampsia. J. Thromb. Haemost. 2009, 7, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Morrow, J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000, 28, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Barnes, P.J.; Roberts, L.J., 2nd. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004, 18, 1791–1800. [Google Scholar] [CrossRef]
- Gopaul, N.; Halliwell, B.; Änggård, E. Measurement of plasma F2-isoprostanes as an index of lipid peroxidation does not appear to be confounded by diet. Free Radic. Res. 2000, 33, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Gopaul, N.K.; Zacharowski, K.; Halliwell, B.; Änggård, E.E. Evaluation of the postprandial effects of a fast-food meal on human plasma F2-isoprostane levels. Free Radic. Biol. Med. 2000, 28, 806–814. [Google Scholar] [CrossRef]
- McKinney, E.T.; Shouri, R.; Hunt, R.; Ahokas, R.A.; Sibai, B.M. Plasma, urinary, and salivary 8-epi-prostaglandin F2α levels in normotensive and preeclamptic pregnancies. Am. J. Obstet. Gynecol. 2000, 183, 874–877. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Kelly, F.J.; Briley, A.; Hunt, B.J.; Charnock-Jones, D.; Mallet, A.; Poston, L. Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol. 2002, 187, 777–784. [Google Scholar] [CrossRef]
- Palm, M.; Axelsson, O.; Wernroth, L.; Basu, S. F2-Isoprostanes, tocopherols and normal pregnancy. Free Radic. Res. 2009, 43, 546–552. [Google Scholar] [CrossRef]
- Shu, W.; Li, H.; Gong, H.; Zhang, M.; Niu, X.; Ma, Y.; Zhang, X.; Cai, W.; Yang, G.; Wei, M.; et al. Evaluation of blood vessel injury, oxidative stress and circulating inflammatory factors in an L-NAME-induced preeclampsia-like rat model. Exp. Ther. Med. 2018, 16, 585–594. [Google Scholar] [CrossRef]
- Drejza, M.A.; Rylewicz, K.; Majcherek, E.; Gross-Tyrkin, K.; Mizgier, M.; Plagens-Rotman, K.; Wójcik, M.; Panecka-Mysza, K.; Pisarska-Krawczyk, M.; Kędzia, W.; et al. Markers of Oxidative Stress in Obstetrics and Gynaecology—A Systematic Literature Review. Antioxidants 2022, 11, 1477. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Ferguson, K.K.; Milne, G.L.; Rios-McConnell, R.; Vélez-Vega, C.; Rosario, Z.; Alshawabkeh, A.; Cordero, J.F.; Meeker, J.D. Repeated measures of urinary oxidative stress biomarkers and preterm birth in Puerto Rico. Free Radic. Biol. Med. 2019, 146, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Geiger, S.D.; Alshawabkeh, A.; Aung, M.; Barrett, E.S.; Bush, N.; Carroll, K.N.; Cordero, J.F.; Goin, D.E.; Ferguson, K.K.; et al. Urinary oxidative stress biomarkers are associated with preterm birth: An Environmental Influences on Child Health Outcomes program study. Am. J. Obstet. Gynecol. 2023, 228, 576.e1–576.e22. [Google Scholar] [CrossRef] [PubMed]
- Bisson, C.; Dautel, S.; Patel, E.; Suresh, S.; Dauer, P.; Rana, S. Preeclampsia pathophysiology and adverse outcomes during pregnancy and postpartum. Front. Med. 2023, 10, 1144170. [Google Scholar] [CrossRef] [PubMed]
- Roberti, R.; Rocca, M.; Iannone, L.F.; Gasparini, S.; Pascarella, A.; Neri, S.; Cianci, V.; Bilo, L.; Russo, E.; Quaresima, P.; et al. Status epilepticus in pregnancy: A literature review and a protocol proposal. Expert Rev. Neurother. 2022, 22, 301–312. [Google Scholar] [CrossRef]
Parameter | PE (n = 30) | NP (n = 30) | p-Value |
---|---|---|---|
Maternal age [years] (mean ± SD) | 29.00 ± 7.30 | 27.00 ± 4.4 | 0.200 |
Maternal weight [kg] (mean ± SD) | 83.45 ± 7.97 | 77.51 ± 7.22 | 0.020 |
BMI [kg/m2] (mean ± SD) | 33.00 ± 5.90 | 24.00 ± 2.20 | <0.0001 |
SBP [mmHg] (mean ± SD) | 170.00 ± 15.00 | 140.00 ± 7.40 | 0.0001 |
DBP [mmHg] (mean ± SD) | 100.00 ± 15.00 | 83.00 ± 7.80 | 0.042 |
MAP [mmHg] (mean ± SD) | 120.00 ± 13.00 | 110.00 ± 10.00 | 0.0081 |
Diuresis: | |||
▪ normal | 7 | 30 | |
▪ oliguria | 5 | – | |
▪ proteinuria | 18 | – | |
Hemoglobin [g/dL] (mean ± SD) | 12.00 ± 1.39 | 12.00 ± 1.12 | 0.7264 |
Platelets [No. × 103/μL] (mean ± SD) | 160,000 ± 53,000 | 170,000 ± 31,000 | 0.3628 |
AST [U/L] (mean ± SD) | 60.00 ± 23.00 | 49.00 ± 44.00 | 0.0451 |
ALT [U/L] (mean ± SD) | 62.00 ± 38.00 | 39.0 ± 27.00 | 0.0035 |
Uric acid [mg/dL] (mean ± SD) | 8.10 ± 0.50 | 5.80 ± 1.19 | <0.0001 |
Creatinine [mg/dL] (mean ± SD) | 0.82 ± 0.11 | 0.68 ± 0.11 | <0.0001 |
Urea [mg/dL] (mean ± SD) | 30.00 ± 8.57 | 21.00 ± 1.25 | 0.0001 |
Parameter | PE (n = 30) | PE-AD (n = 30) | NP (n = 30) | NP-AD (n = 30) | p-Value from Kruskal–Wallis/One-Way ANOVA |
---|---|---|---|---|---|
8-iso-PGF2α (pg/mL) (mean ± SD) | 742.00 ± 94.00 | 324.00 ± 100.00 | 89.00 ± 76.00 | 63.00 ± 50.00 | p < 0.05 |
Parameter (Mean ± SD) | PE (n = 30) | PE-AD (n = 30) | NP (n = 30) | p-Value from Kruskal–Wallis/One-Way Anova |
---|---|---|---|---|
TNF-α (pg/mL) | 113.00 ± 17.00 | 41.00 ± 8.20 | 37.00 ± 8.30 | p < 0.05 |
IL-6 (pg/mL) | 107.00 ± 16.00 | 30.00 ± 4.70 | 8.30 ± 2.00 | p < 0.05 |
IL-10 (pg/mL) | 77.00 ± 25.00 | 23.00 ± 7.30 | 17.00 ± 5.00 | p < 0.05 |
hs-CRP (pg/mL) | 33.00 ± 15.00 | 13.00 ± 4.80 | 4.50 ± 4.20 | p < 0.05 |
PTX3 (ng/mL) | 15.00 ± 5.10 | 6.80 ± 2.00 | 3.20 ± 1.30 | p < 0.05 |
Parameter | AUC | Cut Off Values | Sensitivity % | Specificity % | Youden Index | p-Value |
---|---|---|---|---|---|---|
SBP | 0.993 | 159.50 | 96.67 | 100.00 | 0.967 | 0.001 |
DBP | 0.988 | 98.50 | 96.67 | 86.67 | 0.833 | 0.046 |
8-iso-PGF2α | 0.949 | 230.80 | 93.33 | 96.67 | 0.900 | <0.0001 |
PTX3 | 0.930 | 4.315 | 93.33 | 80.00 | 0.733 | <0.0001 |
IL-6 | 0.913 | 46.52 | 83.33 | 80.00 | 0.633 | <0.0001 |
hs-CRP | 0.789 | 649.50 | 67.39 | 66.67 | 0.341 | <0.0001 |
TNF-α | 0.788 | 38.37 | 70.00 | 66.67 | 0.367 | 0.0156 |
IL-10 | 0.752 | 18.69 | 70.00 | 66.67 | 0.367 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldeanu, L.; Văduva, C.-C.; Caragea, D.C.; Novac, M.B.; Manasia, M.; Siloși, I.; Manolea, M.M.; Boldeanu, M.V.; Dijmărescu, A.L. Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients. Life 2023, 13, 2242. https://doi.org/10.3390/life13122242
Boldeanu L, Văduva C-C, Caragea DC, Novac MB, Manasia M, Siloși I, Manolea MM, Boldeanu MV, Dijmărescu AL. Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients. Life. 2023; 13(12):2242. https://doi.org/10.3390/life13122242
Chicago/Turabian StyleBoldeanu, Lidia, Constantin-Cristian Văduva, Daniel Cosmin Caragea, Marius Bogdan Novac, Mariana Manasia, Isabela Siloși, Maria Magdalena Manolea, Mihail Virgil Boldeanu, and Anda Lorena Dijmărescu. 2023. "Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients" Life 13, no. 12: 2242. https://doi.org/10.3390/life13122242
APA StyleBoldeanu, L., Văduva, C.-C., Caragea, D. C., Novac, M. B., Manasia, M., Siloși, I., Manolea, M. M., Boldeanu, M. V., & Dijmărescu, A. L. (2023). Association between Serum 8-Iso-Prostaglandin F2α as an Oxidative Stress Marker and Immunological Markers in a Cohort of Preeclampsia Patients. Life, 13(12), 2242. https://doi.org/10.3390/life13122242