A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae)
Abstract
:1. Introduction
2. Results
2.1. Transcriptome Sequencing and Sequence Assembly
2.2. Homology Analysis and Gene Ontology Annotation
2.3. Olfactory Proteins
2.4. Phylogenetic Analysis of OBPs and ORs
2.5. Expression of Binding Proteins and Olfactory Receptors in Adult Antenna
3. Discussion
4. Materials and Methods
4.1. Collect Insect and Tissue
4.2. Construct cDNA Library and Sequence
4.3. Assembly, Functional Annotation, and Olfactory Genes Identification
4.4. Sequence and Phylogenetic Analysis
4.5. Expression Pattern of Olfactory Proteins in Adult Antennae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Yang, X.; Xue, D.; Han, H. The complete mitochondrial genome of Endoclita signifer (Lepidoptera, Hepialidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016, 27, 4620–4621. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Luo, Y.; Wu, Y.; Zou, D.; Hu, P.; Wang, J. Distribution and Damage of Endoclita signifer Walker, as an important wood borer pest insect on forest. For. Pest Dis. 2021, 40, 34–40. [Google Scholar]
- Hu, P.; Qiu, Z.; Zhang, Y.; Xu, Y.; Yang, Z. Quick shift in volatile attraction between the third and fifth instar larvae of Endoclita signifer. Pest Manag. Sci. 2022, 79, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qiu, Z.; Zhang, Y.; Zheng, X.; Lu, W.; Hu, P. Volatiles from eucalyptus trunks and forest floor humus influence the habitat transfer, host selection, and aggregation of Endoclita signifer larvae. Forests 2022, 13, 2058. [Google Scholar] [CrossRef]
- Vogt, R.G.; Riddiford, L.M. Pheromone binding and inactivation by moth antennae. Nature 1981, 293, 161. [Google Scholar] [CrossRef]
- Xu, P.; Atkinson, R.; Jones, D.N.; Smith, D.P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 2005, 45, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef]
- Liu, G.; Ma, H.; Xie, H.; Xuan, N.; Guo, X.; Fan, Z.; Rajashekar, B.; Arnaud, P.; Offmann, B.; Picimbon, J.-F. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: Role of CSP in insect defense. PLoS ONE 2016, 11, e0154706. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L. Current understandings of olfactory molecular events in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Arch. Insect Biochem. Physiol. 2023, 112, e21996. [Google Scholar] [CrossRef]
- Jones, P.L.; Pask, G.M.; Rinker, D.C.; Zwiebel, L.J. Functional agonism of insect odorant receptor ion channels. Proc. Natl. Acad. Sci. USA 2011, 108, 8821–8825. [Google Scholar] [CrossRef]
- Cao, L.-H.; Jing, B.-Y.; Yang, D.; Zeng, X.; Shen, Y.; Tu, Y.; Luo, D.-G. Distinct signaling of Drosophila chemoreceptors in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 2016, 113, E902–E911. [Google Scholar] [CrossRef] [PubMed]
- Seeta, P.; Hao, G. Pkc98e regulates odorant responses in Drosophila melanogaster. J. Neurosci. 2021, 41, 3948–3957. [Google Scholar]
- Rinehart, J.P.; Hayward, S.A.; Elnitsky, M.A.; Sandro, L.H.; Lee, R.E., Jr.; Denlinger, D.L. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc. Natl. Acad. Sci. USA 2006, 103, 14223–14227. [Google Scholar] [CrossRef]
- Hansson, B.S.; Stensmyr, M.C. Evolution of insect olfaction. Neuron 2011, 72, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Z.; Yang, X.; Ma, H.; Liu, X.; Hu, P. Olfactory Proteins and Their Expression Profiles in the Eucalyptus Pest Endoclita signifer Larvae. Front. Physiol. 2021, 12, 682537. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Qiu, Z.; Chen, X.; Xu, Y.; Su, X.; Yang, Z. Olfactory proteins of Endoclita signifer larvae and their roles in host recognition. Chem. Biol. Technol. Agric. 2022, 9, 54. [Google Scholar] [CrossRef]
- Hu, P.; Hao, E.; Yang, Z.; Qiu, Z.; Fu, H.; Lu, J.; He, Z.; Huang, Y. EsigGOBP1: The Key Protein Binding Alpha-Phellandrene in Endoclita signifer Larvae. Int. J. Mol. Sci. 2022, 23, 9269. [Google Scholar] [CrossRef]
- Li, X.; Dong, G.; Fang, J.; Liu, H.; Guo, W.; Yin, H. Identification of putative olfactory genes in newly hatched larvae of a Coleopteran ectoparasitoid Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) by transcriptome analysis. Entomol. Res. 2020, 50, 329–342. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, M.; Lei, C.; Zhu, F. The developmental transcriptome of the synanthropic fly Chrysomya megacephala and insights into olfactory proteins. BMC Genom. 2015, 16, 20. [Google Scholar] [CrossRef]
- Zhu, J.; Ban, L.; Song, L.M.; Liu, Y.; Pelosi, P.; Wang, G. General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem. Mol. Biol. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Liu, N.Y.; Zhang, T.; Ye, Z.F.; Li, F.; Dong, S.L. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes. Int. J. Biol. Sci. 2015, 11, 1036–1048. [Google Scholar] [CrossRef]
- Llopis-Gimenez, A.; Carrasco-Oltra, T.; Jacquin-Joly, E.; Herrero, S.; Crava, C.M. Coupling Transcriptomics and Behaviour to Unveil the Olfactory System of Spodoptera exigua Larvae. J. Chem. Ecol. 2020, 46, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Ai, D.; Zhang, J.; Dong, S.; Liu, Y.; Wang, G. Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, Helicoverpa armigera and H. assulta. PLoS ONE 2017, 12, e0179243. [Google Scholar] [CrossRef] [PubMed]
- Bastin-Héline, L.; De Fouchier, A.; Cao, S.; Koutroumpa, F.; Caballero-Vidal, G.; Robakiewicz, S.; Monsempes, C.; François, M.-C.; Ribeyre, T.; Maria, A. A novel lineage of candidate pheromone receptors for sex communication in moths. Elife 2019, 8, e49826. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, Z.-S.; Su, X.-Y.; Xu, Y.; Yang, Z.-D.; Hu, P. Screening of reference genes for RT-qPCR analysis in Endoclita signifer Walker larvae. J. Environ. Entomol. 2023, 45, 1016–1026. [Google Scholar]
- Poivet, E.; Gallot, A.; Montagne, N.; Glaser, N.; Legeai, F.; Jacquin-Joly, E. A comparison of the olfactory gene repertoires of adults and larvae in the noctuid moth Spodoptera littoralis. PLoS ONE 2013, 8, e60263. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Su, R.; Ouyang, H.; Zheng, X.; Lu, W.; Wang, X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). Insects 2022, 13, 553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Y.; Guo, J.-M.; Wei, Z.-Q.; Zhang, X.-T.; Liu, S.-R.; Guo, H.-F.; Dong, S.-L. Identification and sex expression profiles of olfactory-related genes in Mythimna loreyi based on antennal transcriptome analysis. J. Asia-Pac. Entomol. 2022, 25, 101934. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Zhang, Y.; Zheng, Y.; Fan, Z.; Zhang, R. Identification of olfactory genes in Monochamus saltuarius and effects of Bursaphelenchus xylophilus infestation on their expression. Forests 2022, 13, 258. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Xie, G.; Wang, W.; Yang, Y. Identification and expression analyses of the olfactory-related genes in different tissues’ transcriptome of a predacious soldier beetle, Podabrus annulatus (Coleoptera, Cantharidae). Arch. Insect Biochem. Physiol. 2023, 112, e21997. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Y.; Du, L.; Ban, L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int. J. Mol. Sci. 2023, 24, 5284. [Google Scholar] [CrossRef]
- Saba, N.u.; Ye, C.; Zhang, W.; Wu, T.; Wang, Y.; Zhang, X.; Song, Z.; Xing, L.; Su, X. The Antennal Sensilla and Expression Patterns of Olfactory Genes in the Lower Termite Reticulitermes aculabialis (Isoptera: Rhinotermitidae). J. Insect Sci. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, W.; Wang, X.; Sang, W.; Pan, H.; Ali, S.; Tang, L.; Wu, J. Transcriptome analysis of Megalurothrips usitatus (Bagnall) identifies olfactory genes with ligands binding characteristics of MusiOBP1 and MusiCSP1. Front. Physiol. 2022, 13, 978534. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cell. Mol. Life Sci. 2018, 75, 485–508. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.C.; Domingos, A.I.; Jones, W.D.; Chiappe, M.E.; Amrein, H.; Vosshall, L.B. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 2004, 43, 703–714. [Google Scholar] [CrossRef]
- Pask, G.M.; Jones, P.L.; Rützler, M.; Rinker, D.C.; Zwiebel, L.J. Heteromeric anopheline odorant receptors exhibit distinct channel properties. PLoS ONE 2011, 6, e28774. [Google Scholar] [CrossRef]
- Wicher, D.; Schäfer, R.; Bauernfeind, R.; Stensmyr, M.C.; Heller, R.; Heinemann, S.H.; Hansson, B.S. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008, 452, 1007. [Google Scholar] [CrossRef]
- Brand, P.; Robertson, H.M.; Lin, W.; Pothula, R.; Klingeman, W.E.; Jurat-Fuentes, J.L.; Johnson, B.R. The origin of the odorant receptor gene family in insects. Elife 2018, 7, e38340. [Google Scholar] [CrossRef]
- Sakurai, T.; Nakagawa, T.; Mitsuno, H.; Mori, H.; Endo, Y.; Tanoue, S.; Yasukochi, Y.; Touhara, K.; Nishioka, T. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA 2004, 101, 16653–16658. [Google Scholar] [CrossRef]
- Thoma, M.; Missbach, C.; Jordan, M.D.; Grosse-Wilde, E.; Newcomb, R.D.; Hansson, B.S. Transcriptome surveys in silverfish suggest a multistep origin of the insect odorant receptor gene family. Front. Ecol. Evol. 2019, 7, 281. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; Mccue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Quality Index | Adult Antenna | ||
---|---|---|---|
Duplication 1 | Duplication 2 | Duplication 3 | |
Raw reads | 50,604,462 | 44,113,510 | 49,462,752 |
Clean reads | 50,001,732 | 43,609,530 | 48,952,368 |
Q20 (%) | 98.2 | 98.05 | 98.19 |
Q30 (%) | 94.45 | 94.09 | 94.43 |
GC content (%) | 43.81 | 43.73 | 43.98 |
Total transcripts number | 62,439 | ||
Total unigenes number | 44,905 | ||
Largest unigenes length (bp) | 17,261 | ||
Average unigenes length (bp) | 859.46 | ||
N50 of unigenes | 1488 | ||
BUSCO of unigenes | C: 89.30% [S: 85.7%; D: 3.6%] |
Name | Nr Description | Species | Acc. NO. | FPKM3 | FPKM2 | FPKM1 | Average FPKM |
---|---|---|---|---|---|---|---|
EsigOBP6 | odorant-binding protein 16 | Ectropis obliqua | ALS03864.1 | 6300.48 | 6312.6 | 6477.34 | 6363.47 |
EsigOBP11 | circadian clock-controlled protein-like | Papilio xuthus | XP_013175982.1 | 1.74 | 3.07 | 2.41 | 2.41 |
EsigOBP12 | putative odorant-binding protein 8 | Conopomorpha sinensis | QGN03642.1 | 318.63 | 293.03 | 313.13 | 308.26 |
EsigOBP13 | minus-C odorant-binding protein 3 | Batocera horsfieldi | ADD82416.1 | 2.1 | 2.81 | 6.27 | 3.73 |
EsigOBP14 | putative odorant-binding protein 8 | Conopomorpha sinensis | QGN03642.1 | 3141.39 | 3101.9 | 3243.38 | 3162.22 |
EsigOBP15 | putative odorant-binding protein 3 | Conopomorpha sinensis | QGH51239.1 | 115.86 | 115.33 | 123.33 | 118.17 |
EsigOBP16 | odorant-binding protein 2 | Monochamus alternatus | AHA39267.1 | 3.05 | 5.05 | 4.72 | 4.27 |
EsigOBP17 | Pheromone-binding protein female 1, partial | Loxostege sticticalis | ACF48467.1 | 1064.72 | 1026.4 | 1075.55 | 1055.56 |
EsigOBP18 | pheromone-binding protein 2-like | Amyelois transitella | XP_013191569.1 | 3.11 | 1.43 | 0.61 | 1.72 |
EsigGOBP2 | general odorant-binding protein 56d-like | Hyposmocoma kahamanoa | XP_026319368.1 | 4.52 | 10.11 | 11.49 | 8.71 |
EsigGOBP3 | general odorant-binding protein 83a-like | Plutella xylostella | XP_011554700.1 | 1376.12 | 1368.2 | 1442.07 | 1395.47 |
EsigGOBP5 | General odorant-binding protein 19d | Eumeta japonica | GBP31818.1 | 9.00 | 7.64 | 8.17 | 8.27 |
EsigGOBP8 | general odorant-binding protein 19d-like | Papilio xuthus | XP_013173035.1 | 1.86 | 1.24 | 2.18 | 1.76 |
EsigGOBP9 | general odorant-binding protein 99a | Danaus plexippus plexippus | XP_032518123.1 | 1.04 | 2.99 | 0.00 | 1.34 |
EsigGOBP10 | General odorant-binding protein 67 | Eumeta japonica | GBP19217.1 | 16.15 | 14.28 | 8.92 | 13.12 |
EsigGOBP11 | general odorant-binding protein 70-like | Amyelois transitella | XP_013201142.1 | 4.61 | 4.43 | 4.24 | 4.43 |
EsigGOBP12 | general odorant-binding protein 56a-like | Plutella xylostella | XP_011557121.1 | 22.52 | 0.00 | 3.07 | 8.53 |
EsigGOBP13 | general odorant-binding protein 2 | Sitotroga cerealella | AII15785.1 | 32,192 | 33,991 | 33,357.26 | 33,180.01 |
EsigGOBP14 | General odorant-binding protein 2 | Epiphyas postvittana | Q95VP2.1 | 6823.62 | 6786.8 | 7338.43 | 6982.95 |
EsigPBP1 | general odorant-binding protein 1 | Athetis dissimilis | ALJ93806.1 | 52,549.2 | 53,582 | 54,423.05 | 53,518.17 |
EsigPBP2 | general odorant-binding protein 2 | Sitotroga cerealella | AII15785.1 | 61,670.1 | 61,939 | 63,346.96 | 62,318.74 |
EsigPBP3 | general odorant-binding protein 1 | Dendrolimus kikuchii | AGJ83357.1 | 2583.86 | 2496 | 2685.59 | 2588.47 |
EsigCSP1 | chemosensory protein 10 | Carposina sasakii | AYD42214.1 | 415.55 | 437.59 | 441.02 | 431.39 |
EsigCSP2 | chemosensory protein 24 | Cnaphalocrocis medinalis | ALT31606.1 | 4.15 | 4.76 | 7.52 | 5.48 |
EsigCSP7 | chemosensory protein | Eogystia hippophaecolus | AOG12893.1 | 5.18 | 2.48 | 3.33 | 3.66 |
EsigCSP10 | chemosensory protein 1 | Dastarcus helophoroides | AIX97069.1 | 1146.33 | 1146.3 | 1189.32 | 1160.63 |
EsigCSP11 | chemosensory protein 1 | Mythimna separata | AWT22249.1 | 74.89 | 74.72 | 72.82 | 74.14 |
EsigCSP12 | chemosensory protein 13 | Mythimna separata | AWT22251.1 | 17.81 | 19.75 | 18.34 | 18.63 |
EsigCSP13 | chemosensory protein CSP23 | Lobesia botrana | AXF48719.1 | 118.42 | 89.29 | 98.44 | 102.05 |
EsigCSP14 | ejaculatory bulb-specific protein 3-like | Trichoplusia ni | XP_026729747.1 | 26,772 | 26,128 | 27,166.52 | 26,688.84 |
EsigCSP15 | ejaculatory bulb-specific protein 3-like | Amyelois transitella | XP_013187502.1 | 4680.67 | 4567.5 | 4813.77 | 4687.31 |
EsigCSP16 | microsomal glutathione S-transferase 1-like | Myzus persicae | XP_022165210.1 | 57.5 | 58.91 | 60.89 | 59.10 |
EsigOR1 | odorant receptor Or1-like | Anoplophora glabripennis | XP_023310030.1 | 7.00 | 8.87 | 6.95 | 7.61 |
EsigOR4 | odorant receptor OR3 | Rhyacophila nubila | AYN64393.1 | 41.55 | 42.52 | 46.63 | 43.57 |
EsigOR6 | putative odorant receptor 85d | Drosophila sechellia | XP_002032031.1 | 0.29 | 0.22 | 1.17 | 0.56 |
EsigOR7 | odorant receptor 4-like | Ctenocephalides felis | XP_026480036.1 | 1.86 | 0.53 | 2.35 | 1.58 |
EsigOR8 | odorant receptor OR15 | Colaphellus bowringi | ALR72560.1 | 2.77 | 2.87 | 1.92 | 2.52 |
EsigOR9 | gustatory and odorant receptor 22-like | Amyelois transitella | XP_013186820.1 | 9.56 | 8.23 | 2.29 | 6.69 |
EsigOR10 | odorant receptor OR4 | Rhyacophila nubila | AYN64394.1 | 2.45 | 1.78 | 2.90 | 2.38 |
EsigOR11 | odorant receptor 85c-like | Danaus plexippus plexippus | XP_032521521.1 | 1.71 | 1.31 | 2.86 | 1.96 |
EsigOR12 | odorant receptor 27 | Conogethes punctiferalis | ARO76432.1 | 14.88 | 10.11 | 19.5 | 14.83 |
EsigOR13 | odorant receptor co-receptor | Eriocrania semipurpurella | ATV96621.1 | 3.18 | 2.92 | 4.24 | 3.45 |
EsigOR14 | odorant receptor 47a-like | Nylanderia fulva | XP_029159982.1 | 12.11 | 15.01 | 14.2 | 13.77 |
EsigOR15 | odorant receptor 59b-like | Drosophila serrata | XP_020801244.1 | 2.39 | 2.07 | 1.75 | 2.07 |
EsigOR16 | odorant receptor 13a | Ctenocephalides felis | XP_026480046.1 | 27.52 | 26.33 | 30.39 | 28.08 |
EsigOR17 | odorant receptor 13a-like | Hyposmocoma kahamanoa | XP_026322472.1 | 5.42 | 4.13 | 4.53 | 4.69 |
EsigOR18 | odorant receptor 49a-like | Papilio xuthus | XP_013164627.1 | 40.63 | 39.96 | 37.37 | 39.32 |
EsigOR19 | odorant receptor 49b-like | Vanessa tameamea | XP_026496790.1 | 1.29 | 1.48 | 0.00 | 0.92 |
EsigOR20 | odorant receptor 22c-like | Temnothorax curvispinosus | XP_024869954.1 | 1.04 | 1.19 | 1.63 | 1.29 |
EsigOR21 | odorant receptor | Eogystia hippophaecolus | AOG12928.1 | 0.50 | 2.31 | 0.50 | 1.10 |
EsigOR22 | odorant receptor OR4 | Rhyacophila nubila | AYN64394.1 | 9.64 | 4.05 | 3.18 | 5.62 |
EsigGR4 | gustatory and odorant receptor 22-like | Amyelois transitella | XP_013186820.1 | 9.56 | 8.23 | 2.29 | 6.69 |
EsigGR5 | gustatory receptor for sugar taste 43a | Zeugodacus cucurbitae | XP_011189783.1 | 1.22 | 0.00 | 1.84 | 1.02 |
EsigGR6 | putative gustatory receptor GR55, partial | Hedya nubiferana | AST36215.1 | 0.37 | 4.24 | 0.74 | 1.78 |
EsigGR7 | gustatory receptor for sugar taste 43a-like | Pieris rapae | XP_022122807.1 | 2.58 | 2.12 | 4.82 | 3.17 |
EsigIR25a-2 | ionotropic receptor 25a | Bombyx mandarina | XP_028034019.1 | 2.77 | 1.22 | 1.07 | 1.69 |
EsigIR13 | ionotropic receptor, partial | Glyphodes pyloalis | QIJ45776.1 | 0.00 | 0.00 | 0.00 | 0.00 |
EsigIR18 | putative ionotropic receptor IR7d.2, partial | Athetis lepigone | AOE47993.1 | 11.75 | 11.1 | 12.41 | 11.75 |
EsigIR75p-8 | putative ionotropic receptor IR75p.1 | Hedya nubiferana | AST36233.1 | 0.89 | 1.28 | 0.90 | 1.02 |
EsigIR19 | ionotropic receptor 7d1, partial | Heliconius telesiphe sotericus | AMM70701.1 | 2.01 | 1.54 | 1.42 | 1.66 |
EsigIR93a-6 | ionotropic receptor 93a | Conogethes pinicolalis | QEE82793.1 | 1.62 | 1.24 | 1.27 | 1.38 |
EsigIR75p-6 | putative ionotropic receptor IR75p.1 | Hedya nubiferana | AST36233.1 | 36.48 | 29.57 | 27.55 | 31.20 |
EsigIR75a | ionotropic receptor 75a-like | Hyposmocoma kahamanoa | XP_026318656.1 | 0.00 | 0.00 | 1.02 | 0.34 |
EsigIR14 | ionotropic receptor IR13 | Lobesia botrana | AXF48844.1 | 22.32 | 23.67 | 22.94 | 22.98 |
EsigIR15 | putative ionotropic receptor 9 | Conopomorpha sinensis | AXY83439.1 | 3.41 | 0.78 | 3.35 | 2.51 |
EsigIR16 | glutamate receptor ionotropic, delta-1 | Plutella xylostella | XP_011560609.1 | 11.78 | 11.58 | 11.11 | 11.49 |
EsigIR17 | ionotropic receptor 93a-like | Ostrinia furnacalis | XP_028174055.1 | 5.66 | 5.12 | 6.19 | 5.66 |
EsigSNMP2 | sensory neuron membrane protein | Dioryctria abietella | QJX59445.1 | 2.38 | 2 | 2.57 | 2.32 |
EsigSNMP3 | putative sensory neuron membrane protein 2 | Ectropis obliqua | ANA75033.1 | 16.12 | 18.84 | 17.89 | 17.62 |
Genes | Forward Primer | Reverse Primer |
---|---|---|
EsigOBP12 | CCAGTCAATCTTTTCTGGAC | TGCAAAGCTTTATCATCTCA |
EsigOBP14 | CGAAGAGATAACTGGCGTAG | GAAGTGGATACAGTCCTTGC |
EsigOBP15 | ATGCTTTTGCATACGGTTAT | TCGCCATTAGATGTTTCTTT |
EsigOBP17 | GGAGATGATGACAACCCTAA | CCATAATTCCTGTTCGTTGT |
EsigOBP18 | TACAAGACTGTAGGCATTCTG | CTGTTCTCGTTGAGCATACA |
EsigGOBP8 | CAGTCTCTGACGAGGAAGTC | CTGTTAGCGACCTTCATACC |
EsigGOBP10 | CATGGAGGAAATTAAGGGCT | TAACACGAGGACTTTACGTG |
EsigGOBP13 | CTAACACCGGAAATAATGGA | TGATGAAATCATCCATGTTC |
EsigGOBP14 | GGAAGAGTTCCTCCACTTCT | TGGTGGAAGGATTTGATG |
EsigPBP2 | AAAGCCAGATGGACTTATCA | ATCGAACTTCTTGTTCATGC |
EsigPBP3 | GGATGTAACTATTGGCTTCG | AACTTCTTCTCGCAGTTGTC |
EsigCSP10 | GCAACGAGTTGAAGAAGAAC | AGCTCTGCGCTCTTTAAGTA |
EsigCSP11 | ACAATACCAGTTTCCACCAC | TGGGATCCTAATTGATGAAG |
EsigCSP13 | CACGAAATGCAATCCGAAG | TTTACGCATAAATCAATGGCT |
EsigCSP14 | TGTAGATCACCTTGAAGACG | CGGTCTTCGTACTTCTTCCT |
EsigCSP15 | GACTACGACGTGGACAGTTA | TTCTCGTACTGCTCCTTCTG |
EsigCSP16 | GCTAAAACTCCAAAAGCAAA | GTTGGTCGCTAGGAATACTG |
EsigOR13 | ACATACGGCACAGCTCTACT | TTCAATGAGTGTGTTTCCAA |
EsigOR14 | TTCTTCTATTCCTGCTTTGC | ACTCGCAATGTCTTCTTGTT |
EsigOR16 | TTGTCTACATGAGCAACTGG | GAATGTGCGTAGAATTGTCA |
EsigOR22 | CGTGGTATGGAGACAAAGTT | AGATTGATGTCGCTGAAAAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, G.; Lu, J.; Yang, Z.; Fu, H.; Hu, P. A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae). Life 2023, 13, 2264. https://doi.org/10.3390/life13122264
Xiao G, Lu J, Yang Z, Fu H, Hu P. A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae). Life. 2023; 13(12):2264. https://doi.org/10.3390/life13122264
Chicago/Turabian StyleXiao, Guipeng, Jintao Lu, Zhende Yang, Hengfei Fu, and Ping Hu. 2023. "A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae)" Life 13, no. 12: 2264. https://doi.org/10.3390/life13122264
APA StyleXiao, G., Lu, J., Yang, Z., Fu, H., & Hu, P. (2023). A Study of Adult Olfactory Proteins of Primitive Ghost Moth, Endoclita signifer (Lepidoptera, Hepialidae). Life, 13(12), 2264. https://doi.org/10.3390/life13122264