Results of Aortic Coarctation Repair in Low- and Normal Birth-Weight Neonates: A Propensity Score-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Data Collection
2.3. Endpoints
2.4. Surgery
2.5. Statistical Analysis
3. Results
3.1. Low-Birth-Weight vs. Normal-Weight Patients
3.2. Intraoperative and Postoperative Complications
3.3. Outcomes
3.4. Long-Term Results of Surgical Treatment
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bockeria, L.A.; Shatalov, K.V. Pediatric Cardiac Surgery: Guidelines for Doctors; Publishing House of the Bakulev National Medical Research Center for Cardiovascular Surgery: Moscow, Russia, 2016; pp. 759–781. ISBN 978-5-7982-0356-7. [Google Scholar]
- Cutland, C.L.; Lackritz, E.M.; Mallett-Moore, T.; Bardají, A.; Chandrasekaran, R.; Lahariya, C.; Nisar, M.I.; Tapia, M.D.; Pathirana, J.; Kochhar, S.; et al. Low birth weight: Case definition & guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine 2017, 35 Pt A, 6492–6500. [Google Scholar] [CrossRef]
- Tanner, K.; Sabrine, N.; Wren, C. Cardiovascular malformations among preterm infants. Pediatrics 2005, 116, e833–e838. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Cleves, M.A.; Zhao, W.; Correa, A.; Hobbs, C.A. Association between congenital heart defects and small for gestational age. Pediatrics 2007, 119, e976–e982. [Google Scholar] [CrossRef] [PubMed]
- Oppido, G.; Pace Napoleone, C.; Formigari, R.; Gabbieri, D.; Pacini, D.; Frascaroli, G.; Gargiulo, G. Outcome of cardiac surgery in low birth weight and premature infants. Eur. J. Cardio-Thorac. Surg. 2004, 26, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Burch, P.T.; Cowley, C.G.; Holubkov, R.; Null, D.; Lambert, L.M.; Kouretas, P.C.; Hawkins, J.A. Coarctation repair in neonates and young infants: Is small size or low weight still a risk factor? J. Thorac. Cardiovasc. Surg. 2009, 138, 547–552. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Yang, S.G.; Hogarty, A.N.; Rychik, J.; Gleason, M.M.; Zachary, C.H.; Rome, J.J.; Karl, T.R.; DeCampli, W.M.; Spray, T.L.; et al. Recurrent arch obstruction after repair of isolated coarctation of the aorta in neonates and young infants: Is low weight a risk factor? J. Thorac. Cardiovasc. Surg. 2001, 122, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Bacha, E.A.; Almodovar, M.; Wessel, D.L.; Zurakowski, D.; E Mayer, J.; A Jonas, R.; del Nido, P.J. Surgery for coarctation of the aorta in infants weighing less than 2 kg. Ann. Thorac. Surg. 2001, 71, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Soynov, I.; Sinelnikov, Y.; Gorbatykh, Y.; Omelchenko, A.; Kornilov, I.; Nichay, N.; Bogachev-Prokophiev, A.; Karaskov, A. Modified reverse aortoplasty versus extended anastomosis in patients with coarctation of the aorta and distal arch hypoplasia. Eur. J. Cardio-Thorac. Surg. 2018, 53, 254–261. [Google Scholar] [CrossRef]
- Muhari-Stark, E.; Burckart, G.J. Glomerular Filtration Rate Estimation Formulas for Pediatric and Neonatal Use. J. Pediatr. Pharmacol. Ther. 2018, 23, 424–431. [Google Scholar] [CrossRef]
- Soler, Y.A.; Nieves-Plaza, M.; Prieto, M.; García-De Jesús, R.; Suárez-Rivera, M. Pediatric Risk, Injury, Failure, Loss, End-Stage renal disease score identifies acute kidney injury and predicts mortality in critically ill children: A prospective study. Pediatr. Crit. Care Med. 2013, 14, e189–e195. [Google Scholar] [CrossRef]
- Gaies, M.G.; Jeffries, H.E.; Niebler, R.A.; Pasquali, S.K.; Donohue, J.E.; Yu, S.; Gall, C.; Rice, T.B.; Thiagarajan, R.R. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: An analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr. Crit. Care Med. 2014, 15, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Ades, A.; Johnson, B.A.; Berger, S. Management of low-birth-weight infants with congenital heart disease. Clin. Perinatol. 2005, 32, 999–1015. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.A.; Sawan, Z.A.; Nawawi, E.; Alsaedi, S.; Al-Wassia, H.; Kari, J.A. Incidence, risk factors, and outcome of neonatal acute kidney injury: A prospective cohort study. Pediatr. Nephrol. 2018, 33, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Gursu, H.A.; Cetin, I.I.; Ece, I. Balloon coarctation angioplasty with non-compliant balloon in low-birth-weight premature infants. Cardiol. Young 2021, 31, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Mini, N.; Zartner, P.A.; Schneider, M.B.E. Stenting of critical aortic coarctation in neonates between 600 and 1,350 g. Using a transfemoral artery approach. A single center experience. Front. Cardiovasc. Med. 2022, 9, 1025411. [Google Scholar] [CrossRef] [PubMed]
- Shetty Shantharam, P.; Joynt, C.; Al Aklabi, M. Management of Critical Coarctation of Aorta in a Premature Neonate With Low Birth Weight. Ann. Thorac. Surg. 2020, 110, e225–e226. [Google Scholar] [CrossRef] [PubMed]
- Trenk, L.; Lammers, A.E.; Radke, R.; Baumgartner, H.; Wort, S.J.; Gatzoulis, M.A.; Diller, G.P.; Kempny, A. Neurological complications in aortic coarctation: Results of a Nationwide analysis based on 11,907 patients. Int. J. Cardiol. 2021, 322, 114–120. [Google Scholar] [CrossRef]
- Mirshahi, A.; Kafian Atary, S.; Riasi, H.R.; Salehi, F. Cerebral Infarction Following Correction of Aortic Coarctation Surgery in Children. J. Compr. Pediatr. 2022, 13, e119717. [Google Scholar] [CrossRef]
- Lingwood, B.E.; Eiby, Y.A.; Bjorkman, S.T.; Miller, S.M.; Wright, I.M.R. Supporting preterm cardiovascular function. Clin. Exp. Pharmacol. Physiol. 2019, 46, 274–279. [Google Scholar] [CrossRef]
- Sudarshan, C.D.; Cochrane, A.D.; Jun, Z.H.; Soto, R.; Brizard, C.P. Repair of coarctation of the aorta in infants weighing less than 2 kilograms. Ann. Thorac. Surg. 2006, 82, 158–163. [Google Scholar] [CrossRef]
- Curzon, C.L.; Milford-Beland, S.; Li, J.S.; O’Brien, S.M.; Jacobs, J.P.; Jacobs, M.L.; Welke, K.F.; Lodge, A.J.; Peterson, E.D.; Jaggers, J. Cardiac surgery in infants with low birth weight is associated with increased mortality: Analysis of the Society of Thoracic Surgeons Congenital Heart Database. J. Thorac. Cardiovasc. Surg. 2008, 135, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Svobodov, A.A.; Tumanyan, M.R.; Levchenko, E.G.; Anderson, A.G.; Makarenko, M.V. Cardiological problems in the long-term period in children after aortic coarctation surgery treatment in the first year of life. Pediatria 2018, 97, 24–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Pan, Z.; Wu, C.; Tian, J.; Qin, J.; Zhang, Y.; Jin, X. Risk factors for recurrence after surgical repair of coarctation of the aorta in children: A single-center experience based on 51 children. Front. Cardiovasc. Med. 2023, 10, 1144755. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.; Karamlou, T.; Moore, P.; Natal-Hernandez, L.; Tabbutt, S.; Peyvandi, S. Coarctation index predicts recurrent aortic arch obstruction following surgical repair of coarctation of the aorta in infants. Pediatr. Cardiol. 2017, 38, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, A.; Villemain, O.; Gaudin, R.; Méot, M.; Raisky, O.; Bonnet, D. Risk factors of mortality and recoarctation after coarctation repair in infancy. Interact. CardioVasc. Thorac. Surg. 2019, 29, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Hager, A.; Schreiber, C.; Nutzl, S.; Hess, J. Mortality and restenosis rate of surgical coarctation repair in infancy: A study of 191 patients. Cardiology 2009, 112, 36–41. [Google Scholar] [CrossRef]
- Gorbatykh, A.V.; Nichai, N.R.; Ivantsov, S.M.; Voitov, A.V.; Kulyabin, Y.Y.; Gorbatykh, Y.N.; Bogachev-Prokofev, A.V. Risk factors for aortic coarctation development in young children. Pediatria 2017, 96, 118–124. [Google Scholar] [CrossRef]
- Costopoulos, K.; Philip, J.; Lopez-Colon, D.; Kaliki, G.; Chandran, A.; Bleiweis, M. A single centre experience with an evolving approach for the repair of coarctation of the aorta. Cardiol. Young 2019, 29, 885–887. [Google Scholar] [CrossRef]
- Sen, S.; Garg, S.; Rao, S.G.; Kulkarni, S. Native aortic coarctation in neonates and infants: Immediate and midterm outcomes with balloon angioplasty and surgery. Ann. Pediatr. Cardiol. 2018, 11, 261–266. [Google Scholar] [CrossRef]
- Truong, D.T.; Tani, L.Y.; Minich, L.L.; Burch, P.T.; Bardsley, T.R.; Menon, S.C. Factors associated with recoarctation after surgical repair of coarctation of the aorta by way of thoracotomy in young infants. Pediatr. Cardiol. 2014, 35, 164–170. [Google Scholar] [CrossRef]
Parameters | Unmatched Raw Data | Propensity Matched 1:1 | ||||
---|---|---|---|---|---|---|
Low-Birth-Weight (n = 89) | Normal Weight (n = 432) | p | Low-Birth-Weight (n = 89) | Normal Weight (n = 89) | p | |
Male gender, % (n) | 55 (49) | 61 (56) | 0.252 | 55 (49) | 63 (56) | 0.287 |
Age, days | 12 (5; 23) | 11 (4; 21) | 0.800 | 12 (5; 23) | 10 (6; 27) | 0.792 |
Height, cm | 46 (43; 48) | 52 (51; 53) | <0.001 * | 46 (43; 48) | 52 (50; 53) | <0.001 * |
BSA, m2 | 0.16 (0.15; 0.17) | 0.21 (0.20; 0.22) | <0.001 * | 0.16 (0.15; 0.17) | 0.21 (0.19; 0.22) | <0.001 * |
Birth weight, kg | 2.05 (1.65; 2.35) | 3.29 (2.9; 3.4) | <0.001 * | 2.05 (1.65; 2.35) | 3.3 (2.86; 3.7) | <0.001 * |
Weight at admission, kg | 2,2 (1.8; 2.4) | 3.35 (2.9; 3.5) | <0.001 * | 2.2 (1.8; 2.4) | 3.4 (2.9; 3.6) | <0.001 * |
Gestational age, weeks | 36 [33; 38] | 39 [38; 40] | <0.001 * | 36 [33; 38] | 38.7 [37; 40.5] | <0.001 * |
Perinatal encephalopathy, % (n) | 31 (28) | 27 (117) | 0.402 | 31(28) | 28 (25) | 0.623 |
Neonatal jaundice, % (n) | 5 (4) | 12 (52) | 0.041 * | 5 (4) | 11 (10) | 0.095 |
MCA, % (n) | 21 (19) | 7 (30) | <0.001 * | 21 (19) | 26 (23) | 0.481 |
History of infections, % (n) | 11 (10) | 23 (99) | <0.001 * | 11 (10) | 11 (10) | 1.000 |
PGE1 infusion, % (n) | 48 (43) | 42 (181) | 0.321 | 48 (43) | 28 (25) | 0.623 |
Parameters | Low-Birth-Weight (n = 89) | Normal Weight (n = 89) | p |
---|---|---|---|
Respiratoty Rate, per minute | 50 (43; 60) | 50 (46; 60) | 0.262 |
Heart Rate, bpm | 150 (140; 160) | 145 (130; 150) | 0.010 * |
Creatinine level, mcmol/L | 52 (41.5; 68.5) | 47.5 (40; 58) | 0.113 |
GFR, ml/min/m2 | 25.1 (18.8; 32.4) | 39.5 (31.75; 45.7) | <0.001 * |
Lactate, mmol/L | 1.8 (1.2; 2.5) | 1.8 (1.1; 2.4) | 0.701 |
Z-score of isthmus | −4.3 (−5.65; −3.78) | −5.26 (−6.09; −4.14) | 0.012 * |
Mean pressure gradient across isthmus, mm Hg | 45 (27.7; 55) | 48 (30; 62) | 0.404 |
PDA diameter, mm | 3 (1.7; 4.7) | 3 (1.2; 4.0) | 0.385 |
Z-score of distal arch | −1.1 (−2.1; −0.35) | −0.91 (−2.16; 0.38) | 0.047 * |
LVEDD Z-score | −0.24 (−1.08; 0,71) | −0.66 (−1.3; 0.47) | 0.122 |
Mitral annulus Z-score | −0.57 (−1.2; 0) | −0.86 [−1.32; −0.14] | 0.251 |
Aortic annulus Z-score | 0.48 (−0.24; 1.27) | 0.48 (−0.61; 1.19) | 0.685 |
LV ejection fraction, % | 63.5 (55; 68) | 67 (60; 70) | 0.071 |
Inotropes infusion, % (n) | 22 (20) | 11 (10) | 0.045 * |
Ross heart failure class: | 0.021 * | ||
- I class, % (n) | 59.5 (53) | 75.3 (67) | |
- II class, % (n) | 33.8 (30) | 22.5 (20) | |
- III class, % (n) | 6.7 (6) | 2.2 (2) | |
pRIFLE score: | 1 (1; 1) | 1 (1; 1) | 0.099 |
- norm, % (n) | 80 (71) | 90 (80) | |
- risk, % (n) | 13.5 (12) | 5.6 (5) | |
- injury, % (n) | 5.5 (5) | 2.2 (2) | |
- failure, % (n) | 1 (1) | 2.2 (2) | |
Mechanical ventilation at admission, % (n) | 21 (19) | 5 (4) | <0.001 * |
Hepatomegaly, cm | 2 (1.5; 2.5) | 2 (2; 3) | 0.011 * |
Parameters | Low-Birth-Weight (n = 89) | Normal Weight (n = 89) | p |
---|---|---|---|
Intra- and postoperative data | |||
Cross-clamp time, min | 19 (15; 24) | 20 (15; 25) | 0.251 |
Intraoperative complications, % (n) | 5.6 (5) | 0 (0) | 0.012 * |
- bleeding, % (n) | 4.5 (4) | 0 (0) | |
- thrombosis, % (n) | 1.1 (1) | 0 (0) | |
Vasoactive-inotropic score | 6.12 (4; 7) | 5 (4; 7) | 0.942 |
Post-op arch mean gradient, mm HG | 15 (12; 21) | 16 (12; 22) | 0.414 |
LV ejection fraction, % | 60 (58; 60) | 60 (58; 60) | 0.134 |
Lactate 1st day post-op, mmol/L | 2.3 (1.7; 4) | 2.15 (1.5; 3) | 0.064 |
Lactate 3d day post-op, mmol/L | 1.9 (1.4; 2.6) | 1.6 (1.2; 2.2) | 0.034 * |
Creatinine post-op, mcmol/L | 62 (47; 90) | 55 (49; 65) | 0.046 * |
GFR post-op, ml/min/m2 | 21.5 (14; 29.2) | 34.4 (28.8; 39.4) | <0001 * |
pRIFLE, post-op | 1 (1; 2) | 1 (1; 1) | 0.004 * |
- norm, % (n) | 68.5 (61) | 89 (79) | |
- risk, % (n) | 19 (17) | 9 (8) | |
- injury, % (n) | 4.5 (4) | 2 (2) | |
- failure, % (n) | 8 (7) | 0 (0) | |
Early postoperative complications | |||
Infections, % (n) | 40 (36) | 30 (27) | 0.108 |
Pneumonia, % (n) | 25 (22) | 17 (15) | 0.144 |
Necrotising enterocolitis, % (n) | 5.6 (5) | 2.2 (2) | 0.009 |
Acute kidney failure, % (n) | 5.6 (5) | 1.1 (1) | 0.054 |
Systemic inflammatory response syndrome, % (n) | 8 (7) | 9 (8) | 0.578 |
Gastrointestinal bleeding, % (n) | 2.2 (2) | 1.1 (1) | 0.313 |
Atelectasis, % (n) | 2.2 (2) | 4.5 (4) | 0.351 |
Neurological complications, % (n) | 0 (0) | 8 (7) | 0.014 * |
Outcomes | |||
In-hospital mortality, % (n) | 8 (7) | 1.1 (1) | 0.030 * |
Discharged, % (n) | 25 (22) | 82 (73) | <0.001 * |
Transferred to other hospitals, % (n) | 67 (60) | 17 (15) | <0.001 * |
Gradient before discharge, % (n) | 15 (10; 20) | 15 (10; 20) | 0.771 |
Parameters | Univariate Regression Analysis OR (95% CI) | p | Multivariate Regression Analysis OR (95% CI) | p |
---|---|---|---|---|
Respiratory rate, per minute | 1.061 (1.013–1.111) | 0.011 * | - | - |
Inotropes infusion | 4.285 (1.438–12.77) | 0.012 * | 4.369 (1.316–14.51) | 0.016 * |
Ross heart failure class | 2.539 (1.231–5.235) | 0.014 * | - | - |
Cross-clamp time, min | 0.897 (0.825–0.974) | 0.004 * | 0.922 (0.845–1.001) | 0.054 |
Gradient before discharge, mmHG | 1.084 (1.022–1.196) | 0.006 * | 1.081 (1.014–1.153) | 0.016 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krylova, A.; Svobodov, A.; Tumanyan, M.; Levchenko, E.; Kotov, S.; Butrim, Y.; Shvartz, V. Results of Aortic Coarctation Repair in Low- and Normal Birth-Weight Neonates: A Propensity Score-Matched Analysis. Life 2023, 13, 2282. https://doi.org/10.3390/life13122282
Krylova A, Svobodov A, Tumanyan M, Levchenko E, Kotov S, Butrim Y, Shvartz V. Results of Aortic Coarctation Repair in Low- and Normal Birth-Weight Neonates: A Propensity Score-Matched Analysis. Life. 2023; 13(12):2282. https://doi.org/10.3390/life13122282
Chicago/Turabian StyleKrylova, Aleksandra, Andrey Svobodov, Margarita Tumanyan, Elena Levchenko, Sergey Kotov, Yuliya Butrim, and Vladimir Shvartz. 2023. "Results of Aortic Coarctation Repair in Low- and Normal Birth-Weight Neonates: A Propensity Score-Matched Analysis" Life 13, no. 12: 2282. https://doi.org/10.3390/life13122282
APA StyleKrylova, A., Svobodov, A., Tumanyan, M., Levchenko, E., Kotov, S., Butrim, Y., & Shvartz, V. (2023). Results of Aortic Coarctation Repair in Low- and Normal Birth-Weight Neonates: A Propensity Score-Matched Analysis. Life, 13(12), 2282. https://doi.org/10.3390/life13122282