Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Processing
2.3.1. Medial Tibiofemoral Forces
2.3.2. Medial Tibiofemoral Contact Mechanics
2.3.3. Medial Tibiofemoral Cartilage Failure Probabilistic Modelling
1 − Exp − [(Volume of stressed cartilage /
Reference stressed cartilage volume)(time −
time until failure)Weibull exponent /Power law exponent]
length / Distance-per day) (Weibull coefficient ∗ ε) − Power law exponent
time until repair) Cartilage repair exponent]
cartilage ∗ Weibull exponent / Power law-exponent ∗ Reference
stressed cartilage volume ∗ time until failure) (time / time until
failure) Weibull exponent / Power
law exponent − 1 Exp [− (Volume of stressed cartilage / Reference
stressed cartilage volume) (time / time until failure) Weibull
exponent / Power law exponent]
function ∗ (1 − Probability of repair)] Modelled distance between contact
elements ∗ time
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Initial Kinematic Processing
3.3. Medial Tibiofemoral Forces and Muscle Forces
3.4. Medial Tibiofemoral Contact Mechanics
3.5. Medial Tibiofemoral Cartilage Failure Probabilistic Modelling
3.6. Regression Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imes, C.C.; Burke, L.E. The obesity epidemic: The USA as a cautionary tale for the rest of the world. Curr. Epidemiol. Rep. 2014, 1, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formica, V.; Morelli, C.; Riondino, S.; Renzi, N.; Nitti, D.; Di Daniele, N.; Tesauro, M. Obesity and common pathways of cancer and cardiovascular disease. Endocr. Metab. Sci. 2020, 1, 100065. [Google Scholar] [CrossRef]
- Frühbeck, G.; Toplak, H.; Woodward, E.; Yumuk, V.; Maislos, M.; Oppert, J.M. Obesity: The gateway to ill health-an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 2013, 6, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Anandacoomarasamy, A.; Caterson, I.; Sambrook, P.; Fransen, M.; March, L. The impact of obesity on the musculoskeletal system. Int. J. Obes. 2008, 32, 211–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Martins, R.; Kotsopoulos, N.; Kließ, M.K.; Beck, C.; Abraham, L.; Large, S.; Connolly, M.P. Comparing the fiscal consequences of controlled and uncontrolled osteoarthritis pain applying a UK public economic perspective. J. Health Econ. Outcomes Res. 2021, 8, 127–136. [Google Scholar] [CrossRef]
- Chen, D.I.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Alshami, A.M. Knee osteoarthritis related pain: A narrative review of diagnosis and treatment. Int. J. Health Sci. 2014, 8, 85–104. [Google Scholar] [CrossRef]
- Losina, E.; Weinstein, A.M.; Reichmann, W.M.; Burbine, S.A.; Solomon, D.H.; Daigle, M.E.; Katz, J.N. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013, 65, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Brooks, D.; Butters, B. Effects of different heel heights on lower extremity joint loading in experienced and in-experienced users: A musculoskeletal simulation analysis. Sport Sci. Health 2019, 15, 237–248. [Google Scholar] [CrossRef]
- Felson, D.T.; Anderson, J.J.; Naimark, A.; Walker, A.M.; Meenan, R.F. Obesity and knee osteoarthritis: The Framingham Study. Ann. Intern. Med. 1988, 109, 18–24. [Google Scholar] [CrossRef]
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New insight on its pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Mündermann, A.; Smith, R.L.; Alexander, E.J.; Dyrby, C.O.; Koo, S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 2004, 32, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Lou, C.; Cahue, S.; Dunlop, D.D. The mechanism of the effect of obesity in knee osteoarthritis: The mediating role of malalignment. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2000, 43, 568–575. [Google Scholar] [CrossRef]
- Dell’Isola, A.; Allan, R.; Smith, S.L.; Marreiros, S.S.P.; Steultjens, M. Identification of clinical phenotypes in knee osteoarthritis: A systematic review of the literature. BMC Musculoskelet. Disord. 2016, 17, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Azamar-Llamas, D.; Hernandez-Molina, G.; Ramos-Avalos, B.; Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediat. Inflamm. 2017, 2017, 5468023. [Google Scholar] [CrossRef] [Green Version]
- Lambova, S.N.; Batsalova, T.; Moten, D.; Stoyanova, S.; Georgieva, E.; Belenska-Todorova, L.; Kolchakova, D.; Dzhambazov, B. Serum Leptin and Resistin Levels in Knee Osteoarthritis—Clinical and Radiologic Links: Towards Precise Definition of Metabolic Type Knee Osteoarthritis. Biomedicines 2021, 9, 1019. [Google Scholar] [CrossRef]
- Ilia, I.; Nitusca, D.; Marian, C. Adiponectin in Osteoarthritis: Pathophysiology, Relationship with Obesity and Presumptive Diagnostic Biomarker Potential. Diagnostics 2022, 12, 455. [Google Scholar] [CrossRef] [PubMed]
- De Souza, S.A.F.; Faintuch, J.; Valezi, A.C.; Sant’Anna, A.F.; Gama-Rodrigues, J.J.; de Batista Fonseca, I.C.; Senhorini, R.C. Gait cinematic analysis in morbidly obese patients. Obes. Surg. 2005, 15, 1238–1242. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.P.; Leung, A.K.; Li, A.N.; Zhang, M. Three-dimensional gait analysis of obese adults. Clin. Biomech. 2008, 23, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, P.; Pisciotta, J.C.; Pavlou, K.N.; Cairns, M.A.; Simon, S.R. Biomechanical gait analysis in obese men. Arch. Phys. Med. Rehabil. 1991, 72, 1065–1070. [Google Scholar] [PubMed]
- DeVita, P.; Hortobágyi, T. Obesity is not associated with increased knee joint torque and power during level walking. J. Biomech. 2003, 36, 1355–1362. [Google Scholar] [CrossRef]
- Browning, R.C.; Kram, R. Effects of obesity on the biomechanics of walking at different speeds. Med. Sci. Sport. Exerc. 2007, 39, 1632. [Google Scholar] [CrossRef]
- MacLean, K.F.; Callaghan, J.P.; Maly, M.R. Effect of obesity on knee joint biomechanics during gait in young adults. Cogent Med. 2016, 3, 1173778. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.A.; Yack, H.J.; Khole, P. Weight, rather than obesity distribution, explains peak external knee adduction moment during level gait. Am. J. Phys. Med. Rehabil./Assoc. Acad. Physiatr. 2009, 88, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Messier, S.P.; Davies, A.B.; Moore, D.T.; Davis, S.E.; Pack, R.J.; Kazmar, S.C. Severe obesity: Effects on foot mechanics during walking. Foot Ankle Int. 1994, 15, 29–34. [Google Scholar] [CrossRef]
- Vismara, L.; Romei, M.; Galli, M.; Montesano, A.; Baccalaro, G.; Crivellini, M.; Grugni, G. Clinical implications of gait analysis in the rehabilitation of adult patients with” Prader-Willi” Syndrome: A cross-sectional comparative study (“Prader-Willi” Syndrome vs. matched obese patients and healthy subjects). J. Neuroeng. Rehabil. 2007, 4, 17734317. [Google Scholar] [CrossRef] [Green Version]
- Herzog, W.; Clark, A.; Wu, J. Resultant and local loading in models of joint disease. Arthritis Care Res. Off. J. Am. Coll. Rheumatol. 2003, 49, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Thelen, D.G. OpenSim: Open-Source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, Z.F.; Board, W.J.; Browning, R.C. Pediatric obesity and walking duration increase medial tibiofemoral compartment contact forces. J. Orthop. Res. 2016, 34, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Harding, G.T.; Dunbar, M.J.; Hubley-Kozey, C.L.; Stanish, W.D.; Wilson, J.L.A. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis. Clin. Biomech. 2016, 31, 79–86. [Google Scholar] [CrossRef]
- Miller, R.H.; Krupenevich, R.L. Medial knee cartilage is unlikely to withstand a lifetime of running without positive adaptation: A theoretical biomechanical model of failure phenomena. PeerJ 2020, 8, e9676. [Google Scholar] [CrossRef]
- Gutin, I. In BMI we trust: Reframing the body mass index as a measure of health. Soc. Theory Health 2018, 16, 256–271. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The influence of tester experience on the reliability of 3D kinematic information during running. Gait Posture 2014, 40, 707–711. [Google Scholar] [CrossRef]
- Graydon, R.W.; Fewtrell, D.J.; Atkins, S.; Sinclair, J.K. The test-retest reliability of different ankle joint center location techniques. Foot Ankle Online J. 2015, 1, 26–31. [Google Scholar]
- Sinclair, J.; Hebron, J.; Taylor, P.J. The test-retest reliability of knee joint center location techniques. J. Appl. Biomech. 2015, 31, 117–121. [Google Scholar] [CrossRef]
- Sinclair, J.; Taylor, P.J.; Currigan, G.; Hobbs, S.J. The test-retest reliability of three different hip joint centre location techniques. Mov. Sport Sci.-Sci. Mot. 2014, 83, 31–39. [Google Scholar] [CrossRef]
- Sinclair, J.K.; Edmundson, C.J.; Brooks, D.; Hobbs, S.J. Evaluation of kinematic methods of identifying gait Events during running. Int. J. Sport. Sci. Eng. 2011, 5, 188–192. [Google Scholar]
- Sinclair, J.; Taylor, P.J.; Hobbs, S.J. Digital filtering of three-dimensional lower extremity kinematics: An assessment. J. Hum. Kinet. 2013, 39, 25–36. [Google Scholar] [CrossRef]
- Sinclair, J.; Chockalingam, N.; Taylor, P.J. Lower Extremity Kinetics and Kinematics in Runners with Patellofemoral Pain: A Retrospective Case–Control Study Using Musculoskeletal Simulation. Appl. Sci. 2022, 12, 585. [Google Scholar] [CrossRef]
- Sinclair, J.; Brooks, D.; Taylor, P.J.; Liles, N. Effects of toe-in/out toe-in gait and lateral wedge orthoses on lower extremity joint kinetics; an exploration using musculoskeletal simulation and Bayesian contrasts. Sport Sci. Health 2021, 17, 781–795. [Google Scholar] [CrossRef]
- Lerner, Z.F.; DeMers, M.S.; Delp, S.L.; Browning, R.C. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 2015, 48, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, K.M.; DeMers, M.S.; Schwartz, M.H.; Delp, S.L. Compressive tibiofemoral force during crouch gait. Gait Posture 2012, 35, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Nuno, N.; Ahmed, A.M. Sagittal profile of the femoral condyles and its application to femorotibial contact analysis. J. Biomech. Eng. 2001, 123, 18–26. [Google Scholar] [CrossRef]
- Liu, F.; Kozanek, M.; Hosseini, A.; Van de Velde, S.K.; Gill, T.J.; Rubash, H.E.; Li, G. In Vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 2010, 43, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Blankevoort, L.; Kuiper, J.H.; Huiskes, R.; Grootenboer, H.J. Articular contact in a three-dimensional model of the knee. J. Biomech. 1991, 24, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, D.E.; Seedhom, B.B. The’instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 1999, 38, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danso, E.K.; Mäkelä, J.T.A.; Tanska, P.; Mononen, M.E.; Honkanen, J.T.J.; Jurvelin, J.S.; Korhonen, R.K. Characterization of site-specific biomechanical properties of human meniscus—Importance of collagen and fluid on me-chanical nonlinearities. J. Biomech. 2015, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Blöcker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.; OAI investigators. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing–data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2013, 21, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Thambyah, A.; Nather, A.; Goh, J. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 2006, 14, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.E.; Higginson, J.S.; Barrance, P.J. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint. J. Biomech. Eng. 2011, 133, 014502. [Google Scholar] [CrossRef]
- DeFrate, L.E.; Sun, H.; Gill, T.J.; Rubash, H.E.; Li, G. In Vivo tibiofemoral contact analysis using 3D MRI-based knee models. J. Biomech. 2004, 37, 1499–1504. [Google Scholar] [CrossRef]
- Weightman, B.O.; Freeman, M.A.R.; Swanson, S.A.V. Fatigue of articular cartilage. Nature 1973, 244, 303–304. [Google Scholar] [CrossRef]
- Johnson, W.; Stovitz, S.D.; Choh, A.C.; Czerwinski, S.A.; Towne, B.; Demerath, E.W. Patterns of linear growth and skeletal maturation from birth to 18 years of age in overweight young adults. Int. J. Obes. 2012, 36, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D. Fatigue of bone and bones: An analysis based on stressed volume. J. Orthop. Res. 1998, 16, 163–169. [Google Scholar] [CrossRef]
- Taylor, D.; Kuiper, J.H. The prediction of stress fractures using a ‘stressed volume’concept. J. Orthop. Res. 2001, 19, 919–926. [Google Scholar] [CrossRef]
- Taylor, D.; Casolari, E.; Bignardi, C. Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 2004, 22, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Paluch, A.E.; Gabriel, K.P.; Fulton, J.E.; Lewis, C.E.; Schreiner, P.J.; Sternfeld, B.; Carnethon, M.R. Steps per day and all-cause mortality in middle-aged adults in the Coronary Artery Risk Development in Young Adults study. JAMA Netw. Open 2021, 4, e2124516. [Google Scholar] [CrossRef] [PubMed]
- Riemenschneider, P.E.; Rose, M.D.; Giordani, M.; McNary, S.M. Compressive fatigue and endurance of juvenile bovine articular cartilage explants. J. Biomech. 2019, 95, 109304. [Google Scholar] [CrossRef]
- Nakamura, N.; Horibe, S.; Toritsuka, Y.; Mitsuoka, T.; Natsuume, T.; Yoneda, K.; Shino, K. The location-specific healing response of damaged articular cartilage after ACL reconstruction: Short-term follow-up. Knee Surg. Sport. Traumatol. Arthrosc. 2008, 16, 843–848. [Google Scholar] [CrossRef]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Kutzner, I. Standardized loads acting in knee implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.J.; Felson, D.T. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I) evidence for an association with overweight, race, and physical demands of work. Am. J. Epidemiol. 1988, 128, 179–189. [Google Scholar] [CrossRef]
- Collins, A.T.; Kulvaranon, M.L.; Cutcliffe, H.C.; Utturkar, G.M.; Smith, W.A.; Spritzer, C.E.; DeFrate, L.E. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res. Ther. 2018, 20, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, E.B.; Svendsen, M.B.; Nørreslet, A.; Baldvinsson, H.K.; Heilskov-Hansen, T.; Larsen, P.K.; Henriksen, M. Walking on high heels changes muscle activity and the dynamics of human walking significantly. J. Appl. Biomech. 2012, 28, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Messier, S.P.; Gutekunst, D.J.; Davis, C.; DeVita, P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum. 2005, 52, 2026–2032. [Google Scholar] [CrossRef]
- DeVita, P.; Rider, P.; Hortobágyi, T. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity. Gait Posture 2016, 45, 25–30. [Google Scholar] [CrossRef]
Healthy Weight | Obese | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | 95% CI Lower | 95% CI Upper | Mean | SD | 95% CI Lower | 95% CI Upper | ||
Age (yrs) | 25.50 | 4.53 | 23.49 | 27.51 | 24.18 | 3.19 | 22.77 | 25.59 | |
Mass (kg) | 63.18 | 3.55 | 61.61 | 64.76 | 92.82 | 5.59 | 90.34 | 95.30 | * |
Stature (m) | 1.63 | 0.05 | 1.61 | 1.66 | 1.63 | 0.05 | 1.61 | 1.66 | |
BMI (kg/m2) | 23.71 | 1.27 | 23.14 | 24.27 | 34.87 | 2.36 | 33.82 | 35.91 | * |
Healthy Weight | Obese | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | 95% CI Lower | 95% CI Upper | Mean | SD | 95% CI Lower | 95% CI Upper | |
Walking velocity (m/s) | 1.45 | 0.24 | 1.34 | 1.56 | 1.38 | 0.21 | 1.28 | 1.48 |
Stride length (m) | 1.61 | 0.21 | 1.51 | 1.70 | 1.55 | 0.18 | 1.46 | 1.63 |
Healthy Weight | Obese | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | 95% CI Lower | 95% CI Upper | Mean | SD | 95% CI Lower | 95% CI Upper | ||
Peak medial tibiofemoral force (BW) | 2.22 | 0.52 | 1.98 | 2.46 | 2.22 | 0.46 | 2.01 | 2.44 | |
Medial tibiofemoral cumulative load (BW/m) | 1.43 | 0.33 | 1.28 | 1.58 | 1.56 | 0.32 | 1.41 | 1.71 | |
Net peak medial tibiofemoral force (N) | 1493.21 | 370.19 | 1319.96 | 1666.47 | 2013.92 | 570.91 | 1746.72 | 2281.12 | * |
Net medial tibiofemoral cumulative load (N/m) | 956.11 | 194.39 | 865.13 | 1047.09 | 1408.30 | 351.50 | 1243.79 | 1572.81 | * |
Vastus intermedius force (BW) | 0.56 | 0.25 | 0.44 | 0.68 | 0.57 | 0.19 | 0.47 | 0.66 | |
Vastus lateralis force (BW) | 0.49 | 0.22 | 0.39 | 0.60 | 0.50 | 0.17 | 0.42 | 0.58 | |
Vastus medialis force (BW) | 0.42 | 0.19 | 0.33 | 0.51 | 0.42 | 0.15 | 0.35 | 0.49 | |
Net vastus intermedius force (N) | 375.85 | 172.24 | 295.24 | 456.47 | 529.08 | 272.59 | 401.50 | 656.66 | * |
Net vastus lateralis force (N) | 330.71 | 151.40 | 259.85 | 401.56 | 465.39 | 239.61 | 353.25 | 577.53 | * |
Net vastus medialis force (N) | 280.17 | 128.23 | 220.16 | 340.18 | 394.00 | 203.59 | 298.71 | 489.28 | * |
Healthy Weight | Obese | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | 95% CI Lower | 95% CI Upper | Mean | SD | 95% CI Lower | 95% CI Upper | ||
Peak medial tibiofemoral stress (MPa) | 2.26 | 0.61 | 1.98 | 2.55 | 3.03 | 1.02 | 2.56 | 3.51 | * |
Peak medial tibiofemoral strain | 0.19 | 0.05 | 0.17 | 0.22 | 0.25 | 0.07 | 0.22 | 0.28 | * |
Healthy Weight | Obese | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | 95% CI Lower | 95% CI Upper | Mean | SD | 95% CI Lower | 95% CI Upper | ||
Probability of failure (%) | 11.63 | 30.32 | 3.11 | 25.82 | 42.98 | 47.61 | 20.70 | 65.26 | * |
Probability of failure with repair (%) | 7.58 | 22.84 | 2.56 | 18.26 | 30.23 | 41.38 | 10.87 | 49.60 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinclair, J.; Lynch, H.; Chockalingam, N.; Taylor, P.J. Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling. Life 2023, 13, 270. https://doi.org/10.3390/life13020270
Sinclair J, Lynch H, Chockalingam N, Taylor PJ. Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling. Life. 2023; 13(2):270. https://doi.org/10.3390/life13020270
Chicago/Turabian StyleSinclair, Jonathan, Holly Lynch, Nachiappan Chockalingam, and Paul John Taylor. 2023. "Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling" Life 13, no. 2: 270. https://doi.org/10.3390/life13020270
APA StyleSinclair, J., Lynch, H., Chockalingam, N., & Taylor, P. J. (2023). Effects of Obesity on Medial Tibiofemoral Cartilage Mechanics in Females—An Exploration Using Musculoskeletal Simulation and Probabilistic Cartilage Failure Modelling. Life, 13(2), 270. https://doi.org/10.3390/life13020270