Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Photocatalysts
2.3. Characterization of Photocatalysts
2.4. Isolation of Collagen from Integumentary Tissues of Cod
2.5. Photocatalytic Synthesis of Graft Copolymers MMA–Collagen using Complex Oxides with β-pyrochlore Structure
2.6. Enzymatic Hydrolysis of Graft Copolymers
2.7. Analysis of Molecular Weight Characteristics
2.8. Scanning Electron Microscopy
2.9. Elemental Analysis of Polymers
2.10. Lyophilic Drying
3. Results and Discussion
3.1. Change in the Characteristics of Graft Copolymers Methyl Methacrylate with Cod Collagen, Synthesized Using Complex Oxides with β-pyrochlore Structure as Photocatalysts under Visible Light Irradiation, during Enzymatic Hydrolysis
3.1.1. Effect of Cod Collagen Drying on the Enzymatic Hydrolysis with Pancreatin
3.1.2. Effect of the Nature of the Complex Oxide with β-pyrochlore Structure Used as Photocatalysts of Graft Copolymerization on the Composition and Structure of Graft Copolymers of Methyl Methacrylate with Cod Collagen
3.1.3. Features of the Enzymatic Hydrolysis of Graft Copolymer of Methyl Methacrylate with Cod Collagen by Pancreatin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alrahlah, A.; Khan, R.; Vohra, F.; Alqahtani, I.M.; Alruhaymi, A.A.; Haider, S.; Al-Odayni, A.-B.M.; Saeed, W.S.; Ananda Murthy, H.C.; Bautista, L. Influence of the physical inclusion of ZrO2/TiO2 nanoparticles on physical, mechanical, and morphological characteristics of PMMA based interim restorative material. BioMed Res. Int. 2022, 2022, 1743019. [Google Scholar] [CrossRef] [PubMed]
- Anil Kumar, M.R.; Abebe, B.; Nagaswarupa, H.P.; Ananda Murthy, H.C.; Ravikumar, C.R.; Sabir, F.K. Enhanced photocatalytic and electrochemical performance of TiO2/Fe2O3 Nanocomposites; its application in dye decolorization and supercapacitors. Sci. Rep. Nat. J. 2020, 10, 1249. [Google Scholar] [CrossRef] [Green Version]
- Rosman, N.N.; Yunus, R.M.; Mohd Shah, N.R.A.; Mohd Shah, R.; Arifin, K.; Minggu, L.J.; Ludin, N.A. An overview of co-catalysts on metal oxides for photocatalytic water splitting. Int. J. Energy Res. 2022, 46, 11596. [Google Scholar] [CrossRef]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Takizawa, S.; Hirahara, M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord. Chem. Rev. 2022, 467, 214624. [Google Scholar] [CrossRef]
- Liang, J.-C.; Yang, C.-L.; Wang, X.-L. LiXO2(X = Co, Rh, Ir) and solar light photocatalytic water splitting for hydrogen generation. Spectrochim. Acta Part A 2022, 279, 121410. [Google Scholar] [CrossRef]
- Yanalaka, G.; Ozen, A.; Sarılmaz, A.; Keles, A.; Aslan, E.; Ozel, F.; Patire, I.H. Scheelite-type BaMoO4 and BaWO4 based dye sensitized photocatalytic hydrogen evolution by water splitting. J. Phys. Chem. Solids 2022, 168, 11082. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- You, J.; Guo, Y.; Guo, R.; Liu, X. A review of visible light-active photocatalysts for water disinfection: Features and prospects. Chem. Eng. J. 2019, 373, 624–641. [Google Scholar] [CrossRef]
- Mao, W.; Zhang, L.; Wang, T.; Bai, Y.; Guan, Y. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Front. Environ. Sci. Eng. 2020, 15, 52. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Zhou, R.; Li, Y.; He, Z.; Ding, H.; Chen, D.; Ao, W. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1–19. [Google Scholar] [CrossRef]
- Belousov, A.S.; Suleimanov, E.V.; Parkhacheva, A.A.; Fukina, D.G.; Koryagin, A.V.; Koroleva, A.A.; Zhizhin, E.V.; Gorshkov, A.P. Regulating of MnO2 photocatalytic activity in degradation of organic dyes by polymorphic engineering. Solid State Sci. 2022, 132, 106997. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Yang, Z.; Linden, B.; Huang, Z.; Jia, Q.; Cerrato, E.; Fischer, R.A.; Kapteijn, F.; Zhu, Y.; Xia, Y. Surface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generation. J. Energy Chem. 2021, 57, 485. [Google Scholar] [CrossRef]
- Khan, K.; Xu, L.; Shi, M.; Qu, J.; Tao, X.; Feng, Z.; Li, C.; Li, R. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst. Chin. J. Catal. 2021, 42, 1004–1012. [Google Scholar] [CrossRef]
- Fukina, D.G.; Suleimanov, E.V.; Boryakov, A.V.; Zubkov, S.Y.; Koryagin, A.V.; Volkova, N.S.; Gorshkov, A.P. Structure analysis and electronic properties of ATe4+0.5Te6+1.5-xM6+xO6 (A=Rb, Cs, M6+=Mo, W) solid solutions with β-pyrochlore structure. J. Solid State Chem. 2021, 293, 121787. [Google Scholar] [CrossRef]
- Zhang, D.; Bi, C.; Zong, Z.; Fan, Y. Three Different Co(II) Metal–Organic Frameworks Based on 4,4′-Bis(imidazolyl)diphenyl Ether: Syntheses, Crystal Structure and Photocatalytic Properties. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5148–5156. [Google Scholar] [CrossRef]
- Chanu, W.C.; Gupta, A.; Singh, M.K.; Pandey, O.P. Group V Elements (V, Nb and Ta) Doped CeO2 Particles for Efficient Photo-Oxidation of Methylene Blue Dye. J. Inorg. Organomet. Polym. Mater. 2021, 31, 636–647. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.-R.; Wu, X.-F.; Wang, C.; Li, Y.; Ci, L.-J.; Jia, Y.-N.; Chang, T.-L.; Liu, X.-T.; Fun, Y.-X. Study on Ag2WO4/g-C3N4 Nanotubes as an Efficient Photocatalyst for Degradation of Rhodamine B. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4847–4857. [Google Scholar] [CrossRef]
- Ali, N.; Ali, F.; Khurshid, R.; Ikramullah; Ali, Z.; Afzal, A.; Bilal, M.; Iqba, H.M.N.; Ahmad, I. TiO2 Nanoparticles and Epoxy-TiO2 Nanocomposites: A Review of Synthesis, Modification Strategies, and Photocatalytic Potentialities. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4829–4846. [Google Scholar] [CrossRef]
- Tavakoli-Azar, T.; Mahjoub, A.R.; Sadjadi, M.S.; Farhadyar, N.; Sadr, M.H. Synthesis and Characterization of a Perovskite Nanocomposite of CdTiO3@S with Orthorhombic Structure: Investigation of Photoluminescence Properties and Its Photocatalytic Performance for the Degradation of Congo Red and Crystal Violet Under Sunlight. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4858–4875. [Google Scholar] [CrossRef]
- Amorim, S.M.; Steffen, G.; de S Junior, J.; Brusamarello, C.Z.; Romio, A.P.; Domenico, M.D. Synthesis, characterization, and application of polypyrrole/TiO2 composites in photocatalytic processes: A review. Polym. Compos. 2021, 29, 1055–1074. [Google Scholar] [CrossRef]
- Lobry, E.; BT Bah, A.S.; Vidal, L.; Oliveros, E.; Braun, A.M.; Criqui, A.; Chemtob, A. Colloidal and Supported TiO2: Toward Nonextractable and Recyclable Photocatalysts for Radical Polymerizations in Aqueous Dispersed Media. Macromol. Chem. Phys. 2016, 217, 2321–2329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, Y.; Simon-Masseron, A.; Lalevee, J. Radical photoinitiation with LEDs and applications in the 3D printing of composites. Chem. Soc. Rev. 2021, 50, 3824–3841. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhao, S.; Chen, Y.; Zhang, L.; Tan, J. Switching between Thermal Initiation and Photoinitiation Redirects RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2021, 54, 2948–2959. [Google Scholar] [CrossRef]
- Semenycheva, L.; Chasova, V.; Matkivskaya, J.; Fukina, D.; Koryagin, A.; Belaya, T.; Grigoreva, A.; Kursky, Y.; Suleimanov, E. Features of Polymerization of Methyl Methacrylate using a Photocatalyst—The Complex Oxide RbTe1.5W0.5O6. J. Inorg. Organomet. Polym. 2021, 31, 3572–3583. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Chasova, V.O.; Fukina, D.G.; Koryagin, A.V.; Valetova, N.B.; Suleimanov, E.V. Synthesis of Polymethyl-Methacrylate–Collagen-Graft Copolymer Using a Complex Oxide RbTe1.5W0.5O6 Photocatalyst. Polym. Sci. Ser. D 2022, 15, 110–117. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Popova, O.P.; Danilova, T.I.; Kuznetsova, A.V. Strategies for selecting and use of scaffolds in bioengineering. Biol. Bull. Rev. 2019, 139, 196–205. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Xie, L.; Liu, S.; Fan, Y.; Fang, C.; Zhang, X.; Quan, J.; Zuo, L. Thermosensitive chitosan-collagen composite hydrogel loaded with basic fibroblast growth factor retards ventricular remodeling after myocardial infarction in mice. Chin. J. Tissue Eng. Res. 2021, 25, 2472–2478. [Google Scholar]
- Castilho, M.; Hochleitner, G.; Wilson, W.; Rietbergen, B.; Dalton, P.D.; Groll, J.; Malda, J.; Ito, K. Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Sci. Rep. 2018, 8, 1245. [Google Scholar] [CrossRef] [Green Version]
- Vedhanayagam, M.; Ananda, S.; Nair, B.U.; Sreeram, K.J. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Mater. Sci. Eng. C 2020, 108, 110378. [Google Scholar] [CrossRef]
- Bas, O.; De-Juan-Pardo, E.M.; Chhaya, M.P.; Wunner, F.M.; Jeon, J.E.; Klein, T.J.; Hutmacher, D.W. Enhancing structural integrity of hydrogels by using highly organised melt electrospun fibre constructs. Eur. Polym. J. 2015, 72, 451–463. [Google Scholar] [CrossRef]
- Fujisawa, S.; Kadoma, Y. Tri-n-Butylborane/Water Complex-Mediated Copolymerization of Methyl Methacrylate with Proteinaceous Materials and Proteins: A Review. Polymers 2010, 2, 575–595. [Google Scholar] [CrossRef]
- Kuznetsova, Y.L.; Morozova, E.A.; Vavilova, A.S.; Markin, A.V.; Smirnova, O.N.; Zakharycheva, N.S.; Lyakaev, D.V.; Semenycheva, L.L. Synthesis of Biodegradable Grafted Copolymers of Gelatin and Polymethyl Methacrylate. Pol. Sci. Ser. D 2020, 13, 453–459. [Google Scholar] [CrossRef]
- Egorikhina, M.N.; Semenycheva, L.L.; Chasova, V.O.; Bronnikova, I.I.; Rubtsova, Y.P.; Zakharychev, E.A.; Aleynik, D.Y. Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Mar. Drugs 2021, 19, 502. [Google Scholar] [CrossRef] [PubMed]
- Arandiyan, H.; Mofarah, S.S.; Sorrell, C.C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H.; Ni, B.-J.; Rezaei, M.; et al. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211. [Google Scholar] [CrossRef] [PubMed]
- Semenycheva, L.L.; Egorikhina, M.N.; Chasova, V.O.; Valetova, N.B.; Kuznetsova, Y.L.; Mitin, A.V. Enzymatic Hydrolysis of Marine Collagen and Fibrinogen Proteins in the Presence of Thrombin. Mar. Drugs. 2020, 18, 208. [Google Scholar] [CrossRef] [Green Version]
- Egorikhina, M.N.; Aleynika, D.Y.; Rubtsova, Y.P.; Levin, G.Y.; Charykova, I.N.; Semenycheva, L.L.; Bugrova, M.L.; Zakharychev, E.A. Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioact. Mater. 2019, 4, 334–345. [Google Scholar] [CrossRef]
- Li, Y.; Meng, H.; Liu, Y.; Lee, B.P. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering. Sci. World J. 2015, 2015, 685690. [Google Scholar] [CrossRef]
- Tereschenko, V.P.; Kirilova, I.A.; Larionov, P.M. Scaffolds-carriers in bone tissue engineering. Adv. Curr. Nat. Sci. 2015, 8, 66–70. [Google Scholar]
- Yan, M.; Qin, S.; Li, B. Purification and Structural Aspects of Type I Collagen from Walleye Pollock (Theragra chalcogramma) Skin. J. Aquat. Food Prod. Technol. 2017, 26, 1166–1174. [Google Scholar] [CrossRef]
- Kezwoń, A.; Chromińska, I.; Fraczyk, T.; Wojciechowski, K. Effect of enzymatic hydrolysis on surface activity and surface rheology of type I collagen. Colloids Surf. B 2016, 137, 60–69. [Google Scholar] [CrossRef] [PubMed]
- De la Puente, P.; Ludeña, D. Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp. Cell Res. 2014, 322, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, K.B.; Han, S.S. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb. Technol. 2022, 155, 109990. [Google Scholar] [CrossRef]
- Lim, X.; Potter, M.; Cui1, Z.; Dye, J.F. Manufacture and characterisation of EmDerm—Novel hierarchically structured bio-active scaffolds for tissue regeneration. J. Mater. Sci. Mater. Med. 2018, 29, 79. [Google Scholar] [CrossRef] [Green Version]
- Semenycheva, L.L.; Valetova, N.B.; Chasova, V.O.; Astanina, M.V.; Kuznetsova, Y.L. Molecular Weight Parameters of Collagen from Different Feedstock and Dynamics of Their Change upon Enzymatic Hydrolysis by Pancreatin. Pol. Sci. Ser. D 2020, 13, 235–239. [Google Scholar] [CrossRef]
- Chasova, V.; Semenycheva, L.; Egorikhina, M.; Valetova, N.; Suleimanov, E. Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromol. Res. 2022, 30, 212–221. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Egorikhina, M.N.; Chasova, V.O.; Astanina, M.V.; Kuznetsova, Y.L. Enzymatic hydrolysis of collagen by pancreatin and thrombin as a step in the formation of scaffolds. Russ. Chem. Bull. 2020, 69, 164–168. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Egorikhina, M.N.; Chasova, V.O.; Valetova, N.B.; Mitin, A.V.; Kuznetsova, Y.L. Efficacy of Pancreatin and Trypsin Proteases in Enzymatic Hydrolysis of Collagen. Bull. S. Ural State Univ. Ser. Chem. 2020, 12, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Momot, A.P.; Taranenko, I.A. Method for Determination of Fibrin Monomer Self-AssemblyTime. Patent RU2366955C1, 10 September 2009. [Google Scholar]
- Belousov, A.S.; Suleimanov, E.V.; Parkhacheva, A.A. Visible light-induced degradation of organic dyes by niobium tellurium oxides ANbTeO6 (A = Rb, Cs) with β-pyrochlore structure. Mater. Lett. 2022, 327, 133081. [Google Scholar] [CrossRef]
- Semenycheva, L.L.; Kuznetsova, J.L.; Valetova, N.B.; Geras’kina, E.V.; Tarankova, O.A. Method for Production of Acetic Dispersion of High Molecular Fish Collagen. Patent RU2567171C1, 10 November 2015. [Google Scholar]
- Huang, Y.; Dan, N.; Dan, W. Promising Biomedical Material Based on Collagen Composite Electrospun Nanofibers: A Review. Mater. Rep. 2019, 33, 3322–3327. [Google Scholar]
- Fukina, D.G.; Koryagin, A.V.; Volkova, N.S.; Suleimanov, E.V.; Kuzmichev, V.V.; Mitin, A.V. Features of the electronic structure and photocatalytic properties under visible light irradiation for RbTe1.5W0.5O6 with β-pyrochlore structure. Solid State Sci. 2022, 126, 106858. [Google Scholar] [CrossRef]
- Zengin, G.; Zengin, A.C.; Kılıc, E.; Dandar, U.; Afsar, A.; Shalbuev, D. Characterization of Collagen Derived Products Prepared By Use Of Alkali And Dairy By-Product. Environ. Eng. Manag. J. 2019, 18, 2355–2362. [Google Scholar] [CrossRef]
- Bender, M.; Bergeron, R.; Komiyama, M. Bioorganic Chemistry of Enzymatic Catalysis; Mir: Moscow, Russia, 1987; p. 352. [Google Scholar]
- Drauz, K.; Gröger, H.; May, O. Enzyme Catalysis in Organic Synthesis, 3 Volume Set, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 2038. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenycheva, L.; Chasova, V.; Fukina, D.; Koryagin, A.; Belousov, A.; Valetova, N.; Suleimanov, E. Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure. Life 2023, 13, 352. https://doi.org/10.3390/life13020352
Semenycheva L, Chasova V, Fukina D, Koryagin A, Belousov A, Valetova N, Suleimanov E. Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure. Life. 2023; 13(2):352. https://doi.org/10.3390/life13020352
Chicago/Turabian StyleSemenycheva, Ludmila, Victoria Chasova, Diana Fukina, Andrey Koryagin, Artem Belousov, Natalia Valetova, and Evgeny Suleimanov. 2023. "Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure" Life 13, no. 2: 352. https://doi.org/10.3390/life13020352
APA StyleSemenycheva, L., Chasova, V., Fukina, D., Koryagin, A., Belousov, A., Valetova, N., & Suleimanov, E. (2023). Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure. Life, 13(2), 352. https://doi.org/10.3390/life13020352