Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons
Abstract
:1. Introduction
2. Habitability on Icy Moons
2.1. The Icy Moons of Jupiter
2.2. The Icy Moons of Saturn
3. Planetary Field Analogues of the Icy Moons
4. Spectroscopy of Biosignatures Present on Ice
4.1. Biosignatures
4.2. Spectroscopy of Biosignatures on Icy Planetary Field Analogues
4.3. Spectroscopic Observations and Analyses on Space Missions to Icy Moons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bockelée-Morvan, D.; Lis, D.; Wink, J.; Despois, D.; Crovisier, J.; Bachiller, R.; Benford, D.; Biver, N.; Colom, P.; Davies, J.; et al. New molecules found in comet C/1995 O1 (Hale-Bopp): Investigating the link between cometary and interstellar material. Astron. Astrophys. 2000, 353, 1101–1114. [Google Scholar]
- Hanel, R.; Crosby, D.; Herath, L.; Vanous, D.; Collins, D.; Creswick, H.; Harris, C.; Rhodes, M. Infrared spectrometer for Voyager. Appl. Opt. 1980, 19, 1391–1400. [Google Scholar] [PubMed]
- Barucci, M.; Fulchignoni, M.; Lazzarin, M. Water ice in primitive asteroids? Planet. Space Sci. 1996, 44, 1047–1057. [Google Scholar] [CrossRef]
- Tegler, S.C. Kuiper Belt Objects: Physical Studies. In Encyclopedia of the Solar System, 2nd ed.; McFadden, L., Johnson, T., Paul, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 605–620. [Google Scholar]
- Spencer, J.R.; Nimmo, F. Enceladus: An Active Ice World in the Saturn System. Annu. Rev. Earth Planet. Sci. 2013, 41, 693–717. [Google Scholar] [CrossRef]
- Coelho, L.F.; Martins, Z. The Geochemistry of Icy Moons. Encycl. Geol. 2021, 1, 207–216. [Google Scholar]
- Capaccioni, F.; Coradini, a.; Filacchione, G.; Erard, S.; Arnold, G.; Drossart, P.; De Sanctis, M.C.; Bockelee-Morvan, D.; Capria, M.T.; Tosi, F.; et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 2015, 347, aaa0628. [Google Scholar]
- McKinnon, W.; Stern, S.; Weaver, H.; Nimmo, F.; Bierson, C.; Grundy, W.; Cook, J.; Cruikshank, D.; Parker, A.; Moore, J.; et al. Origin of the Pluto–Charon system: Constraints from the New Horizons flyby. Icarus 2017, 287, 2–11. [Google Scholar]
- Brown, R.; Clark, R.; Buratti, B.; Cruikshank, D.; Barnes, J.; Mastrapa, R.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.; et al. Composition and Physical Properties of Enceladus’ Surface. Science 2006, 311, 1425–1428. [Google Scholar]
- Domingue, D.L.; Lane, A.L. IUE views Europa: Temporal variations in the UV. Geophys. Res. Lett. 1998, 25, 4421–4424. [Google Scholar]
- Hansen, G.B.; McCord, T.B. Widespread CO2 and other non-ice compounds on the anti-Jovian and trailing sides of Europa from Galileo/NIMS observations. Geophys. Res. Lett. 2008, 35, 1. [Google Scholar]
- Carlson, R.; Anderson, M.; Johnson, R.; Smythe, W.; Hendrix, A.; Barth, C.; Soderblom, L.; Hansen, G.; McCord, T.; Dalton, J.; et al. Hydrogen Peroxide on the Surface of Europa. Science 1999, 283, 2062–2064. [Google Scholar] [CrossRef] [PubMed]
- Owen, T.; Roush, T.; Cruikshank, D.; Elliot, J.; Young, L.; De Bergh, C.; Schmitt, B.; Geballe, T.; Brown, R.; Bartholomew, M. Surface Ices and the Atmospheric Composition of Pluto. Science 1993, 261, 745–748. [Google Scholar] [PubMed]
- Carr, M.; Belton, M.; Chapman, C.; Davies, M.; Geisslerk, P.; Greenbergk, R.; Mcewenk, A.; Tuftsk, B.; Greeley, R.; Sullivan, R.; et al. Evidence for a subsurface ocean on Europa. Nature 1998, 391, 363–365. [Google Scholar] [CrossRef]
- Iess, L.; Stevenson, D.J.; Parisi, M.; Hemingway, D.; Jacobson, R.A.; Lunine, J.I.; Nimmo, F.; Armstrong, J.W.; Asmar, S.W.; Ducci, M.; et al. The gravity field and interior structure of Enceladus. Science 2014, 344, 78–80. [Google Scholar] [PubMed]
- Cockell, C.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.; Lammer, H.; Landenmark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A Review. Astrobiology 2016, 16, 89–117. [Google Scholar]
- Domagal-Goldman, S.; Wright, K.; Adamala, K.; De La Rubia, L.; Bond, J.; Dartnell, L.; Goldman, A.; Lynch, K.; Naud, M.; Paulino-Lima, I.; et al. The Astrobiology Primer v2.0. Astrobiology 2016, 16, 561–653. [Google Scholar]
- Cottin, H.; Kotler, J.; Bartik, K.; Cleaves, H.; Cockell, C.; de Vera, J.; Ehrenfreund, P.; Leuko, S.; Ten Kate, I.; Martins, Z.; et al. Astrobiology and the Possibility of Life on Earth and Elsewhere. Space Sci. Rev. 2017, 209, 1–42. [Google Scholar]
- Wolfenbarger, N.; Buffo, J.; Soderlund, K.; Blankenship, D. Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. Astrobiology 2022, 22, 937–961. [Google Scholar] [CrossRef]
- Kereszturi, A.; Keszthelyi, Z. Astrobiological implications of chaos terrains on Europa to help targeting future missions. Planet. Space Sci. 2013, 77, 74–90. [Google Scholar] [CrossRef]
- Fischer, P.; Brown, M.; Hand, K. Spatially resolved spectroscopy of Europa: The distinct spectrum of large-scale chaos. Astron. J. 2015, 150, 150–164. [Google Scholar]
- Martins, Z.; Cottin, H.; Kotler, J.M.; Carrasco, N.; Cockell, C.S.; De La Torre Noetzel, R.; Demets, R.; De Vera, J.P.; D’Hendecourt, L.; Ehrenfreund, P.; et al. Earth as a Tool for Astrobiology—A European Perspective. Space Sci. Rev. 2017, 209, 43–81. [Google Scholar]
- Coelho, L.F.; Madden, J.; Kaltenegger, L.; Zinder, S.; Philpot, W.; Esquível, M.G.; Canário, J.; Costa, R.; Vincent, W.F.; Martins, Z.; et al. Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds. Astrobiology 2022, 22, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.F.; Couceiro, J.F.; Keller-Costa, T.; Valente, S.M.; Ramalho, T.P.; Carneiro, J.; Comte, J.; Blais, M.A.; Vincent, W.F.; Martins, Z.; et al. Structural shifts in sea ice prokaryotic communities across a salinity gradient in the subarctic. Sci. Total Environ. 2022, 827, 154286. [Google Scholar] [CrossRef]
- Coelho, L.F.; Blais, M.A.; Matveev, A.; Keller-Costa, T.; Vincent, W.F.; Costa, R.; Martins, Z.; Canário, J. Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Monteux, J.; Golabek, G.J.; Rubie, D.C.; Tobie, G.; Young, E.D. Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sci. Rev. 2018, 214, 39. [Google Scholar] [CrossRef]
- Nesvorný, D.; Vokrouhlický, D.; Morbidelli, A. Capture of Irregular Satellites during Planetary Encounters. Astron. J. 2007, 133, 1962–1976. [Google Scholar]
- Smith, B.A.; Soderblom, L.A.; Beebe, R.; Boyce, J.; Briggs, G.; Carr, M.; Collins, S.A.; Cook, A.F.; Danielson, G.E.; Davies, M.E.; et al. The galilean satellites and Jupiter: Voyager 2 imaging science results. Science 1979, 206, 927–950. [Google Scholar]
- Jia, X.; Kivelson, M.G.; Khurana, K.K.; Walker, R.J. Magnetic fields of the satellites of jupiter and saturn. Space Sci. Rev. 2010, 152, 271–305. [Google Scholar] [CrossRef]
- Prockter, L.M.; Lopes, R.M.C.; Giese, B.; Jaumann, R.; Lorenz, R.D.; Pappalardo, R.T.; Patterson, G.W.; Thomas, P.C.; Turtle, E.P.; Wagner, R.J. Characteristics of icy surfaces. Space Sci. Rev. 2010, 153, 63–111. [Google Scholar]
- Hansen, G.B.; McCord, T.B. Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes. J. Geophys. Res. Planets 2004, 109, 8069. [Google Scholar] [CrossRef]
- Soderlund, K.M.; Kalousová, K.; Buffo, J.J.; Glein, C.R.; Goodman, J.C.; Mitri, G.; Patterson, G.W.; Postberg, F.; Rovira-Navarro, M.; Rückriemen, T.; et al. Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Sci. Rev. 2020, 216, 80. [Google Scholar] [CrossRef]
- Barnett, I.L.; Lignell, A.; Gudipati, M.S. Survival depth of organics in ices under low-energy electron radiation (≤2keV). Astrophys. J. 2012, 747, 11. [Google Scholar] [CrossRef]
- NASA. Cassini Approaches Saturn. 2004. Available online: https://www.esa.int/Science_Exploration/Space_Science/Cassini-Huygens/Cassini_spacecraft (accessed on 15 December 2022).
- NASA; ESA; Simon, A. Jupiter and Its Shrunken Great Red Spot. 2014. Available online: https://esahubble.org/images/heic1410a/ (accessed on 15 December 2022).
- NASA; ESA; Clarke, J.; Levay, Z. Saturn’s Aurora. Available online: https://hubblesite.org/contents/media/images/2005/06/1654-Image.html (accessed on 15 December 2022).
- Journaux, B.; Daniel, I.; Petitgirard, S.; Cardon, H.; Perrillat, J.P.; Caracas, R.; Mezouar, M. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies. Earth Planet. Sci. Lett. 2017, 463, 36–47. [Google Scholar] [CrossRef]
- Vance, S.; Bouffard, M.; Choukroun, M.; Sotin, C. Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 2014, 96, 62–70. [Google Scholar] [CrossRef]
- Brown, M.E.; Hand, K.P. Salts and radiation products on the surface of europa. Astron. J. 2013, 145, 7. [Google Scholar]
- Vance, S.D.; Hand, K.P.; Pappalardo, R.T. Geophysical controls of chemical disequilibria in Europa. Geophys. Res. Lett. 2016, 43, 4871–4879. [Google Scholar]
- Vidmachenko, A.; Steklov, A. Sulfur on Jupiter’s Moons of Io and Europa. In Proceedings of the 9th International Scientific and Practical Conference, Tokyo, Japan, 6–8 April 2022; Science, Innovations and Education: Problems and Prospects. CPN Publishing Group: Tokyo, Japan, 2022; Chapter 33. [Google Scholar]
- Teolis, B.D.; Plainaki, C.; Cassidy, T.A.; Raut, U. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies. J. Geophys. Res. Planets 2017, 122, 1996–2012. [Google Scholar]
- Nordheim, T.A.; Regoli, L.H.; Harris, C.D.K.; Paranicas, C.; Hand, K.P.; Jia, X. Magnetospheric Ion Bombardment of Europa’s Surface. Planet. Sci. J. 2022, 3, 109.01. [Google Scholar]
- Kattenhorn, S.A.; Prockter, L.M. Subduction on Europa: Evidence for plate tectonics on an icy world. Am. Geophys. Union Fall Meet. 2013, 2013, P54A-03. [Google Scholar]
- Fox-Powell, M.G.; Osinski, G.R.; Applin, D.; Stromberg, J.M.; Gázquez, F.; Cloutis, E.; Allender, E.; Cousins, C.R. Natural Analogue Constraints on Europa’s Non-ice Surface Material. Geophys. Res. Lett. 2019, 46, 5759–5767. [Google Scholar] [CrossRef] [Green Version]
- Trumbo, S.K.; Brown, M.E.; Hand, K.P. Endogenic and Exogenic Contributions to Visible-wavelength Spectra of Europa’s Trailing Hemisphere. Astron. J. 2020, 160, 282. [Google Scholar] [CrossRef]
- Bradák, B.; Kimura, J.; Gomez, C.; Kereszturi, K. Separation of quasi-continuous and periodic components of lineament formation at the Belus-Phoenix-Rhadamanthys Linea “triangle” on Europa. Icarus 2023, 391, 115367. [Google Scholar]
- Sparks, W.B.; Hand, K.P.; McGrath, M.A.; Bergeron, E.; Cracraft, M.; Deustua, S.E. Probing for Evidence of Plumes on Europa with HST/STIS. Astrophys. J. 2016, 829, 121. [Google Scholar] [CrossRef]
- Vorburger, A.; Wurz, P. Modeling of Possible Plume Mechanisms on Europa. J. Geophys. Res. Space Phys. 2021, 126, e29690. [Google Scholar]
- Trumbo, S.K.; Brown, M.E.; Hand, K.P. Sodium chloride on the surface of Europa. Sci. Adv. 2019, 5, eaaw7123. [Google Scholar] [CrossRef]
- De Angelis, S.; Tosi, F.; Carli, C.; Beck, P.; Brissaud, O.; Schmitt, B.; Piccioni, G.; De Sanctis, M.; Capaccioni, F. VIS-IR spectroscopy of magnesium chlorides at cryogenic temperatures. Icarus 2022, 373, 114756. [Google Scholar]
- Burnett, E.R.; Hayne, P.O. Europa’s hemispheric color dichotomy as a constraint on non-synchronous rotation. Icarus 2021, 364, 114438. [Google Scholar]
- Ćuk, M.; Dones, L.; Nesvorný, D. Dynamical evidence for a late formation of Saturn’s moons. Astrophys. J. 2016, 820, 16. [Google Scholar] [CrossRef]
- Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 2009, 459, 1098–1101. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.A.; McEwen, A.; Del Genio A., D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V.; et al. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541–1547. [Google Scholar] [CrossRef]
- Detelich, C.E.; Byrne, P.K.; Dombard, A.J.; Schenk, P.M. The morphology and age of the Iapetus equatorial ridge supports an exogenic origin. Icarus 2021, 367, 114559. [Google Scholar]
- Thomas, P.C.; Armstrong, J.W.; Asmar, S.W.; Burns, J.A.; Denk, T.; Giese, B.; Helfenstein, P.; Iess, L.; Johnson, T.V.; McEwen, A.; et al. Hyperion’s sponge-like appearance. Nature 2007, 448, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Dalle Ore, C.M.; Cruikshank, D.P.; Mastrapa, R.M.; Lewis, E.; White, O.L. Impact craters: An ice study on Rhea. Icarus 2015, 261, 80–90. [Google Scholar]
- Moore, J.M. The tectonic and volcanic history of Dione. Icarus 1984, 59, 205–220. [Google Scholar] [CrossRef]
- Tosi, F.; Turrini, D.; Coradini, A.; Filacchione, D. Probing the origin of the dark material on Iapetus. Mon. Not. R. Astron. Soc. 2010, 403, 113–1130. [Google Scholar] [CrossRef]
- Porco, C.C.; Baker, E.; Barbara, J.; Beurle, K.; Brahic, A.; Burns, J.A.; Charnoz, S.; Cooper, N.; Dawson, D.D.; Del Genio, A.D.; et al. Cassini Imaging Science: Initial results on Phoebe and Iapetus. Science 2005, 307, 1237–1242. [Google Scholar] [PubMed] [Green Version]
- Hansen, C.; Esposito, L.; Colwell, J.; Hendrix, A.; Portyankina, G.; Stewart, A.; West, R. The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 2020, 344, 113461. [Google Scholar]
- Schmidt, J.; Brilliantov, N.; Spahn, F.; Kempf, S. Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 2008, 451, 685–688. [Google Scholar] [PubMed]
- Waite, J.H.; Glein, C.R.; Perryman, R.S.; Teolis, B.D.; Magee, B.A.; Miller, G.; Grimes, J.; Perry, M.E.; Miller, K.E.; Bouquet, A.; et al. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 2017, 356, 155–159. [Google Scholar] [CrossRef]
- Cable, M.L.; Clark, K.; Lunine, J.I.; Postberg, F.; Reh, K.; Spilker, L.; Waite, J.H. Enceladus Life Finder: The search for life in a habitable Moon. In Proceedings of the 2016 IEEE Aerospace Conference, Viena, Austria, 5–12 March 2016. [Google Scholar]
- Postberg, F.; Khawaja, N.; Abel, B.; Choblet, G.; Glein, C.R.; Gudipati, M.S.; Henderson, B.L.; Hsu, H.W.; Kempf, S.; Klenner, F. Macromolecular organic compounds from the depths of Enceladus. Nature 2018, 558, 564–568. [Google Scholar] [CrossRef]
- Farkas-Takács, A.; Kiss, C.; Góbi, S.; Kereszturi, K. Serpentinization in the Thermal Evolution of Icy Kuiper Belt Objects in the Early Solar System. Planet. Sci. J. 2022, 3, 54. [Google Scholar]
- Drabek-Maunder, E.; Greaves, J.; Fraser, H.J.; Clements, D.L.; Alconcel, L.N. Ground-based detection of a cloud of methanol from Enceladus: When is a biomarker not a biomarker? Int. J. Astrobiol. 2017, 120, 4660–4689. [Google Scholar] [CrossRef]
- Waite, J.H.; Combi, M.R.; Ip, W.H.; Cravens, T.E.; McNutt, R.L.; Kasprzak, W.; Yelle, R.; Luhmann, J.; Niemann, H.; Gell, D.; et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 2006, 311, 1419–1422. [Google Scholar] [PubMed]
- Barge, L.M.; White, L.M. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology 2017, 17, 820–833. [Google Scholar]
- Marlow, J.J.; Martins, Z.; Sephton, M.A. Organic host analogues and the search for life on Mars. Int. J. Astrobiol. 2011, 10, 31–44. [Google Scholar]
- Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A Hypothesis Paper A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere. Astrobiology 2004, 4, 11–18. [Google Scholar]
- Aguzzi, J.; Flögel, S.; Marini, S.; Thomsen, L.; Albiez, J.; Weiss, P.; Picardi, G.; Calisti, M.; Stefanni, S.; Mirimin, L.; et al. Developing technological synergies between deep-sea and space research. Elementa 2022, 10, 00064. [Google Scholar]
- Friedmann, E.I.; Ocampo, R. Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science 1976, 193, 1247–1249. [Google Scholar] [CrossRef]
- Pollard, W.; Haltigin, T.; Whyte, L.; Niederberger, T.; Andersen, D.; Omelon, C.; Nadeau, J.; Ecclestone, M.; Lebeuf, M. Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian High Arctic. Planet. Space Sci. 2009, 57, 646–659. [Google Scholar] [CrossRef]
- Chan, M.A.; Hinman, N.W.; Potter-McIntyre, S.L.; Schubert, K.E.; Gillams, R.J.; Awramik, S.M.; Boston, P.J.; Bower, D.M.; Des Marais, D.J.; Farmer, J.D.; et al. Deciphering Biosignatures in Planetary Contexts. Astrobiology 2019, 19, 1075–1102. [Google Scholar]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [PubMed]
- Guzmán-Marmolejo, A.; Segura, A.; Escobar-Briones, E. Abiotic production of methane in terrestrial planets. Astrobiology 2013, 13, 550–559. [Google Scholar] [PubMed]
- D’Ischia, M.; Manini, P.; Martins, Z.; Remusat, L.; O’D Alexander, C.M.; Puzzarini, C.; Barone, V.; Saladino, R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys. Life Rev. 2021, 37, 65–93. [Google Scholar] [CrossRef] [PubMed]
- Rull, F.; Vegas, A.; Sansano, A.; Sobron, P. Analysis of Arctic ices by Remote Raman Spectroscopy. Spectrochim. Acta—Mol. Biomol. Spectrosc. 2011, 80, 148–155. [Google Scholar]
- Eshelman, E.J.; Malaska, M.J.; Manatt, K.S.; Doloboff, I.J.; Wanger, G.; Willis, M.C.; Abbey, W.J.; Beegle, L.W.; Priscu, J.C.; Bhartia, R. WATSON: In Situ Organic Detection in Subsurface Ice Using Deep-UV Fluorescence Spectroscopy. Astrobiology 2019, 19, 771–784. [Google Scholar] [CrossRef]
- Edwards, H.G.; Hutchinson, I.B.; Ingley, R. Raman spectroscopy and the search for life signatures in the ExoMars Mission. Int. J. Astrobiol. 2012, 11, 269–278. [Google Scholar] [CrossRef]
- Dalton, J.B. Spectroscopy of icy moon surface materials. Space Sci. Rev. 2010, 153, 219–247. [Google Scholar] [CrossRef]
- Dalton, J.B.; Cruikshank, D.P.; Stephan, K.; McCord, T.B.; Coustenis, A.; Carlson, R.W.; Coradini, A. Chemical Composition of Icy Satellite Surfaces. Space Sci. Rev. 2010, 153, 113–154. [Google Scholar]
- Porco, C.C.; Helfenstein, P.; Thomas, P.C.; Ingersoll, A.P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R.; Roatsch, T.; et al. Cassini observes the active south pole of enceladus. Science 2006, 311, 1393–1401. [Google Scholar]
- Porco, C.C.; West, R.A.; Squyres, S.; Mcewen, A.; Thomas, P.; Murray, C.D.; Delgenio, A.; Ingersoll, A.P.; Johnson, T.V.; Neukum, G.; et al. Cassini imaging science: Instrument characteristics and capabilities and anticipated scientific investigations at Saturn. Space Sci. Rev. 2004, 115, 363–497. [Google Scholar] [CrossRef]
- Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Clark, R.; Cuzzi, J.; Nicholson, P.; Cruikshank, D.; Hedman, M.; Buratti, B.; Lunine, J.; et al. Saturn’s icy satellites and rings investigated by Cassini-VIMS: III—Radial compositional variability. Icarus 2012, 220, 1064–1096. [Google Scholar] [CrossRef]
- Brown, R.H.; Baines, K.H.; Bellucci, G.; Bibring, J.P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; et al. The Cassini Visual and Infrared mapping spectrometer. Space Sci. Rev. 2004, 115, 111. [Google Scholar]
- Teolis, B.D.; Perry, M.E.; Hansen, C.J.; Waite, J.H.; Porco, C.C.; Spencer, J.R.; Howett, C.J.A. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology 2017, 17, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Esposito, L.W.; Barth, C.A.; Colwell, J.E.; Lawrence, G.M.; McClintock, W.E.; Stewart, A.I.F.; Keller, H.U.; Korth, A.; Lauche, H.; Festou, M.C.; et al. The CASSINI ultraviolet imaging spectrograph investigation. Space Sci. Rev. 2004, 115, 299. [Google Scholar]
- Belton, M.J.S.; Galileo Imaging Team. Results of the Galileo solid state imaging (SSI) experiment. Adv. Space Res. 2000, 26, 1641–1647. [Google Scholar] [CrossRef]
- Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; et al. The Galileo Solid-State Imaging experiment. Space Sci. Rev. 1992, 60, 413–455. [Google Scholar] [CrossRef]
- Mishra, I.; Lewis, N.; Lunine, J.; Hand, K.P.; Helfenstein, P.; Carlson, R.W.; MacDonald, R.J. A comprehensive revisit of select galileo/NIMS observations of Europa. Planet. Sci. J. 2021, 2, 183. [Google Scholar]
- Hord, C.; McClintock, W.; Stewart, A.; Barth, C.; Esposito, L.; Thomas, G.; Sandel, B.; Hunten, D.; Broadfoot, A.; Shemansky, D.; et al. Galileo Ultraviolet Spectrometer Experiment. Galileo Mission. 1992, 60, 503–530. [Google Scholar]
- JUICE Definition Study Report (Red Book), ESA/SRE (2014), Issue 1, September 2014. Available online: https://sci.esa.int/documents/33960/35865/1567260128466-JUICE_Red_Book_i1.0.pdf (accessed on 5 December 2022).
- Paczkowski, B.; Ray, T.; Choukroun, M.; Brooks, S.; Steinbruegge, G.; Gudipati, M.; Piqueux, S.; Blacksberg, J.; Cochrane, C.; Diniega, S.; et al. Europa Clipper Instrument Summaries. 2022. Available online: https://europa.nasa.gov/internal_resources/379/ScienceInstruments_031422_Public.pdf (accessed on 12 November 2022).
- Ligier, N.; Poulet, F.; Carter, J.; Brunetto, R.; Gourgeot, F. VLT/SINFONI Observations of Europa: New Insights into the Surface Composition. Astron. J. 2016, 151, 163. [Google Scholar] [CrossRef]
- Dalton, J.B.; Cassidy, T.; Paranicas, C.; Shirley, J.; Prockter, L.; Kamp, L. Exogenic controls on sulfuric acid hydrate production at the surface of Europa. Planet. Space Sci. 2013, 77, 45–63. [Google Scholar]
- Thomas, E.C.; Hodyss, R.; Vu, T.H.; Johnson, P.V.; Choukroun, M. Composition and Evolution of Frozen Chloride Brines under the Surface Conditions of Europa. ACS Earth Space Chem. 2017, 1, 14–23. [Google Scholar]
- Hanley, J.; Dalton, J.B.; Chevrier, V.F.; Jamieson, C.S.; Barrows, R.S. Reflectance spectra of hydrated chlorine salts: The effect of temperature with implications for Europa. J. Geophys. Res. Planets 2014, 119, 2370–2377. [Google Scholar] [CrossRef]
- Bishop J., L.; Davila, A.; Hanley, J.; Roush T., L. Dehydration-Rehydration Experiments with Cl Salts Mixed into Mars Analog Materials and the Effects on their VNIR Spectral Properties. In Proceedings of the 47th Lunar and Planetary Science Conference, Woodlands, TX, USA, 16 March 2016. [Google Scholar]
- Bishop, J.L.; Ward, M.K.; Roush, T.L.; Davila, A.; Brown, A.S.; McKay, C.P.; Quinn, R.C.; Pollard, W.H. Spectral Properties of Na, Ca-, Mg- and Fe-Chlorides and Analyses of Hydrohalite-Bearing Samples from Axel Heiberg Island. In Proceedings of the 45th Lunar and Planetary Science Conference, Woodlands, TX, USA, 17–21 March 2014. [Google Scholar]
- Fastelli, M.; Comodi, P.; Schmitt, B.; Beck, P.; Poch, O.; Sassi, P.; Zucchini, A. Reflectance spectra (1–5 μm) at low temperatures and different grain sizes of ammonium-bearing minerals relevant for icy bodies. Icarus 2022, 382, 115055. [Google Scholar] [CrossRef]
- Dalton, J.B.; Mogul, R.; Kagawa, H.K.; Chan, S.L.; Jamieson, C.S. Near-Infrared Detection of Potential Evidence for Microscopic Organisms on Europa. Astrobiology 2002, 3, 505–529. [Google Scholar] [CrossRef]
- Dalton, J.B. Spectral Behavior of Hydrated Sulfate Salts: Implications for Europa Mission Spectrometer Design. Astrobiology 2004, 3, 771–784. [Google Scholar]
- Dalton, J.B.; Shirley, J.H.; Kamp, L.W. Europa’s icy bright plains and dark linea: Exogenic and endogenic contributions to composition and surface properties. J. Geophys. Res. Planets 2012, 117, 3003. [Google Scholar] [CrossRef]
- Johnson, R.E.; Killen, R.M.; Waite, J.H.; Lewis, W.S. Europa’s surface composition and sputter-produced ionosphere. Geophys. Res. Lett. 2000, 25, 3257. [Google Scholar] [CrossRef]
- Smith, A.L.; Hendrickson, R.C. Protecting ocean worlds: Europa Clipper planetary protection inputs to a probabilistic risk-based approach. Int. J. Astrobiol. 2022, 21, 470–483. [Google Scholar]
Icy Moons of Saturn | |||||
---|---|---|---|---|---|
Mission | Year | Instrument | Spectral Range | Instrument Finding | References |
Cassini | 1997 | Image Science Subsystem (ISS) | 200–1100 nm | Images revealed a plume of tiny ice particles emerging from Enceladus’ south pole. The plume was identified in November 2005 as discrete jets, or geysers, carried upward by water vapour. These jets are responsible for ejecting the particles that will eventually supply Saturn’s E ring. | [85,86] |
Visible and Infrared Mapping Spectrometer (VIMS) | 350–5100 nm | The majority of the particles in Enceladus’ plumes are made up of fine-grained water ice, ejected from the planet at speeds of 80–160 m/s and only a small percentage of these particles can escape from Enceladus. A stratigraphic link between tectonic structures and cryovolcanic activity is suggested by the correlation of particle sizes with geologic features and surface ages on Enceladus. | [87,88] | ||
Composite InfraRed Spectrometer (CIRS) | 10–1400 cm−1 | Endogenic thermal emission at temperatures as high as 190 K from the Enceladus tiger stripes, with significant spatial variation on scales ranging from tens of kilometres to tens of metres. | [89] | ||
Ultraviolet Imaging Spectrograph (UVIS) | EUV 563–1182 Å/FUV 1115–1912 Å | Mapped the structure of Enceladus’ and determined that its irregular eruptions primarily release water vapour. Over the length of the mission, there were no noticeable fluctuations in the volume of water vapour, while the largest jets, which carry most frozen grains, vary more. | [90] |
Icy Moons of Jupiter | |||||
---|---|---|---|---|---|
Mission | Year | Instrument | Spectral Range | Instrument Finding | References |
Galileo | 1981 | Solid State Imager (SSI) | 375–1100 nm | Provided evidence of geologic activity on Europa that backs up the theory that there is liquid water underneath a thin layer of ice. | [91,92] |
Near-Infrared Mapping Spectrometer (NIMS) | 700–5200 nm | Improved the understanding of the composition of Europa’s ice shell. | [93] | ||
UltraViolet Spectrometer (UVS) | 113–432 nm | Examined the Galilean satellites’ surface composition and escape of volatile molecules. | [94] | ||
Extreme Ultraviolet Spectrometer (EUVS) | 54–128 nm | Examined the Galilean satellites’ surface composition and escape of volatile molecules. | [94] | ||
JUICE | (Planned to) 2023 | Moons and Jupiter Imaging Spectrometer (MAJIS) | 0.4 to 5.7 μm | [95] | |
Jovis, Amorum ac Natorum Undique Scrutator (JANUS) | 350–1050 nm | [95] | |||
Ultraviolet Spectrograph (UVS) | 55–210 nm | [95] | |||
Europa Clipper | (Planned to) 2024 | Europa Imaging System (EIS) | 350–1050 nm | [96] | |
Europa Thermal Emission Imaging System (E-THEMIS) | 7–50+ μm | [96] | |||
Europa Ultraviolet Spectrograph (Europa-UVS) | 55–206 nm | [96] | |||
Mapping Imaging Spectrometer for Europa (MISE) | 0.8–5 μm | [96] |
Icy Moons of Jupiter and Saturn | |||||
---|---|---|---|---|---|
Mission | Year | Instrument | Spectral Range | Instrument Finding | References |
Voyager I and II | 1977 | InfraRed Interferometer Spectrometer (IRIS) | 180–2500 cm−1 5000–30,000 cm−1 | Analyzed the atmospheres of Jovian satellites, and their vertical temperature profiles. | [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calapez, F.; Dias, R.; Cesário, R.; Gonçalves, D.; Pedras, B.; Canário, J.; Martins, Z. Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons. Life 2023, 13, 478. https://doi.org/10.3390/life13020478
Calapez F, Dias R, Cesário R, Gonçalves D, Pedras B, Canário J, Martins Z. Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons. Life. 2023; 13(2):478. https://doi.org/10.3390/life13020478
Chicago/Turabian StyleCalapez, Francisco, Rodrigo Dias, Rute Cesário, Diogo Gonçalves, Bruno Pedras, João Canário, and Zita Martins. 2023. "Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons" Life 13, no. 2: 478. https://doi.org/10.3390/life13020478