Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De La Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and cardiovascular health. Clin. Nutr. 2021, 40, 2946–2957. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: The underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr. Opin. Endocrinol. Diabetes Obes. 2002, 9, 87–98. [Google Scholar] [CrossRef]
- Michos, E.D.; Melamed, M.L. Vitamin D and cardiovascular disease risk. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 7–12. [Google Scholar] [CrossRef]
- Nemerovski, C.W.; Dorsch, M.P.; Simpson, R.U.; Bone, H.G.; Aaronson, K.D.; Bleske, B.E. Vitamin D and cardiovascular disease. Pharmacotherapy 2009, 29, 691–708. [Google Scholar] [CrossRef]
- Surdu, A.M.; Pînzariu, O.; Ciobanu, D.M.; Negru, A.G.; Căinap, S.S.; Lazea, C.; Iacob, D.; Săraci, G.; Tirinescu, D.; Borda, I.M.; et al. Vitamin D and Its Role in the Lipid Metabolism and the Development of Atherosclerosis. Biomedicines 2021, 9, 172. [Google Scholar] [CrossRef]
- AlQuaiz, A.M.; Kazi, A.; Youssef, R.M.; Alshehri, N.; Alduraywish, S.A. Association between standardized vitamin 25(OH)D and dyslipidemia: A community-based study in Riyadh, Saudi Arabia. Environ. Health Prev. Med. 2020, 25, 4. [Google Scholar] [CrossRef]
- Han, Y.Y.; Hsu, S.H.; Su, T.C. Association between Vitamin D Deficiency and High Serum Levels of Small Dense LDL in Middle-Aged Adults. Biomedicines 2021, 9, 464. [Google Scholar] [CrossRef]
- Elmi, C.; Fan, M.M.; Le, M.; Cheng, G.; Khalighi, K. Association of serum 25-Hydroxy Vitamin D level with lipid, lipoprotein, and apolipoprotein level. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 812–816. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chu, A.; Go, V.L.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef]
- Holt, R.; Petersen, J.H.; Dinsdale, E.; Knop, F.K.; Juul, A.; Jørgensen, N.; Blomberg Jensen, M. Vitamin D Supplementation Improves Fasting Insulin Levels and HDL Cholesterol in Infertile Men. J. Clin. Endocrinol. Metab. 2022, 107, 98–108. [Google Scholar] [CrossRef]
- Barvencik, F.; Amling, M. Vitamin-D-Stoffwechsel des Knochens [Vitamin D metabolism of the bone]. Orthopade 2015, 44, 686–694. [Google Scholar]
- Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites. 2021, 11, 255. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 29, g4490. [Google Scholar]
- Nagura, J.; Iso, H.; Watanabe, Y.; Maruyama, K.; Date, C.; Toyoshima, H.; Yamamoto, A.; Kikuchi, S.; Koizumi, A.; Kondo, T.; et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: The JACC Study. Br. J. Nutr. 2009, 102, 285–292. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Reynolds, K.; Holder, K.N.; He, J. Effect of folic acid supplementation on risk of cardiovascular diseases: A meta-analysis of randomized controlled trials. JAMA 2006, 296, 2720–2726. [Google Scholar] [CrossRef]
- Vivekananthan, D.; Penn, M.; Sapp, S.; Hsu, A.; Topol, E. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Gluud, L.; Simonetti, R.; Gluud, C. Systematic review and meta-analysis supplements for primary and secondary prevention: Mortality in randomized trials of antioxidant. JAMA 2007, 297, 842–857. [Google Scholar] [CrossRef]
- Pan, A.; Lin, X.; Hemler, E.; Hu, F.B. Diet and Cardiovascular Disease: Advances and Challenges in Population-Based Studies. Cell Metab. 2018, 27, 489–496. [Google Scholar] [CrossRef]
- National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol). Available online: https://www.cdc.gov/nchs/surveys.htm (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for HDL-Cholesterol. 2017–2018. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/hdl_d_met_cholesterol_hdl_h717.pdf (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for total Cholesterol (Frozen). 2017–2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/TCHOL-J-MET-508.pdf (accessed on 1 August 2022).
- Laboratory, A.R.A.D.; Minnesota, U.O. Laboratory Procedure Manual for Triglyceride. 2017–2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/TRIGLY-J-MET-508.pdf (accessed on 1 August 2022).
- Survey, N.H.A.N.E. Cholesterol—Low-Density Lipoproteins (LDL) & Triglycerides (TRIGLY_J). 2017–2018. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_TRIGLY.htm (accessed on 1 August 2022).
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Akram, M.; Munir, N.; Daniyal, M.; Egbuna, C.; Gaman, M.A.; Onyekere, P.F.; Olatunde, A. Vitamins and Minerals: Types, Sources and their Functions. In Functional Foods and Nutraceuticals; Egbuna, C., Dable Tupas, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 13, 136. [Google Scholar] [CrossRef]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit Rev Food Sci Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef]
- Newton, A.L.; Hanks, L.J.; Ashraf, A.P.; Williams, E.; Davis, M.; Casazza, K. Macronutrient intake influences the effect of 25-hydroxy-vitamin d status on metabolic syndrome outcomes in African American girls. Cholesterol 2012, 2012, 581432. [Google Scholar] [CrossRef]
- Adams, S.; Sello, C.T.; Qin, G.-X.; Che, D.; Han, R. Does Dietary Fiber Affect the Levels of Nutritional Components after Feed Formulation? Fibers 2018, 6, 29. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef]
- Lanham-New, S.; Lee, P.; Wong, M.; Sui, C.; Starkey, S.; Lovell, D.; Berry, J.; Griffin, B. Association between dietary vitamin D intake and serum lipid profiles in Asian and Caucasian UK women: Preliminary results from the Vitamin D, Food Intake, Nutrition and Exposure to Sunlight in Southern England (D-FINES) Study. Proc. Nutr. Soc. 2008, 67, E320. [Google Scholar] [CrossRef]
- Wang, Y.; Si, S.; Liu, J.; Wang, Z.; Jia, H.; Feng, K.; Sun, L.; Song, S.J. The Associations of Serum Lipids with Vitamin D Status. PLoS ONE 2016, 11, e0165157. [Google Scholar] [CrossRef]
- Vaskonen, T.; Mervaala, E.; Sumuvuori, V.; Seppänen-Laakso, T.; Karppanen, H. Effects of calcium and plant sterols on serum lipids in obese Zucker rats on a low-fat diet. Br. J. Nutr. 2002, 87, 239–245. [Google Scholar] [CrossRef]
- Vogt, S.; Baumert, J.; Peters, A.; Thorand, B.; Scragg, R. Effect of waist circumference on the association between serum 25-hydroxyvitamin D and serum lipids: Results from the National Health and Nutrition Examination Survey 2001–2006. Public Health Nutr. 2017, 20, 1797–1806. [Google Scholar] [CrossRef]
- Jeenduang, N.; Sangkaew, B. The association between serum 25-hydroxyvitamin D concentrations and serum lipids in the Southern Thai population. Arch. Med. Sci. 2020, 18, 11–17. [Google Scholar] [CrossRef]
- Ford, E.S.; Ajani, U.A.; McGuire, L.C.; Liu, S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005, 28, 1228–1230. [Google Scholar] [CrossRef]
- Saedisomeolia, A.; Taheri, E.; Djalali, M.; Moghadam, A.M.; Qorbani, M. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J. Diabetes Metab. Disord. 2014, 13, 7. [Google Scholar] [CrossRef]
- Jorde, R.; Figenschau, Y.; Hutchinson, M.; Emaus, N.; Grimnes, G. High serum 25-hydroxyvitamin D concentrations are associated with a favorable serum lipid profile. Eur. J. Clin. Nutr. 2010, 64, 1457–1464. [Google Scholar] [CrossRef]
- Jorde, R.; Grimnes, G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog. Lipid Res. 2011, 50, 303–312. [Google Scholar] [CrossRef]
- Wang, J.H.; Keisala, T.; Solakivi, T.; Minasyan, A.; Kalueff, A.V.; Tuohimaa, P. Serum cholesterol and expression of ApoAI, LXRbeta and SREBP2 in vitamin D receptor knock-out mice. J. Steroid. Biochem. Mol. Biol. 2009, 113, 222–226. [Google Scholar] [CrossRef]
- Challoumas, D. Vitamin D supplementation and lipid profile: What does the best available evidence show? Atherosclerosis 2014, 235, 130–139. [Google Scholar] [CrossRef]
- Ponda, M.P.; Huang, X.; Odeh, M.A.; Breslow, J.L.; Kaufman, H.W. Vitamin D may not improve lipid levels: A serial clinical laboratory data study. Circulation. 2012, 126, 270–277. [Google Scholar] [CrossRef]
- Jorde, R.; Schirmer, H.; Wilsgaard, T.; Joakimsen, R.M.; Mathiesen, E.B.; Njølstad, I.; Løchen, M.L.; Figenschau, Y.; Berg, J.P.; Svartberg, J.; et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromsø Study. PLoS ONE 2012, 7, e37295. [Google Scholar] [CrossRef]
- Fogacci, F.; Cicero, A.F.; D’addato, S.; Giovannini, M.; Borghi, C.; Rosticci, M.; Morbini, M.; Grandi, E.; Bertagnin, E.; Iamino, I.R. Effect of spontaneous changes in dietary components and lipoprotein (a) levels: Data from the Brisighella Heart Study. Atherosclerosis 2017, 262, 202–204. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar]
- Zarrati, M.; Sohouli, M.H.; Aleayyub, S.; Keshavarz, N.; Razmpoosh, E.; Găman, M.A.; Fatahi, S.; Heydari, H. The Effect of Vitamin D Supplementation on Treatment-Induced Pain in Cancer Patients: A Systematic Review. Pain Manag. Nurs. 2022, 23, 458–466. [Google Scholar] [CrossRef]
Vitamin D (D2 + D3) Intake Tertiles | |||||
---|---|---|---|---|---|
1st (n = 80) | 2nd (n = 236) | 3rd (n = 384) | p-Value 1 | ||
Vitamin D (D2 + D3) intake (mcg) | <0.10 | 0.10–1.00 | >1.00 | ||
Age | 43.14 ± 15.50 | 37.87 ± 14.26 | 38.80 ± 14.76 | 0.021 | |
Sex (M/F) (%) | 51.2/48.8 | 46.6/53.4 | 57.3/42.7 | 0.033 | |
Race/Ethnicity (%) | ˂0.001 | ||||
Mexican American | 17.5 | 12.7 | 20.3 | ||
Other Hispanic | 3.8 | 6.8 | 9.9 | ||
Non-Hispanic White | 25.0 | 23.7 | 31.3 | ||
Non-Hispanic Black | 37.5 | 41.9 | 23.2 | ||
Other Races—Including Multiracial Americans | 16.3 | 14.8 | 15.4 | ||
Body weight (kg) | 81.88 ± 23.13 | 79.46 ± 23.40 | 84.91 ± 24.41 | 0.023 | |
Waist circumference (cm) | 97.24 ± 16.82 | 94.99 ± 18.49 | 99.04 ± 18.49 | 0.031 | |
Body mass index (kg/m2) | 29.40 ± 8.04 | 28.42 ± 7.91 | 29.56 ± 7.81 | 0.212 | |
Serum total cholesterol (TC) (mg/dL) | 180.78 ± 39.17 | 177.77 ± 37.70 | 183.77 ± 37.63 | 0.174 | |
Serum triglycerides (TG) (mg/dL) | 85.08 ± 47.57 | 86.14 ± 51.65 | 100.51 ± 62.68 | 0.081 | |
Serum low-density lipoprotein cholesterol (LDL-C) (mg/dL) | 105.50 ± 34.71 | 104.72 ± 32.35 | 109.61 ± 31.80 | 0.433 | |
Serum high-density lipoprotein cholesterol (HDL-C) (mg/dL) | 55.26 ± 18.33 | 55.55 ± 16.65 | 52.71 ± 14.62 | 0.079 | |
Serum 25-hydroxy-vitamin D2 (nmol/L) | 51.59 ± 22.80 | 55.00 ± 25.23 | 60.95 ± 24.72 | 0.001 | |
Serum high-sensitivity C-reactive protein (mg/dL) | 3.33 ± 4.86 | 3.90 ± 8.02 | 3.56 ± 4.74 | 0.713 | |
Smoking (Yes) (%) | 54.3 | 51.9 | 62.2 | 0.118 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 1882) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value 1 | |
Energy (kcal/day) | 2673.00 ± 179.32 | 3308.13 ± 260.30 | 2992.29 ± 244.82 | 0.093 |
Protein (g/day) | 107.22 ± 88.73 | 156.97 ± 143.18 | 139.15 ± 131.62 | 0.013 |
Carbohydrates (g/day) | 269.66 ± 217.59 | 276.35 ± 268.25 | 318.51 ± 346.90 | 0.174 |
Total fats (g/day) | 129.91 ± 110.23 | 175.51 ± 147.42 | 131.50 ± 151.87 | 0.001 |
Dietary fiber, total (g/day) | 21.86 ± 26.36 | 18.75 ± 28.60 | 16.38 ± 25.78 | 0.202 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 80) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value | |
Total Cholesterol (TC) | ||||
Model 1 | 1 | 0.91 (0.53 to 1.56) | 0.66 (0.44 to 0.97) | 0.219 |
Model 2 | 1 | 0.52 (0.15 to 1.85) | 0.52 (0.22 to 1.19) | 0.120 |
Model 3 | 1 | 1.27 (0.98 to 1.65) | 1.03 (1.02 to 1.04) | 0.068 |
Model 4 | 1 | 0.67 (0.37 to 1.22) | 0.57 (0.37 to 0.88) | 0.045 |
Triglyceride (TG) | ||||
Model 1 | 1 | 0.55 (0.15 to 1.93) | 0.51 (0.22 to 1.18) | 0.131 |
Model 2 | 1 | 0.52 (0.14 to 1.86) | 0.53 (0.23 to 1.23) | 0.129 |
Model 3 | 1 | 0.56 (0.15 to 2.01) | 0.55 (0.23 to 1.28) | 0.169 |
Model 4 | 1 | 0.46 (0.12 to 1.67) | 0.54 (0.23 to 1.26) | 0.104 |
Low-density lipoprotein cholesterol (LDL-C) | ||||
Model 1 | 1 | 0.61 (0.28 to 1.31) | 0.63 (0.38 to 1.05) | 0.070 |
Model 2 | 1 | 0.54 (0.24 to 1.19) | 0.63 (0.38 to 1.06) | 0.045 |
Model 3 | 1 | 0.52 (0.23 to 1.87) | 0.61 (0.35 to 1.06) | 0.043 |
Model 4 | 1 | 0.49 (0.22 to 1.10) | 0.59 (0.34 to 1.01) | 0.025 |
High-density lipoprotein cholesterol (HDL-C) | ||||
Model 1 | 1 | 1.27 (0.79 to 2.04) | 0.84 (0.44 to 1.57) | 0.986 |
Model 2 | 1 | 0.78 (0.41 to 1.49) | 1.12 (0.69 to 1.82) | 0.710 |
Model 3 | 1 | 0.72 (0.36 to 1.44) | 0.99 (0.59 to 1.66) | 0.457 |
Model 4 | 1 | 0.69 (0.34 to 1.40) | 0.91 (0.54 to 1.56) | 0.345 |
Vitamin D (D2 + D3) Intake Tertiles | ||||
---|---|---|---|---|
1st (<0.10 mcg/d; n = 80) | 2nd (0.10–1.00 mcg/d; n = 236) | 3rd (>1.00 mcg/d; n = 384) | p-Value | |
High-sensitivity C-reactive Protein (hs-CRP) | ||||
Model 1 | 1 | 0.80 (0.56 to 1.15) | 0.86 (0.51 to 1.45) | 0.336 |
Model 2 | 1 | 0.76 (0.44 to 1.29) | 0.78 (0.54 to 1.13) | 0.174 |
Model 3 | 1 | 0.70 (0.41 to 1.21) | 0.75 (0.51 to 1.08) | 0.096 |
Model 4 | 1 | 0.66 (0.38 to 1.15) | 0.67 (0.45 to 0.99) | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hariri, Z.; Kord-Varkaneh, H.; Alyahya, N.; Prabahar, K.; Găman, M.-A.; Abu-Zaid, A. Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life 2023, 13, 581. https://doi.org/10.3390/life13020581
Hariri Z, Kord-Varkaneh H, Alyahya N, Prabahar K, Găman M-A, Abu-Zaid A. Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life. 2023; 13(2):581. https://doi.org/10.3390/life13020581
Chicago/Turabian StyleHariri, Zahra, Hamed Kord-Varkaneh, Noura Alyahya, Kousalya Prabahar, Mihnea-Alexandru Găman, and Ahmed Abu-Zaid. 2023. "Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey" Life 13, no. 2: 581. https://doi.org/10.3390/life13020581
APA StyleHariri, Z., Kord-Varkaneh, H., Alyahya, N., Prabahar, K., Găman, M.-A., & Abu-Zaid, A. (2023). Higher Dietary Vitamin D Intake Influences the Lipid Profile and hs-CRP Concentrations: Cross-Sectional Assessment Based on The National Health and Nutrition Examination Survey. Life, 13(2), 581. https://doi.org/10.3390/life13020581