Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. RAPDs Analysis
2.2. Quantitative Dot Blot and Fluorescence In Situ Hybridization (FISH)
2.3. Phylogenetic Analysis
3. Results
3.1. PCR Amplification
3.2. Bioinformatic Analysis with Zv516
3.3. Bioinformatic Analysis with Zv817
3.4. FISH
3.5. Quantitative Dot Blot
3.6. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biémont, C.; Vieira, C. Junk DNA as an evolutionary force. Nature 2006, 443, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Chalopin, D.; Naville, M.; Plard, F.; Galiana, D.; Volff, J.N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 2015, 7, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, M.G.; Lisch, D.R. Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution 2001, 55, 1–24. [Google Scholar] [PubMed]
- Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 2008, 9, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Kordis, D. Transposable elements in reptilian and avian (Sauropsida) genomes. Cytogenet. Genome Res. 2010, 127, 94–111. [Google Scholar] [CrossRef]
- Uetz, P.; Freed, P.; Aguilar, R.; Hošek, J. The Reptile Database. 2022. Available online: http://www.reptile-database.org (accessed on 22 October 2022).
- Pasquesi, G.I.M.; Adams, R.H.; Card, D.C.; Schield, D.R.; Corbin, A.B.; Perry, B.W.; Reyes-Velasco, J.; Ruggiero, R.P.; Vandewege, M.W.; Shortt, J.A.; et al. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat. Commun. 2018, 9, 2774. [Google Scholar] [CrossRef] [Green Version]
- Reneker, J.; Lyons, E.; Conant, G.C.; Pires, J.C.; Freeling, M.; Shyu, C.R.; Korkin, D. Long identical multispecies elements in plant and animal genomes. Proc. Natl. Acad. Sci. USA 2012, 109, E1183–E1191. [Google Scholar] [CrossRef] [Green Version]
- Bejerano, G.; Pheasant, M.; Makunin, I.; Stephen, S.; Kent, W.J.; Mattick, J.S.; Haussler, D. Ultraconserved elements in the human genome. Science 2004, 304, 1321–1325. [Google Scholar] [CrossRef] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.W.; Richards, S.; et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [Green Version]
- Ahituv, N.; Zhu, Y.; Visel, A.; Holt, A.; Afzal, V.; Pennacchio, L.A.; Rubin, E.M. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 2007, 5, e234. [Google Scholar] [CrossRef]
- Stephen, S.; Pheasant, M.; Makumin, I.V.; Mattick, J.S. Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock. Mol. Biol. Evol. 2008, 25, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Crawford, N.G.; Faircloth, B.C.; McCormack, J.E.; Brumfield, R.T.; Winker, K.; Glenn, T.C. More than 1000 ultraconserved elements provide evidence that turtles are the sistergroup of archosaurs. Biol. Lett. 2012, 8, 783–786. [Google Scholar] [CrossRef] [Green Version]
- McCormack, J.E.; Faircloth, B.C.; Crawford, N.G.; Gowaty, P.A.; Brumfield, R.T.; Glenn, T.C. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species tree analysis. Genome Res. 2012, 22, 746–754. [Google Scholar] [CrossRef] [Green Version]
- McCormack, J.E.; Tsai, W.L.; Faircloth, B.C. Sequence capture of ultraconserved elements from bird museum specimens. Mol. Ecol. Resour. 2016, 16, 1189–1203. [Google Scholar] [CrossRef]
- Karin, B.R.; Gamble, T.; Jackman, T.R. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol. Biol. Evol. 2019, 37, 904–922. [Google Scholar] [CrossRef] [Green Version]
- Lindtke, D.; Mayer, W.; Böhme, W. Identification of a contact zone between oviparous and viviparous common lizards (Zootoca vivipara) in central Europe: Reproductive strategies and natural hybridization. Salamandra 2010, 46, 73–82. [Google Scholar]
- Odierna, G.; Aprea, G.; Capriglione, T.; Arribas, O.J.; Kupriyanova, L.; Olmo, E. Progressive differentiation of the W sex-chromosome between oviparous and viviparous populations of Zootoca vivipara (Reptilia, Lacertidae). Ital. J. Zool. 1998, 65, 295–302. [Google Scholar] [CrossRef]
- Surget-Groba, Y.; Heulin, B.; Guillaume, C.P.; Thorpe, R.S.; Kupriyanova, L.; Vogrin, N.; Maslak, R.; Mazzotti, S.; Venczel, M.; Ghira, I.; et al. Intraspecific phylogeography of Lacerta vivipara and the evolution of viviparity. Mol. Phylogenet. Evol. 2001, 18, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Cornetti, L.; Belluardo, F.; Ghielmi, S.; Giovine, G.; Ficetola, G.F.; Bertorelle, G.; Vernesi, C.; Hauffe, H.C. Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard Zootoca vivipara in a contact zone. Biol. J. Linn. Soc. 2015, 114, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Cornetti, L.; Ficetola, G.F.; Hoban, S.; Vernesi, C. Genetic and ecological data reveal species boundaries between viviparous and oviparous lizard lineages. Heredity 2015, 15, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Velekei, B.; Lakatos, F.; Covaciu-Markov, S.D.; Sas-Kovaecs, L.; Puky, M. New Zootoca vivipara (Lichtenstein; 1823) haplogroup in the Carpatians. North-West. J. Zool. 2015, 11, 363–365. [Google Scholar]
- Olmo, E.; Odierna, G.; Cobror, O. C-band variability and phylogeny of Lacertidae. Genetica 1986, 71, 63–74. [Google Scholar] [CrossRef]
- Olmo, E.; Odierna, G.; Capriglione, T. Evolution of sex-chromosomes in lacertid lizards. Chromosoma 1987, 96, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Odierna, G.; Heulin, B.; Guillaume, C.P.; Vogrin, N.; Aprea, G.; Capriglione, T.; Surget-Groba, Y.; Kupriyanova, L.M.S. Further analysis of the karyological variations existing within and between oviparous and viviparous forms of Lacerta (Zootoca) vivipara: Evolutionary and biogeographic implications. Ecography 2001, 24, 332–340. [Google Scholar] [CrossRef]
- Odierna, G.; Aprea, G.; Capriglione, T.; Puky, M. Chromosomal evidence for the double origin of viviparity in the European common lizard, Lacerta (Zootoca) vivipara. Herpetol. J. 2004, 14, 157–160. [Google Scholar]
- Olmo, E.; Signorino, G.G. Chromorep: A Reptile Chromosomes Database. 2005. Available online: https://www.scienceopen.com/document?vid=f836598f-7956-470e-88e4-9c1df530efd5 (accessed on 20 November 2022).
- Horreo, J.L.; Peláez, M.L.; Suárez, T.; Fitze, P.S. Development and characterization of 79 nuclear markers amplifying in viviparous and oviparous clades of the European common lizard. Genetica 2018, 146, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Petraccioli, A.; Guarino, F.M.; Kupriyanova, L.; Mezzasalma, M.; Odierna, G.; Picariello, O.; Capriglione, T. Isolation and characterization of interspersed repeated sequences in the common lizard, Zootoca vivipara, and their conservation in Squamata. Cytogenet. Genome Res. 2019, 157, 65–76. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; Volume 3. [Google Scholar]
- Surget-Groba, Y.; Heulin, B.; Guillaume, C.P.; Puky, M.; Semenov, D.; Orlova, V.; Kupriyanova, L.; Ghira, I.; Smajda, B. Multiple origins of viviparity, or reversal from viviparity to oviparity? The European common lizard (Zootoca vivipara, Lacertidae) and the evolution of parity. Biol. J. Linn. Soc. 2006, 87, 1–11. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Mezzasalma, M.; Visone, V.; Petraccioli, A.; Guarino, F.M.; Capriglione, T.; Odierna, G. Non-random accumulation of LINE1 like sequences on differentiated snake W chromosomes. J. Zool. 2016, 300, 65–75. [Google Scholar] [CrossRef]
- Gregory, T.R. Animal Genome Size Database. 2020. Available online: http://www.genomesize.com (accessed on 20 November 2020).
- Petraccioli, A.; Odierna, G.; Capriglione, T.; Barucca, M.; Forconi, M.; Olmo, E.; Biscotti, M.A. A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs. Mol. Genet. Genom. 2015, 209, 1717–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Yurchenko, A.A.; Recknagel, H.; Elmer, K.R. Chromosome-level assembly of the common lizard (Zootoca vivipara) genome. Genome Biol. Evol. 2020, 12, 1953–1960. [Google Scholar] [CrossRef]
- Kolora, S.R.R.; Weigert, A.; Saffari, A.; Kehr, S.; Walter Costa, M.B.; Spröer, C.; Indrischek, H.; Chintalapati, M.; Lohse, K.; Doose, G.; et al. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Ochkalova, S.; Korchagin, V.; Vergun, A.; Urin, A.; Zilov, D.; Ryakhovsky, S.; Girnyk, A.; Martirosyan, I.; Zhernakova, D.V.; Arakelyan, M.; et al. First Genome of Rock Lizard Darevskia valentini Involved in Formation of Several Parthenogenetic Species. Genes 2022, 13, 1569. [Google Scholar] [CrossRef]
- Piskurek, O.; Austin, C.C.; Okada, N. Sauria SINEs: Novel short interspersed retroposable elements that are widespread in reptile genomes. J. Mol. Evol. 2006, 62, 630–644. [Google Scholar] [CrossRef]
- Kosushkin, S.A.; Borodulina, O.R.; Solovyeva, E.N.; Grechko, V.V. A family of short retroposons (Squam1) from squamate reptiles (Reptilia: Squamata): Structure, evolution, and correlation with phylogeny. Mol. Biol. 2008, 42, 870–881. [Google Scholar] [CrossRef]
- Smith, J.J.; Kuraku, S.; Holt, C.; Sauka-Spengler, T.; Jiang, N.; Campbell, M.S.; Yandell, M.D.; Manousaki, T.; Meyer, A.; Bloom, O.E.; et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 2013, 45, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Jurka, J. DNA transposons from the sea lamprey. Repbase Rep. 2013, 13, 1763. [Google Scholar]
- Alföldi, J.; Di Palma, F.; Grabherr, M.; Williams, C.; Kong, L.; Mauceli, E.; Russell, P.; Lowe, C.B.; Glor, R.E.; Jaffe, J.D.; et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011, 477, 587–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georges, A.; Li, Q.; Lian, J.; O’Meally, D.; Deakin, J.; Wang, Z.; Zhang, P.; Fujita, M.; Patel, H.R.; Holleley, C.E.; et al. High coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience 2015, 4, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhou, Q.; Wang, Y.; Luo, L.; Yang, J.; Yang, L.; Liu, M.; Li, Y.; Qian, T.; Zheng, Y.; et al. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat. Commun. 2015, 6, 10033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roscito, J.G.; Sameith, K.; Pippel, M.; Francoijs, K.J.; Winkler, S.; Dahl, A.; Papoutsoglou, G.; Myers, G.; Hiller, M. The genome of the tegu lizard Salvator merianae: Combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. Gigascience 2018, 7, giy141. [Google Scholar] [CrossRef] [Green Version]
- Andrade, P.; Pinho, C.; Pérez, I.; de Lanuza, G.; Afonso, S.; Brejcha, J.; Rubin, C.J.; Wallerman, O.; Pereira, P.; Sabatino, S.J.; et al. Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proc. Natl. Acad. Sci. USA 2019, 116, 5633–5642. [Google Scholar] [CrossRef] [Green Version]
- Hadrys, H.; Balick, M.; Schierwater, B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1992, 1, 55–63. [Google Scholar] [CrossRef]
- Kazazian, H.H., Jr. Mobile elements: Drivers of genome evolution. Science 2004, 303, 1626–1632. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.; Gassama, M.P.; Heidmann, T. Taming of transposable elements by homology dependent gene silencing. Nat. Genet. 1999, 21, 200–212. [Google Scholar] [CrossRef]
- Feschotte, C.; Pritham, E.J. Mobile DNA: Genomes under the influence. Genome Biol. 2006, 7, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grechko, V.V.; Kosushkin, S.A.; Borodulina, O.R.; Butaeva, F.G.; Darevsky, I.S. Short interspersed elements (SINEs) of squamate reptiles (Squam1 and Squam2): Structure and phylogenetic significance. J. Exp. Zool. Part B 2011, 316B, 212–226. [Google Scholar] [CrossRef]
- Ohshima, K.; Okada, N. SINEs and LINEs: Symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res. 2005, 110, 475–490. [Google Scholar] [CrossRef]
- Konkel, M.K.; Walker, J.A.; Batzer, M.A. LINEs and SINEs of primate evolution. Evol. Anthropol. 2010, 19, 236–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramerov, D.A.; Vassetzky, N.S. Origin and evolution of SINEs in eukaryotic genomes. Heredity 2011, 107, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Jarne, P.; Assimacopoulos, S. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet. Res. 1994, 64, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tollis, M.; Boissinot, S. Lizards and LINEs: Selection and demography affect the fate of L1 retrotransposons in the genome of the green anole (Anolis carolinensis). Genome Biol. Evol. 2013, 5, 1754–1768. [Google Scholar] [CrossRef] [Green Version]
- Plasterk, R.H.A.; Izsvák, Z.; Ivics, Z. Resident aliens the Tc1/Mariner superfamily of transposable elements. Trends Genet. 1999, 15, 326–332. [Google Scholar] [CrossRef]
- Gao, B.; Chen, W.; Shen, D.; Wang, S.; Chen, C.; Zhang, L.; Wang, W.; Wang, X.; Song, C. Characterization of autonomous families of Tc1/Mariner transposons in neoteleost genomes. Mar. Genom. 2017, 34, 67–77. [Google Scholar] [CrossRef]
- Lohe, A.R.; Moriyama, E.N.; Lidholm, D.A.; Hartl, D.L. Horizontal transmission, vertical inactivation, and stochastic loss of Mariner-like transposable elements. Mol. Biol. Evol. 1995, 12, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-López, M.; García-Pérez, J.L. DNA transposons: Nature and applications in genomics. Curr. Genom. 2010, 11, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotero-Caio, C.G.; Platt, R.N., 2nd; Suh, A.; Ray, D.A. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol. Evol. 2017, 9, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Sorek, R.; Lev-Maor, G.; Reznik, M.; Dagan, T.; Belinky, F.; Graur, D.; Ast, G. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol. Cell 2004, 14, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Krull, M.; Brosius, J.; Schmitz, J. Alu-SINE Exonization: En Route to Protein-Coding Function. Mol. Biol. Evol. 2005, 22, 1702–1711. [Google Scholar] [CrossRef] [Green Version]
- Sela, N.; Mersch, B.; Hotz-Wagenblatt, A.; Ast, G. Characteristics of transposable elements exonization within human and mouse. PLoS ONE 2010, 5, e10907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faircloth, B.C.; Sorenson, L.; Santini, F.; Alfaro, M.E. A Phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of Ultraconserved Elements (UCEs). PLoS ONE 2013, 8, e65923. [Google Scholar] [CrossRef] [Green Version]
- Rieppel, O.; DeBraga, M. Turtles as diapsid reptiles. Nature 1996, 384, 453–455. [Google Scholar] [CrossRef]
- Roos, J.; Aggarwal, R.K.; Janke, A. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous–Tertiary boundary. Mol. Phylogenet. Evol. 2007, 45, 663–673. [Google Scholar] [CrossRef]
- Katsu, Y.; Braun, E.L.; Guillette, L.J., Jr.; Iguchi, T. From reptilian phylogenomics to reptilian genomes: Analyses of c-Jun and DJ-1 proto-oncogenes. Cytogenet. Genome Res. 2010, 127, 79–93. [Google Scholar] [CrossRef]
- Lyson, T.R.; Sperlin, E.A.; Heimberg, A.M.; Gauthier, J.A.; King, B.L.; Peterson, K.J. MicroRNAs support a turtle + lizard clade. Biol. Lett. 2012, 8, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Bi, C.; Clark, B.S.; Mady, R.; Shah, P.; Kohtz, J.D. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006, 20, 1470–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Navratilova, P.; Fredman, D.; Drivenes, Ø.; Becker, T.S.; Lenhard, B. Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons. Nucleic Acids Res. 2010, 38, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
Primer 1 5′-d[GGTGCGGGAA]-3′ |
Primer 2 5′-d[GTTTCGCTCC]-3′ |
Primer 3 5′-d[GTAGACCCGT]-3′ |
Primer 4 5′-d[AAGAGCCCGT]-3′ |
Primer 5 5′-d[AACGCGCAAC]-3′ |
Primer 6 5′-d[CCCGTCAGCA]-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzasalma, M.; Capriglione, T.; Kupriyanova, L.; Odierna, G.; Pallotta, M.M.; Petraccioli, A.; Picariello, O.; Guarino, F.M. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life 2023, 13, 637. https://doi.org/10.3390/life13030637
Mezzasalma M, Capriglione T, Kupriyanova L, Odierna G, Pallotta MM, Petraccioli A, Picariello O, Guarino FM. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life. 2023; 13(3):637. https://doi.org/10.3390/life13030637
Chicago/Turabian StyleMezzasalma, Marcello, Teresa Capriglione, Larissa Kupriyanova, Gaetano Odierna, Maria Michela Pallotta, Agnese Petraccioli, Orfeo Picariello, and Fabio M. Guarino. 2023. "Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae)" Life 13, no. 3: 637. https://doi.org/10.3390/life13030637
APA StyleMezzasalma, M., Capriglione, T., Kupriyanova, L., Odierna, G., Pallotta, M. M., Petraccioli, A., Picariello, O., & Guarino, F. M. (2023). Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life, 13(3), 637. https://doi.org/10.3390/life13030637