Treating COVID-19: Targeting the Host Response, Not the Virus
Abstract
:1. Introduction
2. The COVID-19 Pandemic
3. Randomized Controlled Trials vs. Observational Studies
4. Treatments for COVID-19
5. Treatments Targeting the Virus
6. Treatments Targeting the Host Response to Infection
7. Treating the Host Response with Inexpensive Generic Drugs
8. Treating the Host Response to COVID-19 with Inexpensive Generic Statins, ACE Inhibitors (ACEis), and Angiotensin Receptor Blockers (ARBs)
9. Statin and ACE Inhibitor/ARB Withdrawal
10. Inpatient Statin Treatment
11. Combination Treatment
12. Why Have There Been No RCTs of Combination Treatment with Statins and ACEis/ARBs?
13. The Way Forward—The Next Pandemic
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adam, D. COVID’s true death toll: Much higher than official records. Nature 2022, 603, 562. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Ruhm, C.J.; Puac-Polanco, V.; Hwang, I.H.; Lee, S.; Petukhova, M.V.; Sampson, N.A.; Ziobrowski, H.N.; Zaslavsky, A.M.; Zubizarreta, J.R. Estimated Prevalence of and Factors Associated with Clinically Significant Anxiety and Depression Among US Adults During the First Year of the COVID-19 Pandemic. JAMA Netw. Open 2022, 5, e2217223. [Google Scholar] [CrossRef] [PubMed]
- Egger, D.; Miguel, E.; Warren, S.S.; Shenoy, A.; Collins, E.; Karlan, D.; Parkerson, D.; Mobarak, A.M.; Fink, G.; Udry, C.; et al. Falling living standards during the COVID-19 crisis: Quantitative evidence from nine developing countries. Sci. Adv. 2021, 7, eabe0997. [Google Scholar] [CrossRef] [PubMed]
- Bok, K.; Sitar, S.; Graham, B.S.; Mascola, J.R. Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity 2021, 54, 1636–1651. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- World Health Organisation. Vaccine Equity Declaration. 2021. Available online: https://www.who.int/campaigns/vaccine-equity/vaccine-equity-declaration (accessed on 20 March 2022).
- Hunter, D.J.; Karim, S.S.A.; Baden, L.R.; Farrar, J.J.; Hamel, M.B.; Longo, D.L.; Morrissey, S.; Rubin, E.J. Addressing Vaccine Inequity—Covid-19 Vaccines as a Global Public Good. N. Engl. J. Med. 2022, 386, 1176–1179. [Google Scholar] [CrossRef]
- Batista, C.; Shoham, S.; Ergonul, O.; Hotez, P.; Bottazzi, M.E.; Figueroa, J.P.; Gilbert, S.; Gursel, M.; Hassanain, M.; Kang, G.; et al. Urgent needs to accelerate the race for COVID-19 therapeutics. Eclinicalmedicine 2021, 36, 100911. [Google Scholar] [CrossRef]
- Dolgin, E. The race for antiviral drugs to beat COVID—And the next pandemic. Nature 2021, 592, 340–343. [Google Scholar] [CrossRef]
- Usher, A.D. The global COVID-19 treatment divide. Lancet 2022, 399, 779–782. [Google Scholar] [CrossRef]
- Nelson, F. Billion-dollar project aims to prep drugs before the next pandemic. Nature 2022, 31. [Google Scholar] [CrossRef]
- Lurie, N.; Keusch, G.T.; Dzau, V.J. Urgent lessons from COVID-19: Why the world needs a standing, coordinated system and sustainable financing for global research and development. Lancet 2021, 397, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.C.; Galea, S. Science, Competing Values, and Trade-offs in Public Health—The Example of COVID-19 and Masking. N. Engl. J. Med. 2022, 387, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S. Pandemic influenza vaccines: Obstacles and opportunities. In The Threat of Pandemic Infuenza. Are We Ready? Knobler, S.L., Mack, A., Mahmoud, A., Lemon, S.M., Eds.; The National Academies Press: Washington, DC, USA, 2005; pp. 184–194. [Google Scholar] [CrossRef]
- Fedson, D.S. Pandemic Influenza: A Potential Role for Statins in Treatment and Prophylaxis. Clin. Infect. Dis. 2006, 43, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S.; Dunnill, P. Commentary: From Scarcity to Abundance: Pandemic Vaccines and Other Agents for “Have Not” Countries. J. Public Health Policy 2007, 28, 322–340. [Google Scholar] [CrossRef]
- Fedson, D.S. Confronting an influenza pandemic with inexpensive generic agents: Can it be done? Lancet Infect. Dis. 2008, 8, 571–576. [Google Scholar] [CrossRef]
- Fedson, D.S. Meeting the Challenge of Influenza Pandemic Preparedness in Developing Countries. Emerg. Infect. Dis. 2009, 15, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S. Treating influenza with statins and other immunomodulatory agents. Antivir. Res. 2013, 99, 417–435. [Google Scholar] [CrossRef]
- Fedson, D.S. How Will Physicians Respond to the Next Influenza Pandemic? Clin. Infect. Dis. 2014, 58, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Fedson, D.S.; Jacobson, J.R.; Rordam, O.M.; Opal, S.M. Treating the Host Response to Ebola Virus Disease with Generic Statins and Angiotensin Receptor Blockers. MBio 2015, 6, e00716-15. [Google Scholar] [CrossRef] [Green Version]
- Fedson, D.S. Treating the host response to emerging virus diseases: Lessons learned from sepsis, pneumonia, influenza and Ebola. Ann. Transl. Med. 2016, 4, 421. [Google Scholar] [CrossRef] [Green Version]
- Fedson, D.S. Influenza, evolution, and the next pandemic. Evol. Med. Public Health 2018, 2018, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S.; Opal, S.M.; Rordam, O.M. Hiding in Plain Sight: An Approach to Treating Patients with Severe COVID-19 Infection. MBio 2020, 11, e00398-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedson, D.S. COVID-19, host response treatment, and the need for political leadership. J. Public Health Policy 2020, 42, 6–14. [Google Scholar] [CrossRef]
- Byttebier, G.; Belmans, L.; Alexander, M.; Saxberg, B.E.H.; De Spiegeleer, B.; De Spiegeleer, A.; Devreker, N.; Van Praet, J.T.; Vanhove, K.; Reybrouck, R.; et al. Hospital mortality in COVID-19 patients in Belgium treated with statins, ACE inhibitors and/or ARBs. Hum. Vaccines Immunother. 2021, 17, 2841–2850. [Google Scholar] [CrossRef]
- Fedson, D.S. Statin withdrawal and treating COVID-19 patients. Pharmacol. Res. Perspect. 2021, 9, e00861. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, J.; Booy, R.; Casadevall, A.; Cruz, C.D.; Fedson, D.S.; Garcia, J.G.N.; Grohmann, G.; Hung, I.F.N.; Jacobson, J.R.; Jennings, L.C.; et al. A practical treatment for COVID-19 and the next pandemic. Pharmacol. Res. Perspect. 2022, 10, e00988. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G.; Simpson, L.J.; Ferreira, A.-M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rosenberg-Hasson, Y.; et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. J. Clin. Investig. 2020, 5, e140289. [Google Scholar] [CrossRef]
- Lowery, S.A.; Sariol, A.; Perlman, S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe 2021, 29, 1052–1062. [Google Scholar] [CrossRef]
- Wilk, A.J.; Lee, M.J.; Wei, B.; Parks, B.; Pi, R.; Martínez-Colón, G.J.; Ranganath, T.; Zhao, N.Q.; Taylor, S.; Becker, W.; et al. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J. Exp. Med. 2021, 218, e20210582. [Google Scholar] [CrossRef]
- O’Carroll, S.M.; O’Neill, L.A.J. Targeting immunometabolism to treat COVID-19. Immunother. Adv. 2021, 1, ltab013. [Google Scholar] [CrossRef]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; Haagemans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Roquilly, A.; Jacqueline, C.; Davieau, M.; Mollé, A.; Sadek, A.; Fourgeux, C.; Rooze, P.; Broquet, A.; Misme-Aucouturier, B.; Chaumette, T.; et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 2020, 21, 636–648. [Google Scholar] [CrossRef] [PubMed]
- Muri, J.; Kopf, M. Redox regulation of immunometabolism. Nat. Rev. Immunol. 2020, 21, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Sposito, B.; Broggi, A.; Pandolfi, L.; Crotta, S.; Clementi, N.; Ferrarese, R.; Sisti, S.; Criscuolo, E.; Spreafico, R.; Long, J.M.; et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell 2021, 184, 4953–4968.e16. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; de Sá, K.S.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2020, 218, e20201707. [Google Scholar] [CrossRef]
- Giamarellos-Bourbolis, E.J.; Netea, M.G.; Rovina, N.; Akinoissoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex immune dysregulation function in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020, 27, 1–9. [Google Scholar] [CrossRef]
- Kontaridis, M.I.; Chennappan, S. Mitochondria and the future of RASopathies: The emergence of bioenergetics. J. Clin. Investig. 2022, 132, 1–5. [Google Scholar] [CrossRef]
- Hough, R.F.; Islam, M.N.; Gusarova, G.A.; Jin, G.; Das, S.; Bhattacharya, J. Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight 2019, 4, e124329. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038–3044. [Google Scholar] [CrossRef]
- Nicosia, R.F.; Ligresti, G.; Caporarello, N.; Akilesh, S.; Ribatti, D. COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. Am. J. Pathol. 2021, 191, 1374–1384. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and endotheliopathy: Crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 2020, 18, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Saredy, J.; Xu, K.; Sun, Y.; Saaoud, F.; Drummer, C.I.; Lu, Y.; Luo, J.J.; Lopez-Pastrana, J.; Choi, E.T.; et al. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front. Immunol. 2021, 12, 653110. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; Luque, N.; Blanco, I.; Sebastian, L.; Barberà, J.A.; Peinado, V.I.; Tura-Ceide, O. Pulmonary Endothelial Dysfunction and Thrombotic Complications in Patients with COVID-19. Am. J. Respir. Cell Mol. Biol. 2021, 64, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Mehta, A.; Thompson, B.T.; Charland, N.C.; Gonye, A.L.K.; Gushterova, I.; Kays, K.R.; Khanna, H.K.; LaSalle, T.J.; Lavin-Parsons, K.M.; et al. Alveolar, Endothelial, and Organ Injury Marker Dynamics in Severe COVID-19. Am. J. Respir. Crit. Care Med. 2022, 205, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.P.-Y.; Cheung, M.-C.; Lai, K.-L.; Ng, K.-C.; Ho, J.C.-W.; Peiris, M.; Nicholls, J.M.; Chan, M.C.-W. Role of Epithelial–Endothelial Cell Interaction in the Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Clin. Infect. Dis. 2021, 74, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Joffre, J.; Rodriguez, L.; Matthay, Z.A.; Lloyd, E.; Fields, A.T.; Bainton, R.J.; Kurien, P.; Sil, A.; Calfee, C.S.; Woodruff, P.G.; et al. COVID-19–associated Lung Microvascular Endotheliopathy: A “From the Bench” Perspective. Am. J. Respir. Crit. Care Med. 2022, 206, 961–972. [Google Scholar] [CrossRef]
- Patterson, E.K.; Cepinskas, G.; Fraser, D.D. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front. Med. 2022, 9, 898592. [Google Scholar] [CrossRef]
- Ambrosino, P.; Calcaterra, I.L.; Mosella, M.; Formisano, R.; D’Anna, S.E.; Bachetti, T.; Marcuccio, G.; Galloway, B.; Mancini, F.P.; Papa, A.; et al. Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target. Biomedicines 2022, 10, 812. [Google Scholar] [CrossRef]
- Price, D.R.; Benedetti, E.; Hoffman, K.L.; Gomez-Escobar, L.; Alvarez-Mulett, S.; Capili, A.; Sarwath, H.; Parkhurst, C.N.; Lafond, E.; Weidman, K.; et al. Angiopoietin 2 Is Associated with Vascular Necroptosis Induction in Coronavirus Disease 2019 Acute Respiratory Distress Syndrome. Am. J. Pathol. 2022, 192, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Ashour, L. Roles of the ACE/Ang II/AT1R pathway, cytokine release, and alteration of tight junctions in COVID-19 pathogenesis. Tissue Barriers 2022, 2090792. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Calfee, C.S.; Cherian, S.; Brealey, D.; Cutler, S.; King, C.; Killick, C.; Richards, O.; Cheema, Y.; Bailey, C.; et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: A prospective observational study. Lancet Respir. Med. 2020, 8, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Calfee, C.S.; Delucchi, K.L.; Sinha, P.; Matthay, M.A.; Hackett, J.; Shankar-Hari, M.; McDowell, C.; Laffey, J.G.; O’Kane, C.M.; McAuley, D.F.; et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir. Med. 2018, 6, 691–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joachim, R.; Suber, F.; Kobzik, L. Characterising Pre-pubertal Resistance to Death from Endotoxemia. Sci. Rep. 2017, 7, 16541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suber, F.; Kobzik, L. Childhood tolerance of severe influenza: A mortality analysis in mice. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L1087–L1095. [Google Scholar] [CrossRef]
- Joachim, R.B.; Altschuler, G.M.; Hutchinson, J.N.; Wong, H.R.; A Hide, W.; Kobzik, L. The relative resistance of children to sepsis mortality: From pathways to drug candidates. Mol. Syst. Biol. 2018, 14, e7998. [Google Scholar] [CrossRef]
- Kell, D.B.; Laubscher, G.J.; Pretorius, E. A central role for amyloid fibrin microclots in long COVID/PASC: Origins and therapeutic implications. Biochem. J. 2022, 479, 537–559. [Google Scholar] [CrossRef]
- Ahamed, J.; Laurence, J. Long COVID endotheliopathy: Hypothesized mechanisms and potential therapeutic approaches. J. Clin. Investig. 2022, 132, e161167. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Martin, S.; Shchendrygina, A.; Hoffmann, J.; Ka, M.M.; Giokoglu, E.; Vanchin, B.; Holm, N.; Karyou, A.; Laux, G.S.; et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat. Med. 2022, 28, 2117–2123. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Alcaide, P.; Asselbergs, F.W.; Brundel, B.J.J.M.; Camici, G.G.; Martins, P.D.C.; Ferdinandy, P.; Fontana, M.; Girao, H.; Gnecchi, M.; et al. Long COVID and the cardiovascular system—Elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: A joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 2022, cvac115. [Google Scholar] [CrossRef]
- Munblit, D.; Nicholson, T.; Akrami, A.; Apfelbacher, C.; Chen, J.; De Groote, W.; Diaz, J.V.; Gorst, S.L.; Harman, N.; Kokorina, A.; et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: An international Delphi consensus study. Lancet Respir. Med. 2022, 10, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Human Services, Office of the Assistant Secretary for Health. National Research Action Plan on Long COVID; Department of Health and Human Services: Washington, DC, USA, 2021. [Google Scholar]
- Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020, 2, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Concato, J. Study Design and “Evidence” in Patient-oriented Research. Am. J. Respir. Crit. Care Med. 2013, 187, 1167–1172. [Google Scholar] [CrossRef]
- Gershon, A.S.; Lindenauer, P.K.; Wilson, K.C.; Rose, L.; Walkey, A.J.; Sadatsafavi, M.; Anstrom, K.J.; Au, D.H.; Bender, B.G.; Brookhart, M.A.; et al. Informing Healthcare Decisions with Observational Research Assessing Causal Effect. An Official American Thoracic Society Research Statement. Am. J. Respir. Crit. Care Med. 2021, 203, 14–23. [Google Scholar] [CrossRef]
- Concato, J.; Corrigan-Curay, J. Real-World Evidence—Where Are We Now? N. Engl. J. Med. 2022, 386, 1680–1682. [Google Scholar] [CrossRef]
- Abel, U.; Koch, A. Discussion. J. Clin. Epidemiol. 1999, 52, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2017, 210, 2–21. [Google Scholar] [CrossRef]
- Paneth, N.S.; Joyner, M.J.; Casadevall, A. The fossilization of randomized clinical trials. J. Clin. Investig. 2022, 132, e158499. [Google Scholar] [CrossRef]
- Itaya, T.; Isobe, Y.; Suzuki, S.; Koike, K.; Nishigaki, M.; Yamamoto, Y. The Fragility of Statistically Significant Results in Randomized Clinical Trials for COVID-19. JAMA Netw. Open 2022, 5, e222973. [Google Scholar] [CrossRef]
- Kitsios, G.D.; Dahabreh, I.J.; Callahan, S.; Paulus, J.K.; Campagna, A.C.; Dargin, J.M. Can We Trust Observational Studies Using Propensity Scores in the Critical Care Literature? A Systematic Comparison with Randomized Clinical Trials. Crit. Care Med. 2015, 43, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Sturmberg, J.; Paul, E.; Van Damme, W.; Ridde, V.; Brown, G.W.; Kalk, A. The danger of the single storyline obfuscating the complexities of managing SARS-CoV-2/COVID-19. J. Eval. Clin. Pract. 2021, 28, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; Broadbent, A.; Pearce, N. Causality and causal inference in epidemiology: The need for a pluralistic approach. Int. J. Epidemiol. 2016, 45, 1776–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institutes of Health. COVID-19 Treatment Guidelines; Anti-SARS-CoV-2 Antibody Products. 2022. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 10 September 2022).
- Roche, N.; Crichton, M.L.; Goeminne, P.C.; Cao, B.; Humbert, M.; Shteinberg, M.; Antoniou, K.M.; Ulrik, C.S.; Parks, H.; Wang, C.; et al. Update June 2022: Management of hospitalised adults with coronavirus disease 2019 (COVID-19): A European Respiratory Society living guideline. Eur. Respir. J. 2022, 60, 2200803. [Google Scholar] [CrossRef]
- Crichton, M.L.; Goeminne, P.C.; Tuand, K.; Vandendriessche, T.; Tonia, T.; Roche, N.; Chalmers, J.D. The impact of therapeutics on mortality in hospitalised patients with COVID-19: Systematic review and meta-analyses informing the European Respiratory Society living guideline. Eur. Respir. Rev. 2021, 30, 210171. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of COVID-19: Living Guideline, 15 September 2022; (WHO/2019-nCoV/Clinical/2022.2. Licence: CC BY-NC-SA 3.0 IGO); World Health Organization: Geneva, Switzerland, 2022; Available online: https://apps.who.int/iris/handle/10665/362783 (accessed on 30 January 2023).
- Axfors, C.; Schmitt, A.M.; Janiaud, P.; Hooft, J.V.; Abd-Elsalam, S.; Abdo, E.F.; Abella, B.S.; Akram, J.; Amaravadi, R.K.; Angus, D.C.; et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat. Commun. 2021, 12, 2349. [Google Scholar] [CrossRef]
- Cui, X.; Sun, J.; Minkove, S.J.; Li, Y.; Cooper, D.; Couse, Z.; Eichacker, P.Q.; Torabi-Parizi, P. Effects of chloroquine or hydroxychloroquine treatment on non-SARS-CoV2 viral infections: A systematic review of clinical studies. Rev. Med. Virol. 2021, 31, e2228. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Preliminary report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Ohl, M.E.; Miller, D.R.; Lund, B.C.; Kobayashi, T.; Miell, K.R.; Beck, B.F.; Alexander, B.; Crothers, K.; Sarrazin, M.S.V. Association of Remdesivir Treatment with Survival and Length of Hospital Stay Among US Veterans Hospitalized With COVID-19. JAMA Netw. Open 2021, 4, e2114741. [Google Scholar] [CrossRef]
- Olender, S.A.; Walunas, T.L.; Martinez, E.; Perez, K.K.; Castagna, A.; Wang, S.; Kurbegov, D.; Goyal, P.; Ripamonti, D.; Balani, B.; et al. Remdesivir Versus Standard-of-Care for Severe Coronavirus Disease 2019 Infection: An Analysis of 28-Day Mortality. Open Forum Infect. Dis. 2021, 8, ofab278. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.A.; Christensen, A.B.; Pusch, T.; Goulet, D.; Chang, S.-C.; Grunkemeier, G.L.; A McKelvey, P.; Robicsek, A.; French, T.; Parsons, G.T.; et al. Remdesivir and Mortality in Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2021, 74, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Chuah, C.H.; Chow, T.S.; Hor, C.P.; Cheng, J.T.; Ker, H.B.; Lee, H.G.; Lee, K.S.; Nordin, N.; Ng, T.K.; Zaid, M.; et al. Efficacy of Early Treatment with Favipiravir on Disease Progression Among High-Risk Patients with Coronavirus Disease 2019 (COVID-19): A Randomized, Open-Label Clinical Trial. Clin. Infect. Dis. 2021, 75, e432–e439. [Google Scholar] [CrossRef] [PubMed]
- AlQahtani, M.; Kumar, N.; Aljawder, D.; Abdulrahman, A.; Mohamed, M.W.; Alnashaba, F.; Abu Fayyad, M.; Alshaikh, F.; Alsahaf, F.; Saeed, S.; et al. Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Sci. Rep. 2022, 12, 4925. [Google Scholar] [CrossRef]
- López-Medina, E.; López, P.; Hurtado, I.C.; Dávalos, D.M.; Ramirez, O.; Martínez, E.; Díazgranados, J.A.; Oñate, J.M.; Chavarriaga, H.; Herrera, S.; et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults with Mild COVID-19. JAMA 2021, 325, 1426. [Google Scholar] [CrossRef]
- Reis, G.; Silva, E.A.; Silva, D.C.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; dos Santos, C.V.; Campos, V.H.; Nogueira, A.M.; de Almeida, A.P.; et al. Effect of Early Treatment with Ivermectin among Patients with COVID-19. N. Engl. J. Med. 2022, 386, 1721–1731. [Google Scholar] [CrossRef]
- Kerr, L.; Cadegiani, F.A.; Baldi, F.; Lobo, R.B.; Assagra, W.L.O.; Proença, F.C.; Kory, P.; Hibberd, J.A.; Chamie-Quintero, J.J. Ivermectin Prophylaxis Used for COVID-19: A Citywide, Prospective, Observational Study of 223,128 Subjects Using Propensity Score Matching. Cureus 2022, 14, e21272. [Google Scholar] [CrossRef]
- Izcovich, A.; Peiris, S.; Ragusa, M.; Tortosa, F.; Rada, G.; Aldighieri, S.; Reveiz, L. Bias as a source of inconsistency in ivermectin trials for COVID-19: A systematic review. Ivermectin’s suggested benefits are mainly based on potentially biased results. J. Clin. Epidemiol. 2021, 144, 43–55. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Bouabdallaoui, N.; L’Allier, P.L.; Gaudet, D.; Shah, B.; Pillinger, M.H.; Lopez-Sendon, J.; da Luz, P.; Verret, L.; Audet, S.; et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): A phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med. 2021, 9, 924–932. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet Respir. Med. 2021, 9, 1419–1426. [Google Scholar] [CrossRef]
- Klassen, S.A.; Senefeld, J.W.; Johnson, P.W.; Carter, R.E.; Wiggins, C.C.; Shoham, S.; Grossman, B.J.; Henderson, J.P.; Musser, J.; Salazar, E.; et al. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin. Proc. 2021, 96, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Bégin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Carter, R.E.; Senefeld, J.W.; Klassen, S.A.; Mills, J.R.; Johnson, P.W.; Theel, E.S.; Wiggins, C.C.; Bruno, K.A.; Klompas, A.M.; et al. Convalescent Plasma Antibody Levels and the Risk of Death from COVID-19. N. Engl. J. Med. 2021, 384, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Park, A.S.; Iwasaki, A. Type I and Type III Interferons—Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe 2020, 27, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, I. Interfering with SARS-CoV-2: Are interferons friends or foes in COVID-19. Curr. Opin. Virol. 2021, 50, 119–127. [Google Scholar] [CrossRef] [PubMed]
- WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef]
- Kumar, S.; Saurabh, M.K.; Narasimha, V.L.; Maharshi, V. Efficacy of Interferon-β in Moderate-to-Severe Hospitalised Cases of COVID-19: A Systematic Review and Meta-analysis. Clin. Drug Investig. 2021, 41, 1037–1046. [Google Scholar] [CrossRef]
- Feld, J.J.; Kandel, C.; Biondi, M.J.; A Kozak, R.; Zahoor, M.A.; Lemieux, C.; Borgia, S.M.; Boggild, A.K.; Powis, J.; McCready, J.; et al. Peginterferon lambda for the treatment of outpatients with COVID-19: A phase 2, placebo-controlled randomised trial. Lancet Respir. Med. 2021, 9, 498–510. [Google Scholar] [CrossRef]
- Corti, D.; Purcell, L.A.; Snell, G.; Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021, 184, 3086–3108. [Google Scholar] [CrossRef]
- Hirsch, C.; Park, Y.S.; Piechotta, V.; Chai, K.L.; Estcourt, L.J.; Monsef, I.; Salomon, S.; Wood, E.M.; So-Osman, C.; McQuilten, Z.; et al. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. Cochrane Database Syst. Rev. 2022, 2022, CD014945. [Google Scholar] [CrossRef]
- Kim, J.Y.; Săndulescu, O.; Preotescu, L.L.; E Rivera-Martínez, N.; Dobryanska, M.; Birlutiu, V.; Miftode, E.G.; Gaibu, N.; Caliman-Sturdza, O.; Florescu, S.A.; et al. A Randomized Clinical Trial of Regdanvimab in High-Risk Patients with Mild-to-Moderate COVID-19. Open Forum Infect. Dis. 2022, 9, ofac406. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.S.; O’Donoghue, A.; Mechanic, O.; Dechen, T.; Stevens, J. Administration of Anti–SARS-CoV-2 Monoclonal Antibodies After US Food and Drug Administration Deauthorization. JAMA Netw. Open 2022, 5, e2228997. [Google Scholar] [CrossRef] [PubMed]
- Hentzien, M.; Autran, B.; Piroth, L.; Yazdanpanah, Y.; Calmy, A. A monoclonal antibody stands out against omicron subvariants: A call to action for a wider access to bebtelovimab. Lancet Infect. Dis. 2022, 22, 1278. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of early molnupiravir or nirmatrelvir–ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet Infect. Dis. 2022, 22, 1681–1693. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Arbel, R.; Sagy, Y.W.; Hoshen, M.; Battat, E.; Lavie, G.; Sergienko, R.; Friger, M.; Waxman, J.G.; Dagan, N.; Balicer, R.; et al. Nirmatrelvir Use and Severe Covid-19 Outcomes during the Omicron Surge. N. Engl. J. Med. 2022, 387, 790–798. [Google Scholar] [CrossRef]
- Epling, B.P.; Rocco, J.M.; Boswell, K.L.; Laidlaw, E.; Galindo, F.; Kellogg, A.; Das, S.; Roder, A.; Ghedin, E.; Kreitman, A.; et al. Clinical, Virologic, and Immunologic Evaluation of Symptomatic Coronavirus Disease 2019 Rebound Following Nirmatrelvir/Ritonavir Treatment. Clin. Infect. Dis. 2022, ciac663. [Google Scholar] [CrossRef]
- Wang, L.; Volkow, N.D.; Davis, P.B.; Berger, N.A.; Kaelber, D.C.; Xu, R. COVID-19 rebound after Paxlovid treatment during Omicron BA.5 and BA2.12.1 subvariant predominance period. medRxiv 2022. [Google Scholar] [CrossRef]
- Anderson, A.S.; Caubel, P.; Rusnak, J.M. Nirmatrelvir–Ritonavir and Viral Load Rebound in COVID-19. N. Engl. J. Med. 2022, 387, 1047–1049. [Google Scholar] [CrossRef]
- Pitre, T.; Van Alstine, R.; Chick, G.; Leung, G.; Mikhail, D.; Cusano, E.; Khalid, F.; Zeraatkar, D. Antiviral drug treatment for nonsevere COVID-19: A systematic review and network meta-analysis. Can. Med. Assoc. J. 2022, 194, E969–E980. [Google Scholar] [CrossRef]
- Dal-Ré, R.; Becker, S.L.; Bottieau, E.; Holm, S. Availability of oral antivirals against SARS-CoV-2 infection and the requirement for an ethical prescribing approach. Lancet Infect. Dis. 2022, 22, e231–e238. [Google Scholar] [CrossRef] [PubMed]
- Burki, T.K. The role of antiviral treatment in the COVID-19 pandemic. Lancet Respir. Med. 2022, 10, e18. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Annane, D.; Bellissant, E.; Bollaert, P.E.; Briegel, J.; Keh, D.; Kupfer, Y.; Pirracchio, R.; Rochwerg, B. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst. Rev. 2019, 2019, CD002243. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Song, H.; Zhai, R.; Song, G.; Li, H.; Ding, X.; Kan, Q.; Sun, T. Corticosteroids for Treating Sepsis in Adult Patients: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 709155. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ferrando, C.; Martínez, D.; Ambrós, A.; Muñoz, T.; Soler, J.A.; Aguilar, G.; Alba, F.; González-Higueras, E.; Conesa, L.A.; et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 2020, 8, 267–276. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Kweon, O.J.; Cha, M.J.; Baek, M.S.; Choi, S.-H. Dexamethasone may improve severe COVID-19 via ameliorating endothelial injury and inflammation: A preliminary pilot study. PLoS ONE 2021, 16, e0254167. [Google Scholar] [CrossRef]
- Martínez-Martínez, M.; Plata-Menchaca, E.P.; Nuvials, F.X.; Roca, O.; Ferrer, R. Risk factors and outcomes of ventilator-associated pneumonia in COVID-19 patients: A propensity score matched analysis. Crit. Care 2021, 25, 235. [Google Scholar] [CrossRef]
- Bradley, M.C.; Perez-Vilar, S.; Chillarige, Y.; Dong, D.; Martinez, A.I.; Weckstein, A.R.; Pan, G.J.D. Systemic Corticosteroid Use for COVID-19 in US Outpatient Settings from April 2020 to August 2021. JAMA 2022, 327, 2015. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.L.; Schenck, E.J.; Satlin, M.J.; Whalen, W.; Pan, D.; Williams, N.; Díaz, I. Comparison of a Target Trial Emulation Framework vs Cox Regression to Estimate the Association of Corticosteroids With COVID-19 Mortality. JAMA Netw. Open 2022, 5, e2234425. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.S.; Osuchowski, M.F.; Payen, D.; Torres, A.; Dickel, S.; Skirecki, T. Renaissance of glucocorticoids in critical care in the era of COVID-19: Ten urging questions. Crit. Care 2022, 26, 308. [Google Scholar] [CrossRef] [PubMed]
- CORIMUNO-19 Collaborative Group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): A randomised controlled trial. Lancet Respir. Med. 2021, 9, 295–304. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; Van Bentum-Puijk, W.; Berry, L.R.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savović, J.; Tierney, J.; Baron, G.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients with Symptomatic COVID-19. JAMA 2020, 324, 2292–2300. [Google Scholar] [CrossRef]
- Oskotsky, T.; Marić, I.; Tang, A.; Oskotsky, B.; Wong, R.J.; Aghaeepour, N.; Sirota, M.; Stevenson, D.K. Mortality Risk Among Patients With COVID-19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants. JAMA Netw. Open 2021, 4, e2133090. [Google Scholar] [CrossRef]
- Lee, T.C.; Vigod, S.; Bortolussi-Courval, É.; Hanula, R.; Boulware, D.R.; Lenze, E.J.; Reiersen, A.M.; McDonald, E.G. Fluvoxamine for Outpatient Management of COVID-19 to Prevent Hospitalization. JAMA Netw. Open 2022, 5, e226269. [Google Scholar] [CrossRef]
- Reis, G.; Moreira-Silva, E.A.D.S.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; dos Santos, C.V.Q.; Campos, V.H.d.S.; Nogueira, A.M.R.; de Almeida, A.P.F.G.; et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2021, 10, e42–e51. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for COVID-19. N. Engl. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- Bronte, V.; Ugel, S.; Tinazzi, E.; Vella, A.; De Sanctis, F.; Canè, S.; Batani, V.; Trovato, R.; Fiore, A.; Petrova, V.; et al. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J. Clin. Investig. 2020, 130, 6409–6416. [Google Scholar] [CrossRef]
- Guimarães, P.O.; Quirk, D.; Furtado, R.H.; Maia, L.N.; Saraiva, J.F.; Antunes, M.O.; Filho, R.K.; Junior, V.M.; Soeiro, A.M.; Tognon, A.P.; et al. Tofacitinib in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 385, 406–415. [Google Scholar] [CrossRef]
- Walz, L.; Cohen, A.J.; Rebaza, A.P.; Vanchieri, J.; Slade, M.D.; Cruz, C.S.D.; Sharma, L. JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 47. [Google Scholar] [CrossRef]
- Ely, E.W.; Ramanan, A.V.; E Kartman, C.; de Bono, S.; Liao, R.; Piruzeli, M.L.B.; Goldman, J.D.; Saraiva, J.F.K.; Chakladar, S.; Marconi, V.C.; et al. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: An exploratory, randomised, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Aman, J.; Duijvelaar, E.; Botros, L.; Kianzad, A.; Schippers, J.R.; Smeele, P.J.; Azhang, S.; Bartelink, I.H.; A Bayoumy, A.; Bet, P.M.; et al. Imatinib in patients with severe COVID-19: A randomised, double-blind, placebo-controlled, clinical trial. Lancet Respir. Med. 2021, 9, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Duijvelaar, E.; Schippers, J.R.; Smeele, P.J.; de Raaf, M.A.; Vanhove, A.L.E.M.; Blok, S.G.; Twisk, J.W.R.; Noordegraaf, A.V.; de Man, F.S.; Bogaard, H.J.; et al. Long-term clinical outcomes of COVID-19 patients treated with imatinib. Lancet Respir. Med. 2022, 10, e34–e35. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Levi, M.; Hunt, B.J. Prevention and management of thrombosis in hospitalised patients with COVID-19 pneumonia. Lancet Respir. Med. 2021, 10, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Flumignan, R.L.; Civile, V.T.; Tinôco, J.D.D.S.; Pascoal, P.I.; Areias, L.L.; Matar, C.F.; Tendal, B.; Trevisani, V.F.; Atallah, N.; Nakano, L.C. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst. Rev. 2022, 2022. [Google Scholar] [CrossRef]
- Lopes, R.D.; de Barros E Silva, P.G.M.; Furtado, R.H.M.; Macedo, A.V.S.; Bronhara, B.; Damiani, L.P.; Barbosa, L.M.; de Aveiro Morata, J.; Ramacciotti, E.; de Aquino Martins, P.; et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): An open-label, multicentre, randomised, controlled trial. Lancet 2021, 397, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Lawler, P.R.; Goligher, E.C.; Berger, J.S.; Neal, M.D.; McVerry, B.J.; Nicolau, J.C. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 385, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Goligher, E.C.; Bradbury, C.A.; McVerry, B.J.; Lawler, P.R.; Berger, J.S.; Gong, M.N. Therapeutic Anticoagulation with Heparin in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 385, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, F.; Jaiyesimi, I.; Petrescu, I.; Lawler, P.R.; Castillo, E.; Munoz-Maldonado, Y.; Imam, Z.; Narasimhan, M.; Abbas, A.E.; Konde, A.; et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: A retrospective propensity score-weighted analysis. Eur. J. Haematol. 2020, 106, 165–174. [Google Scholar] [CrossRef] [PubMed]
- INSPIRATION Investigators; Sadeghipour, P.; Talasaz, A.H.; Mazloomzadeh, S.; Khaleghparast, S.; Ghadrdoost, B.; Mousavizadeh, M.; Baay, M.R.; Noohi, F. Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial. JAMA 2021, 325, 1620–1630. [Google Scholar]
- Nguyen, N.N.; Ho, D.S.; Nguyen, H.S.; Ho, D.K.N.; Li, H.-Y.; Lin, C.-Y.; Chiu, H.-Y.; Chen, Y.-C. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metabolism 2022, 131, 155196. [Google Scholar] [CrossRef]
- Alkhayyat, S.S.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; El-Bouseary, M.M.; AboKamer, A.M.; Batiha, G.E.-S.; Simal-Gandara, J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: The missed key for Holy Grail. Inflamm. Res. 2022, 71, 1159–1167. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Lopez-Jaramillo, P.; Giamarellos-Bourboulis, E.J.; Dávila-Del-Carpio, G.H.; Bizri, A.R.; Andrade-Villanueva, J.F.; Salman, O.; Cure-Cure, C.; Rosado-Santander, N.R.; Giraldo, M.P.C.; et al. A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nat. Metab. 2022, 4, 1847–1857. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front. Immunol. 2021, 12, 666693. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, Z.; Zhang, S.; Shen, X.-R.; Yang, H.; Xu, Y.; Liu, Y.; Yang, L.; Zhang, Q.; Chen, J.; et al. Metabolic modeling of single bronchoalveolar macrophages reveals regulators of hyperinflammation in COVID-19. Iscience 2022, 25, 105319. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; Rader, D.J. Teaching Old Drugs New Tricks: Statins for COVID-19? Cell Metab. 2020, 32, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Ren, J.; Kumar, K.; Bui, Q.M.; Zhang, J.; Zhang, X.; Sawan, M.A.; Eisen, H.; Longhurst, C.A.; Messer, K. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association’s COVID-19 Cardiovascular Disease Registry. PLoS ONE 2021, 16, e0254635. [Google Scholar] [CrossRef] [PubMed]
- Al Harbi, S.; Kensara, R.; Aljuhani, O.; Korayem, G.B.; Altebainawi, A.F.; Al Harthi, A.; Vishwakarma, R.; Alenazi, A.M.; Almutairi, A.; Alshaya, O.; et al. Statins and Risk of Thrombosis in Critically ill Patients with COVID-19: A Multicenter Cohort Study. Clin. Appl. Thromb. 2022, 28, 10760296221103864. [Google Scholar] [CrossRef] [PubMed]
- Audrey, J.; Wisnu, W.; Tahapary, D.L. Association Between Statin Use and Poor Outcomes in COVID-19 Patients with Diabetes Mellitus: A Systematic Review. Curr. Diabetes Rev. 2022, 18, 73–78. [Google Scholar] [CrossRef]
- Aparisi, Á.; Catalá, P.; Amat-Santos, I.J.; Marcos-Mangas, M.; López-Otero, D.; Veras, C.; López-Pais, J.; Cabezón-Villalba, G.; Antonio, C.E.C.; Candela, J.; et al. Chronic use of renin–angiotensin–aldosterone inhibitors in hypertensive COVID-19 patients: Results from a Spanish registry and meta-analysis. Med. Clin. 2021, 158, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Lumbers, E.R.; Head, R.; Smith, G.R.; Delforce, S.J.; Jarrott, B.; Martin, J.H.; Pringle, K.G. The interacting physiology of COVID-19 and the renin-angiotensin-aldosterone system: Key agents for treatment. Pharmacol. Res. Perspect. 2022, 10, e00917. [Google Scholar] [CrossRef]
- Duarte, M.; Pelorosso, F.; Nicolosi, L.N.; Salgado, M.V.; Vetulli, H.; Aquieri, A.; Azzato, F.; Castro, M.; Coyle, J.; Davolos, I.; et al. Telmisartan for treatment of COVID-19 patients: An open multicenter randomized clinical trial. Eclinicalmedicine 2021, 37, 100962. [Google Scholar] [CrossRef]
- Lam, K.W.; Chow, K.W.; Vo, J.; Hou, W.; Li, H.; Richman, P.S.; Mallipattu, S.K.; A Skopicki, H.; Singer, A.J.; Duong, T.Q. Continued In-Hospital Angiotensin-Converting Enzyme Inhibitor and Angiotensin II Receptor Blocker Use in Hypertensive COVID-19 Patients Is Associated with Positive Clinical Outcome. J. Infect. Dis. 2020, 222, 1256–1264. [Google Scholar] [CrossRef]
- Roy-Vallejo, E.; Purificación, A.S.; Peña, J.D.T.; Moreno, B.S.; Arnalich, F.; Blanco, M.J.G.; Miranda, J.L.; Romero-Cabrera, J.L.; Gil, C.R.H.; Bascunana, J.; et al. Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Withdrawal Is Associated with Higher Mortality in Hospitalized Patients with COVID-19. J. Clin. Med. 2021, 10, 2642. [Google Scholar] [CrossRef]
- Cohen, J.B.; Hanff, T.C.; William, P.; Sweitzer, N.; Rosado-Santander, N.R.; Medina, C.; E Rodriguez-Mori, J.; Renna, N.; I Chang, T.; Corrales-Medina, V.; et al. Continuation versus discontinuation of renin–angiotensin system inhibitors in patients admitted to hospital with COVID-19: A prospective, randomised, open-label trial. Lancet Respir. Med. 2021, 9, 275–284. [Google Scholar] [CrossRef]
- Bauer, A.; Schreinlechner, M.; Sappler, N.; Dolejsi, T.; Tilg, H.; A Aulinger, B.; Weiss, G.; Bellmann-Weiler, R.; Adolf, C.; Wolf, D.; et al. Discontinuation versus continuation of renin-angiotensin-system inhibitors in COVID-19 (ACEI-COVID): A prospective, parallel group, randomised, controlled, open-label trial. Lancet Respir. Med. 2021, 9, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Oddy, C.; Allington, J.; McCaul, J.; Keeling, P.; Senn, D.; Soni, N.; Morrison, H.; Mawella, R.; Samuel, T.; Dixon, J. Inpatient Omission of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Is Associated With Morbidity and Mortality in Coronavirus Disease 2019. Clin. Ther. 2021, 43, e97–e110. [Google Scholar] [CrossRef] [PubMed]
- Theurl, F.; Sappler, N.; Rizas, K.D.; Massberg, S.; Bauer, A.; Schreinlechner, M. Long-term effects of discontinuing renin–angiotensin system inhibitors in COVID-19. Respirology 2022, 27, 788–790. [Google Scholar] [CrossRef]
- Memel, Z.N.; Lee, J.J.; Foulkes, A.S.; Chung, R.T.; Thaweethai, T.; Bloom, P.P. Association of Statins and 28-Day Mortality Rates in Patients Hospitalized with Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Infect. Dis. 2021, 225, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.; Goldin, L.; Shen, Y.; Korwek, K.; Kleja, K.; Poland, R.E.; Guy, J.; Sands, K.E.; Perlin, J.B. Discontinuation of atorvastatin use in hospital is associated with increased risk of mortality in COVID-19 patients. J. Hosp. Med. 2022, 17, 169–175. [Google Scholar] [CrossRef]
- Radaelli, A.; Loardi, C.; Cazzaniga, M.; Balestri, G.; de Carlini, C.; Cerrito, M.G.; Cusa, E.N.; Guerra, L.; Garducci, S.; Santo, D.; et al. Inflammatory Activation During Coronary Artery Surgery and Its Dose-Dependent Modulation by Statin/ACE-Inhibitor Combination. Arter. Thromb. Vasc. Biol. 2007, 27, 2750–2755. [Google Scholar] [CrossRef]
- Borghi, C.; Levy, B.I. Synergistic actions between angiotensin-converting enzyme inhibitors and statins in atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2021, 32, 815–826. [Google Scholar] [CrossRef]
- Fedson, D.S.; Rordam, O.M. Treating Ebola patients: A ‘bottom up’ approach using generic statins and angiotensin receptor blockers. Int. J. Infect. Dis. 2015, 36, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Vukoja, M.; Riviello, E.; Gavrilovic, S.; Adhikari, N.K.; Kashyap, R.; Bhagwanjee, S.; Gajic, O.; Kilickaya, O.; CERTAIN Investigators. A Survey on Critical Care Resources and Practices in Low- and Middle-Income Countries. Glob. Heart 2014, 9, 337–342.e1. [Google Scholar] [CrossRef]
- Marcus, M.E.; Manne-Goehler, J.; Theilmann, M.; Farzadfar, F.; Moghaddam, S.S.; Keykhaei, M.; Hajebi, A.; Tschida, S.; Lemp, J.M.; Aryal, K.K.; et al. Use of statins for the prevention of cardiovascular disease in 41 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data. Lancet Glob. Health 2022, 10, e369–e379. [Google Scholar] [CrossRef]
- Fedson, D.S. Influenza pandemic preparedness: A special challenge for India. Indian J. Med. Res. 2019, 150, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Mota, S.; Bensalel, J.; Park, D.H.; Gonzalez, S.; Rodriguez, A.; Gallego-Delgado, J. Treatment Reducing Endothelial Activation Protects against Experimental Cerebral Malaria. Pathogens 2022, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wen, X.; Peng, J.; Lu, Y.; Guo, Z.; Lu, J. Systematic Review and Meta-Analysis on the Association between Outpatient Statins Use and Infectious Disease-Related Mortality. PLoS ONE 2012, 7, e51548. [Google Scholar] [CrossRef] [PubMed]
- Yebyo, H.G.; Aschmann, H.; Menges, D.; Boyd, C.M.; Puhan, M.A. Net benefit of statins for primary prevention of cardiovascular disease in people 75 years or older: A benefit-harm balance modeling study. Ther. Adv. Chronic Dis. 2019, 10, 2040622319877745. [Google Scholar] [CrossRef]
- Fonarow, G.C.; Wright, R.S.; Spencer, F.A.; Fredrick, P.D.; Dong, W.; Every, N.; French, W.J. Effect of Statin Use Within the First 24 Hours of Admission for Acute Myocardial Infarction on Early Morbidity and Mortality. Am. J. Cardiol. 2005, 96, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Cubeddu, L.X.; Seamon, M.J. Statin Withdrawal: Clinical Implications and Molecular Mechanisms. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2006, 26, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Qin, J.-J.; Cheng, X.; Shen, L.; Zhao, Y.-C.; Yuan, Y.; Lei, F.; Chen, M.-M.; Yang, H.; Bai, L.; et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020, 32, 176–187.e4. [Google Scholar] [CrossRef]
- Rodriguez-Nava, G.; Trelles-Garcia, D.P.; Yanez-Bello, M.A.; Chung, C.W.; Trelles-Garcia, V.P.; Friedman, H.J. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: A retrospective cohort study. Crit. Care 2020, 24, 429. [Google Scholar] [CrossRef]
- Mallow, P.J.; Belk, K.W.; Topmiller, M.; Hooker, E.A. Outcomes of Hospitalized COVID-19 Patients by Risk Factors: Results from a United States Hospital Claims Database. J. Health Econ. Outcomes Res. 2020, 7, 165–175. [Google Scholar] [CrossRef]
- Saeed, O.; Castagna, F.; Agalliu, I.; Xue, X.; Patel, S.R.; Rochlani, Y.; Kataria, R.; Vukelic, S.; Sims, D.B.; Alvarez, C.; et al. Statin Use and In-Hospital Mortality in Patients With Diabetes Mellitus and COVID-19. J. Am. Heart Assoc. 2020, 9, e018475. [Google Scholar] [CrossRef]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020, 76, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Guo, T.; Yan, F.; Gong, M.; Zhang, X.A.; Li, C.; He, T.; Luo, H.; Zhang, L.; Chen, M.; et al. Association of Statin Use with the In-Hospital Outcomes of 2019-Coronavirus Disease Patients: A Retrospective Study. Front. Med. 2020, 7, 584870. [Google Scholar] [CrossRef]
- Rossi, R.; Talarico, M.; Coppi, F.; Boriani, G. Protective role of statins in COVID-19 patients: Importance of pharmacokinetic characteristics rather than intensity of action. Intern. Emerg. Med. 2020, 15, 1573–1576. [Google Scholar] [CrossRef] [PubMed]
- Torres-Peña, J.D.; Pérez-Belmonte, L.M.; Fuentes-Jiménez, F.; Carmona, M.D.L.; Pérez-Martinez, P.; López-Miranda, J.; Sánchez, F.J.C.; Núñez, J.A.V.; Beamonte, E.D.C.; Gamboa, J.O.M.; et al. Prior Treatment with Statins is Associated with Improved Outcomes of Patients with COVID-19: Data from the SEMI-COVID-19 Registry. Drugs 2021, 81, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Terlecki, M.; Wojciechowska, W.; Klocek, M.; Olszanecka, A.; Stolarz-Skrzypek, K.; Grodzicki, T.; Małecki, M.; Katra, B.; Garlicki, A.; Bociąga-Jasik, M.; et al. Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19: Data from a large single-center registry in Poland. Kardiologia Polska 2021, 79, 773–780. [Google Scholar] [CrossRef]
- Lohia, P.; Kapur, S.; Benjaram, S.; Cantor, Z.; Mahabadi, N.; Mir, T.; Badr, M.S. Statins and clinical outcomes in hospitalized COVID-19 patients with and without Diabetes Mellitus: A retrospective cohort study with propensity score matching. Cardiovasc. Diabetol. 2021, 20, 140. [Google Scholar] [CrossRef]
- Choi, D.; Chen, Q.; Goonewardena, S.N.; Pacheco, H.; Mejia, P.; Smith, R.L.; Rosenson, R.S. Efficacy of Statin Therapy in Patients with Hospital Admission for COVID-19. Cardiovasc. Drugs Ther. 2021, 36, 1165–1173. [Google Scholar] [CrossRef]
- Shen, L.; Qiu, L.; Wang, L.; Huang, H.; Liu, D.; Xiao, Y.; Liu, Y.; Jin, J.; Liu, X.; Wang, D.W.; et al. Statin Use and In-hospital Mortality in Patients with COVID-19 and Coronary Heart Disease. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Ayeh, S.K.; Abbey, E.J.; Khalifa, B.A.A.; Nudotor, R.D.; Osei, A.D.; Chidambaram, V.; Osuji, N.; Khan, S.; Salia, E.L.; Oduwole, M.O.; et al. Statins use and COVID-19 outcomes in hospitalized patients. PLoS ONE 2021, 16, e0256899. [Google Scholar] [CrossRef]
- Masana, L.; Correig, E.; Rodríguez-Borjabad, C.; Anoro, E.; Arroyo, J.A.; Jericó, C.; Pedragosa, A.; Miret, M.; Näf, S.; Pardo, A.; et al. Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients. Eur. Heart J. Cardiovasc. Pharmacother. 2020, 8, 157–164. [Google Scholar] [CrossRef]
- Kuno, T.; So, M.; Iwagami, M.; Takahashi, M.; Egorova, N.N. The association of statins use with survival of patients with COVID-19. J. Cardiol. 2021, 79, 494–500. [Google Scholar] [CrossRef]
- Li, W.; Rios, S.; Nagraj, S.; Hajra, A.; Saralidze, T.; Varrias, D.; Mathai, S.V.; Novakovic, M.; Hupart, K.H.; Miles, J.A.; et al. Statin Use in Hospitalized Patients with COVID-19: A Comprehensive Analysis of the New York City Public Hospital System. Am. J. Med. 2022, 135, 897–905. [Google Scholar] [CrossRef]
- Kouhpeikar, H.; Tabasi, H.K.; Khazir, Z.; Naghipour, A.; Moghadam, H.M.; Forouzanfar, H.; Abbasifard, M.; Kirichenko, T.V.; Reiner, Z.; Banach, M.; et al. Statin Use in COVID-19 Hospitalized Patients and Outcomes: A Retrospective Study. Front. Cardiovasc. Med. 2022, 9, 175. [Google Scholar] [CrossRef]
- Davoodi, L.; Jafarpour, H.; Oladi, Z.; Zakariaei, Z.; Tabarestani, M.; Ahmadi, B.M.; Razavi, A.; Hessami, A. Atorvastatin therapy in COVID-19 adult inpatients: A double-blind, randomized controlled trial. IJC Hear. Vasc. 2021, 36, 100875. [Google Scholar] [CrossRef]
- Matli, K.; Al Kotob, A.; Jamaleddine, W.; Al Osta, S.; Salameh, P.; Tabbikha, R.; Chamoun, N.; Moussawi, A.; Saad, J.; Atwi, G.; et al. Managing endothelial dysfunction in COVID -19 with statins, beta blockers, nicorandil, and oral supplements: A pilot, double-blind, placebo-controlled, randomized clinical trial. Clin. Transl. Sci. 2022, 15, 2323–2330. [Google Scholar] [CrossRef]
- Ghafoori, M.; Saadati, H.; Taghavi, M.; Azimian, A.; Alesheikh, P.; Mohajerzadeh, M.S.; Behnamfar, M.; Pakzad, M.; Rameshrad, M. Survival of the hospitalized patients with COVID-19 receiving atorvastatin: A randomized clinical trial. J. Med. Virol. 2022, 94, 3160–3168. [Google Scholar] [CrossRef]
- INSPIRATION-S Investigators Atorvastatin versus placebo in patients with COVID-19 in intensive care: Randomized controlled trial. BMJ 2022, 376, e068407. [CrossRef]
- Gaitán-Duarte, H.; Álvarez-Moreno, C.; Rincón-Rodríguez, C.; Yomayusa-González, N.; Cortés, J.; Villar, J.; Bravo-Ojeda, J.; García-Peña, A.; Adarme-Jaimes, W.; Rodríguez-Romero, V.; et al. Effectiveness of rosuvastatin plus colchicine, emtricitabine/tenofovir and combinations thereof in hospitalized patients with COVID-19: A pragmatic, open-label randomized trial. Eclinicalmedicine 2021, 43, 101242. [Google Scholar] [CrossRef]
- Hejazi, S.; Mircheraghi, F.; Elyasi, S.; Davoodian, N.; Salarbashi, D.; Majd, H.M. Atorvastatin efficacy in the management of mild to moderate hospitalized COVID-19: A pilot randomized triple-blind placebo-controlled clinical trial. Recent Adv. Anti-Infect. Drug Discov. 2022, 17, 212–222. [Google Scholar] [CrossRef]
- Al Sulaiman, K.; Aljuhani, O.; Korayem, G.B.; Altebainawi, A.F.; Al Harbi, S.; Al Shaya, A.; Badreldin, H.A.; Kensara, R.; Alharthi, A.F.; Alghamdi, J.; et al. The impact of HMG-CoA reductase inhibitors use on the clinical outcomes in critically ill patients with COVID-19: A multicenter, cohort study. Front. Public Health 2022, 10, 877944. [Google Scholar] [CrossRef]
- Martins-Filho, P.R.; Barreto-Filho, J.A.S.; Sousa, A.C.S. Effects of statins on clinical outcomes in hospitalized patients with COVID-19. Eur. J. Intern. Med. 2022, 104, 113–115. [Google Scholar] [CrossRef]
- Ghati, N.; Bhatnagar, S.; Mahendran, M.; Thakur, A.; Prasad, K.; Kumar, D.; Dwivedi, T.; Mani, K.; Tiwari, P.; Gupta, R.; et al. Statin and aspirin as adjuvant therapy in hospitalised patients with SARS-CoV-2 infection: A randomised clinical trial (RESIST trial). BMC Infect. Dis. 2022, 22, 606. [Google Scholar] [CrossRef]
- Permana, H.; Huang, I.; Purwiga, A.; Kusumawardhani, N.Y.; Sihite, T.A.; Martanto, E.; Wisaksana, R.; Soetedjo, N.N.M. In-hospital use of statins is associated with a reduced risk of mortality in coronavirus-2019 (COVID-19): Systematic review and meta-analysis. Pharmacol. Rep. 2021, 73, 769–780. [Google Scholar] [CrossRef]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.-S. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned from Major Clinical Studies. Front. Pharmacol. 2021, 12, 2942. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Hu, W.; Liu, L.; Li, X.; Han, J.; Chen, Y.; Duan, Y. Co-treatment of Pitavastatin and Dexamethasone Exacerbates the High-fat Diet–induced Atherosclerosis in apoE-deficient Mice. J. Cardiovasc. Pharmacol. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Ruiz-Palacios, G.M.; Hsieh, L.; Kline, S.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Wolfe, C.R.; Tomashek, K.M.; Patterson, T.F.; Gomez, C.A.; Marconi, V.C.; Jain, M.K.; Yang, O.O.; I Paules, C.; Palacios, G.M.R.; Grossberg, R.; et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): A randomised, double-blind, double placebo-controlled trial. Lancet Respir. Med. 2022, 10, 888–899. [Google Scholar] [CrossRef]
- Chow, C.K.; Atkins, E.R.; Hillis, G.S.; Nelson, M.R.; Reid, C.M.; Schlaich, M.P.; Hay, P.; Rogers, K.; Billot, L.; Burke, M.; et al. Initial treatment with a single pill containing quadruple combination of quarter doses of blood pressure medicines versus standard dose monotherapy in patients with hypertension (QUARTET): A phase 3, randomised, double-blind, active-controlled trial. Lancet 2021, 398, 1043–1052. [Google Scholar] [CrossRef]
- Castellano, J.M.; Pocock, S.J.; Bhatt, D.L.; Quesada, A.J.; Owen, R.; Fernandez-Ortiz, A.; Sanchez, P.L.; Ortuño, F.M.; Rodriguez, J.M.V.; Domingo-Fernández, A.; et al. Polypill Strategy in Secondary Cardiovascular Prevention. N. Engl. J. Med. 2022, 387, 967–977. [Google Scholar] [CrossRef]
- Basco, E.; Furlong, A.; Pfahler, L. Four health organizations, working closely together, spent almost $10 billion on responding to COVID across the world. But they lacked the scrutiny of governments and fell short of their own goals, a POLITICO and WELT investigation found. Politico 2022. [Google Scholar] [CrossRef]
- Pawlos, A.; Niedzielski, M.; Gorzelak-Pabiś, P.; Broncel, M.; Woźniak, E. COVID-19: Direct and Indirect Mechanisms of Statins. Int. J. Mol. Sci. 2021, 22, 4177. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.; Ravi, R.; Vangipurapu, J.; Laakso, M. Metabolite Signature of Simvastatin Treatment Involves Multiple Metabolic Pathways. Metabolites 2022, 12, 753. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Hraiech, S.; Loundou, A.; Truwit, J.; Kruger, P.; McAuley, D.; Papazian, L.; Roch, A. Statin therapy in critically-ill patients with severe sepsis: A review and meta-analysis of randomized clinical trials. Minerva Anestesiol. 2015, 81, 921–930. [Google Scholar] [PubMed]
- McAuley, D.F.; Laffey, J.G.; O’Kane, C.M.; Perkins, G.D.; Mullan, B.; Trinder, T.J.; Johnston, P.; A Hopkins, P.; Johnston, A.J.; Murphy, L.; et al. Simvastatin to reduce pulmonary dysfunction in patients with acute respiratory distress syndrome: The HARP-2 RCT. Effic. Mech. Eval. 2018, 5, 1–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddeley, M. Herding, social influences and behavioural bias in scientific research. EMBO Rep. 2015, 16, 902–905. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, M. Experts in policy land–insights from behavioural economics on improving experts’ advice for policy-makers. J. Behav. Econ. Policy 2017, 1, 27–31. Available online: http://sabeconomics.org/journal/RePEc/beh/JBEPv1/articles/ (accessed on 23 September 2019).
- Weingart, P.; van Schalkwyk, F.; Guenther, L. Democratic and expert legitimacy: Science, politics and the public during the COVID-19 pandemic. Sci. Public Policy 2022, 49, 499–517. [Google Scholar] [CrossRef]
- Phillips, N. The coronavirus is here to stay–here’s what that means. Nature 2021, 590, 382–384. [Google Scholar] [CrossRef]
- Callaway, E. Beyond Omicron: What’s next for COVID’s viral evolution. Nature 2021, 600, 204–207. [Google Scholar] [CrossRef]
- Spicer, A.J.; Jalkanen, S. Why Haven’t We Found an Effective Treatment for COVID-19? Front. Immunol. 2021, 12, 644850. [Google Scholar] [CrossRef]
- Hillis, S.; N’Konzi, J.-P.N.; Msemburi, W.; Cluver, L.; Villaveces, A.; Flaxman, S.; Unwin, H.J.T. Orphanhood and Caregiver Loss Among Children Based on New Global Excess COVID-19 Death Estimates. JAMA Pediatr. 2022, 176, 1145. [Google Scholar] [CrossRef]
- Levin, A.T.; Owusu-Boaitey, N.; Pugh, S.; Fosdick, B.K.; Zwi, A.B.; Malani, A.; Soman, S.; Besançon, L.; Kashnitsky, I.; Ganesh, S.; et al. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public policy implications. BMJ Glob. Health 2022, 7, e008477. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022, 400, 1224–1280. [Google Scholar] [CrossRef] [PubMed]
- Fedson, D.S. Clinician-initiated research on treating the host response to pandemic influenza. Hum. Vaccines Immunother. 2017, 14, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C. Fusing Randomized Trials with Big Data. JAMA 2015, 314, 767–768. [Google Scholar] [CrossRef]
- Frakt, A.B. An Observational Study Goes Where Randomized Clinical Trials Have Not. JAMA 2015, 313, 1091–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyman, G.H.; Kuderer, N.M. Randomized Controlled Trials Versus Real-World Data in the COVID-19 Era: A False Narrative. Cancer Investig. 2020, 38, 537–542. [Google Scholar] [CrossRef]
- Lim, H.-S.; Lee, S.; Kim, J.H. Real-world-evidence versus randomized controlled trials: Clinical research based on electronic medical records. J. Korean Med. Sci. 2018, 33, e213. [Google Scholar] [CrossRef]
- Randomization versus Real-World Evidence. N. Engl. J. Med. 2020, 383, e22351. [CrossRef]
- Forbes, S.P.; Dahabreh, I.J. Benchmarking Observational Analyses Against Randomized Trials: A Review of Studies Assessing Propensity Score Methods. J. Gen. Intern. Med. 2020, 35, 1396–1404. [Google Scholar] [CrossRef]
- Greenhalgh, T. Miasmas, mental models and preventive public health: Some philosophical reflections on science in the COVID-19 pandemic. Interface Focus 2021, 11, 20210017. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A. Methods of Public Health Research—Strengthening Causal Inference from Observational Data. N. Engl. J. Med. 2021, 385, 1345–1348. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Fisman, D.; Cane, D.J.; Oliver, M.; Macintyre, C.R. Adapt or die: How the pandemic made the shift from EBM to EBM+ more urgent. BMJ Evid.-Based Med. 2022, 27, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.M.; Platt, R.; Dreyer, N.A.; London, A.J.; Simon, G.E.; Watanabe, J.H.; Horberg, M.; Hernandez, A.; Califf, R.M. When Can Nonrandomized Studies Support Valid Inference Regarding Effectiveness or Safety of New Medical Treatments? Clin. Pharmacol. Ther. 2021, 111, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; E Pennini, M.; Bergmann, J.N.; Kozak, M.L.; Herring, K.; Sciarretta, K.L.; Armstrong, K.L. Applying Lessons Learned From COVID-19 Therapeutic Trials to Improve Future ALI/ARDS Trials. Open Forum Infect. Dis. 2022, 9, ofac381. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; McMurray, J.; Holman, R.R. Real-world studies no substitute for RCTs in establishing efficacy. Lancet 2019, 393, 210–211. [Google Scholar] [CrossRef]
- Collins, R.; Bowman, L.; Landray, M.; Peto, R. The Magic of Randomization versus the Myth of Real-World Evidence. N. Engl. J. Med. 2020, 382, 674–678. [Google Scholar] [CrossRef]
- Ioannidis, J.P. High-cited favorable studies for COVID-19 treatments ineffective in large trials. J. Clin. Epidemiol. 2022, 148, 1–9. [Google Scholar] [CrossRef]
- Wendler, D.; Anjum, S.; Williamson, P. Innovative treatment as a precursor to clinical research. J. Clin. Investig. 2021, 131, e152573. [Google Scholar] [CrossRef]
- Frieden, T.R. Evidence for Health Decision Making—Beyond Randomized, Controlled Trials. N. Engl. J. Med. 2017, 377, 465–475. [Google Scholar] [CrossRef]
- Fedson, D.S. The unforgiving arithmetic of pandemic. L’Osseratore Romano 2009, 28, 9. [Google Scholar]
- Hastie, C.E.; Lowe, D.J.; McAuley, A.; Winter, A.J.; Mills, N.L.; Black, C.; Scott, J.T.; O’Donnell, C.A.; Blane, D.N.; Browne, S.; et al. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat. Commun. 2022, 13, 5663. [Google Scholar] [CrossRef] [PubMed]
- Frere, J.J.; Serafini, R.A.; Pryce, K.D.; Zazhytska, M.; Oishi, K.; Golynker, I.; Panis, M.; Zimering, J.; Horiuchi, S.; Hoagland, D.A.; et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci. Transl. Med. 2022, 14, abq3059. [Google Scholar] [CrossRef]
- Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-directed immunotherapy of viral and bacterial infections: Past, present and future. Nat. Rev. Immunol. 2022, 23, 121–133. [Google Scholar] [CrossRef] [PubMed]
- van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.; Pickkers, P.; Derde, L.; Leavis, H.; van Crevel, R.; Engel, J.J.; Wiersinga, W.J.; Vlaar, A.P.J.; Shankar-Hari, M.; et al. A guide to immunotherapy for COVID-19. Nat. Med. 2022, 28, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease Tolerance as a Defense Strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Worlock, K.B.; Ni Huang, N.; Lindeboom, R.G.H.; Butler, C.R.; Kumasaka, N.; Conde, C.D.; Mamanova, L.; Bolt, L.; Richardson, L.; et al. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature 2021, 602, 321–327. [Google Scholar] [CrossRef]
- Maughan, E.F.; Hynds, R.E.; Pennycuick, A.; Nigro, E.; Gowers, K.H.; Denais, C.; Gómez-López, S.; Lazarus, K.A.; Orr, J.C.; Pearce, D.R.; et al. Cell-intrinsic differences between human airway epithelial cells from children and adults. iScience 2022, 25, 105409. [Google Scholar] [CrossRef]
- Schulman, A. Why Many Americans Turned on Anthony Fauci. The New York Times, 30 August 2022. [Google Scholar]
RCTs | Observational Studies | |
---|---|---|
Strengths | Randomization balances baseline characteristics | Rigor is enhanced by specific methods |
“Prospective” infrastructure collects pertinent data | Observational studies and RCTs with the same focus provide consistent results | |
Analytic methods are simple and straightforward | Treatments evaluated in large populations can be shown to be safe and effective | |
Limitations | Individual RCTs are often contradictory | Baseline characteristics are usually not well balanced |
Meta-analyses and large trials often disagree | Data quality can be variable | |
Limited generalizability | Analytical methods can be complex and obscure |
Treatment Guidelines | NIH Guidelines | ERS Guidelines |
---|---|---|
Antiviral Treatments Targeting the SARS-CoV-2 Virus | ||
HCQ/CQ | Not recommended | Strongly not recommended |
Remdesivir | Recommended | Conditionally recommended |
Favipiravir | Not mentioned | Not mentioned |
Convalescent plasma | Not recommended | Not recommended |
Ivermectin | Not recommended | Strongly not recommended |
Interferon–1β | Not mentioned | Conditionally not recommended |
Pegylated interferon-lambda | Not mentioned | Not mentioned |
Monoclonal antibodies specific for the anti-SARS-CoV-2 spike protein | Not mentioned | Recommended |
Paxlovid (Ritonavir-boosted nirmatrelvir | Recommended | Not mentioned |
Molnupiravir | Weakly recommended | Not mentioned |
Colchicine | Not recommended | Strongly not recommended |
Immunomodulators targeting the host response to infection | ||
Corticosteroids | Recommended, requiring O2 treatment only | Strongly recommended |
mAb—IL-1 receptor antagonist | Not recommended * | Conditionally not recommended |
mAb—IL-6 receptor antagonist | Recommended | Strongly recommended |
Fluvoxamine (SSRI) | Not recommended * | Not mentioned |
Janus kinase inhibitors | Strongly recommended | Strongly recommended |
Tyrosine kinase inhibitors | Not recommended * | Not mentioned |
Anticoagulation (LMWH) | Recommended | Strongly recommended |
Azithromycin | Not recommended | Not mentioned |
Azithromycin + HCQ | Not recommended | Not mentioned |
Inexpensive generic drugs targeting the host response | ||
Metformin | Not recommended * | Not mentioned |
PPARα, PPARγ agonists | Not mentioned | Not mentioned |
Statins, ACE inhibitors, ARBs | Not mentioned except for continuing treatment | Not mentioned |
Biomarker | Improve Inflammation/ Endothelial Barrier Integrity | Biomarker | Improve Inflammation/ Endothelial Barrier Integrity | Biomarker | Improve Inflammation/ Endothelial Barrier Integrity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Statin | ACEi | ARB | Statin | ACEi | ARB | Statin | ACEi | ARB | |||
Tyrosine kinase | yes | yes | yes | PAF | yes | yes | yes | PPAR α | yes | yes | yes |
Janus kinase | yes | yes | yes | PAR-1/PAR-2 | yes | yes | yes | PPAR γ | yes | yes | yes |
IL-1 | yes | yes | yes | α7 nicotinic aCh receptor | yes | yes | yes | ||||
IL-4 | yes | yes | yes | ROS | yes | yes | yes | RAGE | yes | yes | yes |
IL-6 | yes | yes | yes | β-arrestin | yes | yes | yes | Ferritin | yes | yes | yes |
IL-10 | yes | yes | yes | Inflammasome | yes | yes | yes | Mitochondria | yes | yes | yes |
IL-17 | yes | yes | yes | AMPK | yes | yes | yes | HO-1 | yes | yes | yes |
TNF | yes | yes | yes | MAPK/Akt | yes | yes | yes | KLF4 | yes | yes | yes |
HMBG1 | yes | yes | yes | MCP-1 | yes | yes | yes | ||||
Lipoxin A4 | yes | yes | yes | FOXP3 | yes | yes | yes | Angpt2/ Tie2 | yes | yes | yes |
T regs | yes | yes | yes | ACE2 | yes | yes | yes | ||||
HMBG1 | yes | yes | yes | NADPH oxidase | yes | yes | yes | eNOS/ iNOS | yes | yes | yes |
Thrombomodulin | yes | yes | yes | Interferon | yes | yes | yes | VCAM-1/ ICAM-1 | yes | yes | yes |
Thromboxane A2 | yes | yes | yes | TGF-β1 | yes | yes | yes | VE- cadherin | yes | yes | yes |
t-PA | yes | yes | yes | hs CRP | yes | yes | yes | Actin cytoskeleton | yes | yes | yes |
P-selectin/ E-selectin | yes | yes | yes | mTOR | yes | yes | yes | VEGF | yes | yes | yes |
PAI-1 | yes | yes | yes | Adiponectin | yes | yes | yes | Bradykinin | yes | yes | yes |
Study (Ref.) | Methods | No. of Statin Users | Adjusted OR/HR | 95% CI | p Value |
---|---|---|---|---|---|
Zhang [182] | PSM (4:1), CCS | 1219 | 0.58 | 0.43–0.80 | 0.001 |
Rodriguez-Nava [183] | ICU only, cohort, Cox regression | ns | 0.38 | 0.18–0.77 | 0.008 |
Mallow [184] | Cohort, multivariate regression | 5313 | 0.54 | 0.49–0.60 | <0.001 |
Saeed [185] | Diabetes mellitus, multivariate regression | 982 | 0.51 | 0.43–0.61 | <0.001 |
PSM (1:1), IPTW *, diabetes vs. no DM, | 0.88 | 0.84–0.91 | <0.001 | ||
Lala [186] | Adjusted for HRC, ACEi/ARB | 984 | 0.57 | 0.47–0.69 | <0.001 |
Fan [187] | PSM (1:1), cohort | 250 | 0.25 | 0.07–0.92 | 0.037 |
Rossi [188] | Observational study, compares only lipophilic/hydrophilic statins; no adjustment for HRC or other risk variables | 42 | ns | - | 0.025 |
Torres-Pena [189] | PSM (1:1), statins continued vs. withdrawal **, mixed effect logistic regression | 1130 | 0.67 | 0.54–0.84 | <0.001 |
Byttebier [26] | PSM (1:1), CCS | 297 | 0.56 | 0.39–0.93 | 0.020 |
Terleki [190] | Logistic regression | ns | 0.54 | 0.33–0.84 | 0.008 |
Lohia [191] | PSM (1:1), cohort | 250 | 0.47 | 0.32–0.70 | <0.001 |
Choi [192] | Cox regression, high intensity statin | 843 | 0.53 | 0.43–0.65 | not done |
Davoodi [199] | RCT, atorvastatin, 20 mg for 5 days | 20 | no deaths | - | - |
Shen [193] | PSM (1:1), logistic regression | 404 | 0.47 | 0.29–0.77 | <0.001 |
Ayeh [194] | PSM (1:1), Cox regression | 594 | 0.92 | 0.53–1.59 | ns |
Masana [195] | GM (1:1) | 336 | 0.60 | 0.39–0.92 | 0.020 |
Memel [169] | marginal structural Cox regression, IPTW, statin treatment vs. no treatment | 777 | 0.57 | 0.37–0.86 | 0.008 |
statins continued vs. withdrawal *** | - | 0.27 | 0.11–0.64 | 0.003 | |
Matli [200] | RCT, Cox regression, atorvastatin 20 mg + other drugs | 17 | 1.43 | 0.28–13.16 | 0.644 |
Ghafoori [201] | RCT, Cox regression, atorvastatin 20 mg | 76 | ns (multiple outcomes including ICU admissions and deaths | ns | 0.27 |
I.S.Investigators [202] | RCT, ICU, atorvastatin 20 mg | 210 | 0.84 | 0.58–1.22 | 0.39 |
Gaitan-Duarte [203] | RCT, rosuvastatin 40 mg + other drugs | 159 | 0.53 | 0.29–0.56 | 0.038 |
Kuno [196] | PSM (1:1), statins continued vs. withdrawal | 671 | 0.53 | 0.41–0.62 | <0.001 |
Li [197] | PSM (1:1) | 3359 | 0.72 | 0.64–0.80 | <0.001 |
Kouhpeikar [198] | Cox regression, composite outcome (mortality, ICU, ventilation) | 162 | 0.57 | 0.33–0.99 | 0.048 |
Andrews [170] | Logistic regression | 26,893 | 0.72 | 0.68–0.77 | <0.001 |
Al Harbi [158] | PSM (1:1), ICU, Cox proportional hazard regression | 198 | 0.72 | 0.54–0.97 | 0.030 |
Al-Sulaiman [205] | PSM (1:1), ICU, Cox proportional hazard regression | 251 | 0.75 | 0.58–0.98 | 0.03 |
Hejazi [204] | RCT | 26 | ns (mortality was twice as high in control patients) | ns | ns |
Choose Drugs That Are |
|
Plan Clinical studies of Host Response Treatment |
|
Plan What to Do with the Results |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedson, D.S. Treating COVID-19: Targeting the Host Response, Not the Virus. Life 2023, 13, 712. https://doi.org/10.3390/life13030712
Fedson DS. Treating COVID-19: Targeting the Host Response, Not the Virus. Life. 2023; 13(3):712. https://doi.org/10.3390/life13030712
Chicago/Turabian StyleFedson, David S. 2023. "Treating COVID-19: Targeting the Host Response, Not the Virus" Life 13, no. 3: 712. https://doi.org/10.3390/life13030712
APA StyleFedson, D. S. (2023). Treating COVID-19: Targeting the Host Response, Not the Virus. Life, 13(3), 712. https://doi.org/10.3390/life13030712