Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection
Abstract
:1. Introduction
2. Left Ventricular Assist Devices Evolution
3. LVAD as a Destination Therapy: Prognosis and Survival
Quality of Life and Secondary Outcomes
4. LVAD Center
5. Patient Selection: At the Right Time
6. Patient Selection: Clinical Risk Factors and Checklist
6.1. Age
6.2. Cardiovascular Risk Factors: Diabetes and Obesity
6.3. Renal Disfunction
6.4. Liver Dysfunction
6.5. Cardiac Conditions
6.6. Medical Background
6.7. Basal Situation and Frailty
6.8. Risk Assessment
6.9. Right Ventricular Failure
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AHF | Advanced heart failure |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
BMI | Body mass index |
CKD | Chronic kidney disease |
CKD-EPI | eGFR calculated by chronic kidney disease epidemiology collaboration |
DT | Destination therapy |
EF | Ejection fraction |
eGFR | Glomerular filtration rate |
FDA | Food and drug administration |
FENa | Fractional excretion of sodium |
FEUN | Fractional excretion of urea-nitrogen |
HF | Heart failure |
HT | Heart transplantation |
HVAD | HeartWare |
ICD | Implantable cardioverter defibrillator |
ISHLT | International Society for Heart and Lung Transplantation |
LVAD | Left ventricular assist device |
MCS | Mechanical circulation support |
MELD | Model for End-Stage Liver disease |
NYHA | New York Heart Association class |
OMT | Optimal medical therapy |
PCP | Pulmonary capillary wedge pressure |
QoL | Quality of life |
RVF | Right ventricular failure |
RVAD | Right ventricular assist device |
References
- Roger, V.L. Epidemiology of Heart Failure. Circ. Res. 2021, 128, 1421–1434. [Google Scholar] [CrossRef]
- Conrad, N.; Judge, A.; Canoy, D.; Tran, J.; Pinho-Gomes, A.-C.; Millett, E.R.C.; Salimi-Khorshidi, G.; Cleland, J.G.; McMurray, J.J.V.; Rahimi, K. Temporal Trends and Patterns in Mortality after Incident Heart Failure: A Longitudinal Analysis of 86,000 Individuals. JAMA Cardiol. 2019, 4, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Ulrichsen, S.P.; Pedersen, L.; Bøtker, H.E.; Sørensen, H.T. Thirty-year trends in heart failure hospitalization and mortality rates and the prognostic impact of co-morbidity: A Danish nationwide cohort study. Eur. J. Heart Fail. 2016, 18, 490–499. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Khush, K.K.; Hsich, E.; Potena, L.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D.; Perch, M.; Sadavarte, A.; Toll, A.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eighth adult heart transplantation report—2021; Focus on recipient characteristics. J. Heart Lung Transplant. 2021, 40, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Potapov, E.V.; Antonides, C.; Crespo-Leiro, M.G.; Combes, A.; Färber, G.; Hannan, M.M.; Kukucka, M.; De Jonge, N.; Loforte, A.; Lund, L.H.; et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur. J. Cardio-Thorac. Surg. 2019, 56, 230–270. [Google Scholar] [CrossRef]
- Theochari, C.A.; Michalopoulos, G.; Oikonomou, E.K.; Giannopoulos, S.; Doulamis, I.P.; Villela, M.A.; Kokkinidis, D.G. Heart transplantation versus left ventricular assist devices as destination therapy or bridge to transplantation for 1-year mortality: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2018, 7, 3–11. [Google Scholar] [CrossRef]
- Fukunaga, N.; Rao, V. Left ventricular assist device as destination therapy for end stage heart failure: The right time for the right patients. Curr. Opin. Cardiol. 2018, 33, 196–201. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Muñoz-Guijosa, C.; Santiago-Vacas, E.; Montero, S.; García-García, C.; Codina, P.; Núñez, J.; Lupón, J. Destination therapy with left ventricular assist devices in non-transplant centres: The time is right. Eur. Cardiol. Rev. 2020, 15, e19. [Google Scholar] [CrossRef]
- Dembitsky, W.P.; Tector, A.J.; Park, S.; Moskowitz, A.; Gelijns, A.C.; Ronan, N.S.; Piccione, W.; Holman, W.L.; Furukawa, S.; Weinberg, A.D.; et al. Left Ventricular Assist Device Performance with Long-Term Circulatory Support: Lessons from the REMATCH Trial. Ann. Thorac. Surg. 2004, 78, 2123–2130. [Google Scholar] [CrossRef]
- Starling, R.C.; Estep, J.D.; Horstmanshof, D.A.; Milano, C.A.; Stehlik, J.; Shah, K.B.; Bruckner, B.A.; Lee, S.; Long, J.W.; Selzman, C.H.; et al. Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients: The ROADMAP Study 2-Year Results. JACC Heart Fail. 2017, 5, 518–527. [Google Scholar] [CrossRef] [PubMed]
- di Donato, M.; Toso, A.; Maioli, M.; Sabatier, M.; Stanley, A.W.H.; Dor, V. Intermediate survival and predictors of death after surgical ventricular restoration. Semin. Thorac. Cardiovasc. Surg. 2001, 13, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Yuzefpolskaya, M.; Schroeder, S.E.; Houston, B.A.; Robinson, M.R.; Gosev, I.; Reyentovich, A.; Koehl, D.; Cantor, R.; Jorde, U.P.; Kirklin, J.K.; et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on 2018 Heart Transplant Allocation System. Ann. Thorac. Surg. 2023, 115, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Cassina, A.M. Dispositivos de asistencia ventricular de tipo axial. Cirugía Cardiovasc. 2009, 16, 131–137. [Google Scholar] [CrossRef]
- Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M.; Long, J.W.; et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. N. Engl. J. Med. 2009, 361, 2241–2251. [Google Scholar] [CrossRef]
- Zucchetta, F.; Tarzia, V.; Bottio, T.; Gerosa, G. The Jarvik-2000 ventricular assist device implantation: How we do it. Ann. Cardiothorac. Surg. 2014, 3, 525. [Google Scholar] [CrossRef]
- Evaluation of the Jarvik 2000 Left Ventricular Assist System with Post-Auricular Connector—Destination Therapy Study—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01627821 (accessed on 8 December 2022).
- Pumps for Kids, Infants, and Neonates—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02954497 (accessed on 8 December 2022).
- Rogers, J.G.; Pagani, F.D.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Boyce, S.W.; Najjar, S.S.; Jeevanandam, V.; Anderson, A.S.; et al. Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 451–460. [Google Scholar] [CrossRef]
- Agarwal, R.; Kyvernitakis, A.; Soleimani, B.; Milano, C.A.; Davis, R.P.; Kennedy, J.L.; Yarboro, L.; Benza, R.L.; Moraca, R.J.; Bailey, S.H. Clinical Experience of HeartMate II to HeartWare Left Ventricular Assist Device Exchange: A Multicenter Experience. Ann. Thorac. Surg. 2019, 108, 1178–1182. [Google Scholar] [CrossRef]
- Aaronson, K.D.; Slaughter, M.S.; Miller, L.W.; McGee, E.C.; Cotts, W.G.; Acker, M.A.; Jessup, M.L.; Gregoric, I.D.; Loyalka, P.; Frazier, O.H.; et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 2012, 125, 3191–3200. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-Year Outcomes in Patients with Fully Magnetically Levitated vs. Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA 2022, 328, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Marasco, S.; Simon, A.R.; Tsui, S.; Schramm, R.; Eifert, S.; Hagl, C.M.; Paç, M.; Kervan, Ü.; Fiane, A.E.; Wagner, F.M.; et al. International experience using a durable, centrifugal-flow ventricular assist device for biventricular support. J. Heart Lung Transplant. 2020, 39, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Gasparovic, H.; Milicic, D.; Krželj, K.; Paar, M.H.; Kopjar, T.; Jakus, N.; Planinc, I.; Cikes, M. HeartMate 3 biventricular support exceeding 4.5 years. ESC Heart Fail. 2023. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, G.; Kędziora, A.; Wiśniowska-Śmiałek, S.; Tomsia, P.; Kaleta, M.; Wierzbicki, K. Outcomes in Patients with HeartMate3 Versus HeartWare Ventricular Assist Device Implanted as Destination Therapy. Transplant. Proc. 2022, 54, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.R.; Slaughter, M.S.; Ahmed, M.M.; Bartoli, C.R.; Dhingra, R.; Egnaczyk, G.F.; Gulati, S.K.; Kiernan, M.S.; Mahr, C.; Meyer, D.M.; et al. COMPETENCE Trial: The EVAHEART 2 continuous flow left ventricular assist device. J. Heart Lung Transplant. 2023, 42, 33–39. [Google Scholar] [CrossRef]
- Bonacchi, M.; Harmelin, G.; Bugetti, M.; Sani, G. Mechanical Ventricular Assistance as Destination Therapy for End-Stage Heart Failure: Has it Become a First Line Therapy? Front. Surg. 2015, 2, 35. [Google Scholar] [CrossRef]
- Sidhu, K.; Lam, P.H.; Mehra, M.R. Evolving trends in mechanical circulatory support: Clinical development of a fully magnetically levitated durable ventricular assist device. Trends Cardiovasc. Med. 2020, 30, 223–229. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Teuteberg, J.J.; Hunt, S.A. Innovations in Ventricular Assist Devices for End-Stage Heart Failure. Annu. Rev. Med. 2019, 70, 33–44. [Google Scholar] [CrossRef]
- Pya, Y.; Maly, J.; Bekbossynova, M.; Salov, R.; Schueler, S.; Meyns, B.; Kassif, Y.; Massetti, M.; Zilbershlag, M.; Netuka, I. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J. Heart Lung Transplant. 2019, 38, 339–343. [Google Scholar] [CrossRef]
- Molina, E.J.; Shah, P.; Kiernan, M.S.; Cornwell, W.K.; Copeland, H.; Takeda, K.; Fernandez, F.G.; Badhwar, V.; Habib, R.H.; Jacobs, J.P.; et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thorac. Surg. 2021, 111, 778–792. [Google Scholar] [CrossRef]
- Goldstein, D.J.; Naka, Y.; Horstmanshof, D.; Ravichandran, A.K.; Schroder, J.; Ransom, J.; Itoh, A.; Uriel, N.; Cleveland, J.C.; Raval, N.Y.; et al. Association of Clinical Outcomes with Left Ventricular Assist Device Use by Bridge to Transplant or Destination Therapy Intent: The Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.G.; Butler, J.; Lansman, S.L.; Gass, A.; Portner, P.M.; Pasque, M.K.; Pierson, R.N. Chronic Mechanical Circulatory Support for Inotrope-Dependent Heart Failure Patients Who Are Not Transplant Candidates: Results of the INTrEPID Trial. J. Am. Coll. Cardiol. 2007, 50, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Cantor, R.; Mohacsi, P.; Gummert, J.; De By, T.; Hannan, M.M.; Kormos, R.L.; Schueler, S.; Lund, L.H.; Nakatani, T.; et al. First Annual IMACS Report: A global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support. J. Heart Lung Transplant. 2016, 35, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Xie, R.; Cowger, J.; de By, T.M.; Nakatani, T.; Schueler, S.; Taylor, R.; Lannon, J.; Mohacsi, P.; Gummert, J.; et al. Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry. J. Heart Lung Transplant. 2018, 37, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Ambardekar, A.V.; Kittleson, M.M.; Palardy, M.; Mountis, M.M.; Forde-McLean, R.C.; DeVore, A.D.; Pamboukian, S.V.; Thibodeau, J.T.; Teuteberg, J.J.; Cadaret, L.; et al. Outcomes with ambulatory advanced heart failure from the Medical Arm of Mechanically Assisted Circulatory Support (MedaMACS) Registry. J. Heart Lung Transplant. 2019, 38, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Sayer, G.; Anderson, A.; Raichlin, E.; Gupta, C.; Kim, G.; Raikhelkar, J.; Vorovich, E.; Pham, D.; Jeevanandam, V.; Song, T.; et al. Heart Failure Clinicians Want to Revive the REVIVE-IT Study Following the Results of the MOMENTUM 3 and ENDURANCE Supplement Trials. J. Heart Lung Transplant. 2018, 37, S466. [Google Scholar] [CrossRef]
- Estep, J.D.; Starling, R.C.; Horstmanshof, D.A.; Milano, C.A.; Selzman, C.H.; Shah, K.B.; Loebe, M.; Moazami, N.; Long, J.W.; Stehlik, J.; et al. Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients: Results from the ROADMAP Study. J. Am. Coll. Cardiol. 2015, 66, 1747–1761. [Google Scholar] [CrossRef]
- Albert, N.M.; Fonarow, G.C.; Abraham, W.T.; Gheorghiade, M.; Greenberg, B.H.; Nunez, E.; O’Connor, C.M.; Stough, W.G.; Yancy, C.W.; Young, J.B. Depression and clinical outcomes in heart failure: An OPTIMIZE-HF analysis. Am. J. Med. 2009, 122, 366–373. [Google Scholar] [CrossRef]
- Johansson, I.; Joseph, P.; Balasubramanian, K.; McMurray, J.J.; Lund, L.H.; Ezekowitz, J.A.; Kamath, D.; Alhabib, K.; Bayes-Genis, A.; Budaj, A.; et al. Health-Related Quality of Life and Mortality in Heart Failure: The Global Congestive Heart Failure Study of 23,000 Patients From 40 Countries. Circulation 2021, 143, 2129–2142. [Google Scholar] [CrossRef]
- Kato, N.P.; Okada, I.; Imamura, T.; Kagami, Y.; Endo, M.; Nitta, D.; Fujino, T.; Muraoka, H.; Minatsuki, S.; Maki, H.; et al. Quality of Life and Influential Factors in Patients Implanted with a Left Ventricular Assist Device. Circ. J. 2015, 79, 2186–2192. [Google Scholar] [CrossRef]
- Levelink, M.; Brütt, A.L. Factors influencing health-related quality of life of patients with a left ventricular assist device: A systematic review and thematic synthesis. Eur. J. Cardiovasc. Nurs. 2021, 20, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Magasi, S.; Buono, S.; Yancy, C.W.; Ramirez, R.D.; Grady, K.L. Preparedness and Mutuality Affect Quality of Life for Patients with Mechanical Circulatory Support and Their Caregivers. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e004414. [Google Scholar] [CrossRef]
- Lotan, D.; Oren, D.; Bae, D.; Mulcahy, S.; Atanda, A.; DeFilippis, E.; Fried, J.; Raikhelkar, J.; Clerkin, K.; Topkara, V.; et al. Shared Care Program for Left Ventricular Assist Device (LVAD) Patients: Clinical Experience and Interim Report. J. Heart Lung Transplant. 2022, 41, S357. [Google Scholar] [CrossRef]
- Katz, M.R.; Dickinson, M.G.; Raval, N.Y.; Slater, J.P.; Dean, D.A.; Zeevi, G.R.; Horn, E.M.; Salemi, A. Outcomes of patients implanted with a left ventricular assist device at nontransplant mechanical circulatory support centers. Am. J. Cardiol. 2015, 115, 1254–1259. [Google Scholar] [CrossRef]
- Barrio, A.; Dobarro, D.; Alzola, E.; Raposeiras, S.; González-Santos, J.M.; Sánchez, P.L. Durable left ventricular assist device therapy in non transplant centers in Spain: Initial experience. Rev. Española Cardiol. 2020, 73, 338–340. [Google Scholar] [CrossRef]
- Brinkley, D.M.; DeNofrio, D.; Ruthazer, R.; Vest, A.R.; Kapur, N.K.; Couper, G.S.; Kiernan, M.S. Outcomes after Continuous-Flow Left Ventricular Assist Device Implantation as Destination Therapy at Transplant Versus Nontransplant Centers. Circ. Heart Fail. 2018, 11, e004384. [Google Scholar] [CrossRef]
- Schroeder, S.E.; Boschi, S.; Schlöglhofer, T. The role of the ventricular assist device coordinator: Quo vadis? Ann. Cardiothorac. Surg. 2021, 10, 386. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef]
- Stevenson, L.W.; Pagani, F.D.; Young, J.B.; Jessup, M.; Miller, L.; Kormos, R.L.; Naftel, D.C.; Ulisney, K.; Desvigne-Nickens, P.; Kirklin, J.K. INTERMACS profiles of advanced heart failure: The current picture. J. Heart Lung Transplant. 2009, 28, 535–541. [Google Scholar] [CrossRef]
- Baldwin, J.T.; Mann, D.L. NHLBI’s program for VAD therapy for moderately advanced heart failure: The REVIVE-IT pilot trial. J. Card. Fail. 2010, 16, 855–858. [Google Scholar] [CrossRef]
- Pagani, F.D.; Aaronson, K.D.; Kormos, R.; Mann, D.L.; Spino, C.; Jeffries, N.; Taddei-Peters, W.C.; Mancini, D.M.; McNamara, D.M.; Grady, K.L.; et al. The NHLBI REVIVE-IT study: Understanding its discontinuation in the context of current left ventricular assist device therapy. J. Heart Lung Transplant. 2016, 35, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M.; Ambardekar, A.V.; Stevenson, L.W.; Gilotra, N.A.; Shah, P.; Ewald, G.A.; Thibodeau, J.T.; Stehlik, J.; Palardy, M.; Estep, J.D.; et al. An early relook identifies high-risk trajectories in ambulatory advanced heart failure. J. Heart Lung Transplant. 2022, 41, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Aleksova, N.; Alba, A.C.; Fan, C.-P.S.; Amin, F.; Kiamanesh, O.; McGuinty, C.; Lee, H.; Posada, J.G.D.; Ross, H.J.; Billia, F.; et al. The Effect of Age on Outcomes after Destination-Therapy Left Ventricular Assist Device Implantation: An Analysis of the IMACS Registry. Can. J. Cardiol. 2021, 37, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Emerson, D.; Chikwe, J.; Catarino, P.; Hassanein, M.; Deng, L.; Cantor, R.S.; Roach, A.; Cole, R.; Esmailian, F.; Kobashigawa, J.; et al. Contemporary Left Ventricular Assist Device Outcomes in an Aging Population: An STS INTERMACS Analysis. J. Am. Coll. Cardiol. 2021, 78, 883–894. [Google Scholar] [CrossRef]
- Gómez-Bueno, M.; de la Sota, E.P.; Gil, A.F.; Ortiz-Berbel, D.; Castrodeza, J.; Carmena, M.D.G.-C.; Barge-Caballero, E.; Sousa, D.R.; Molina, B.D.; Antón, R.M.; et al. Durable ventricular assist device in Spain (2007–2020). First report of the REGALAD registry. Rev. Española Cardiol. 2023, 76, 227–237. [Google Scholar] [CrossRef]
- Pagani, F.D. Is Durable Left Ventricular Assist Device Therapy a Viable Option for the Elderly? J. Am. Coll. Cardiol. 2021, 78, 895–897. [Google Scholar] [CrossRef]
- Kogan, A.; Frogel, J.; Ram, E.; Jamal, T.; Peled-Potashnik, Y.; Maor, E.; Grupper, A.; Morgan, A.; Segev, A.; Raanani, E.; et al. The impact of diabetes on short-, intermediate- and long-term mortality following left ventricular assist device implantation. Eur. J. Cardio-Thorac. Surg. 2022, 61, 1432–1437. [Google Scholar] [CrossRef]
- Forest, S.; Xie, R.; Kirklin, J.; Cowger, J.; Xia, Y.; Dipchand, A.; Sivathasan, C.; Merry, C.; Lund, L.; Kormos, R.; et al. Adverse Events after Device Implantation Are More Common in Obese Patients: An IMACS Registry Analysis. J. Heart Lung Transplant. 2017, 36, S184. [Google Scholar] [CrossRef]
- Angleitner, P.; Kaider, A.; De By, T.M.M.H.; Dimitrov, K.; Schlöglhofer, T.; Tops, L.F.; Fiane, A.E.; Rábago, G.; Laufer, G.; Zimpfer, D. Obesity and outcomes after left ventricular assist device implantation: Insights from the EUROMACS Registry. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac401. [Google Scholar] [CrossRef]
- Jaiswal, A.; Truby, L.K.; Chichra, A.; Jain, R.; Myers, L.; Patel, N.; Topkara, V.K. Impact of Obesity on Ventricular Assist Device Outcomes. J. Card. Fail. 2020, 26, 287–297. [Google Scholar] [CrossRef]
- McElderry, B.; Alvarez, P.; Hanna, M.; Chaudhury, P.; Bhat, P.; Starling, R.C.; Desai, M.; Mentias, A. Outcomes of bariatric surgery in patients with left ventricular assist device. J. Heart Lung Transplant. 2022, 41, 914–918. [Google Scholar] [CrossRef]
- Gerhardt, L.M.S.; Kordsmeyer, M.; Sehner, S.; Güder, G.; Störk, S.; Edelmann, F.; Wachter, R.; Pankuweit, S.; Prettin, C.; Ertl, G.; et al. Prevalence and prognostic impact of chronic kidney disease and anaemia across ACC/AHA precursor and symptomatic heart failure stages. Clin. Res. Cardiol. 2022, 1–12. [Google Scholar] [CrossRef]
- Kamboj, M.; Kazory, A. Left Ventricular Assist Device and the Kidney: Getting to the Heart of the Matter. Blood Purif. 2019, 48, 289–298. [Google Scholar] [CrossRef]
- Muslem, R.; Caliskan, K.; Akin, S.; Hesselink, D.A.; Whitman, G.; Tedford, R.; Bogers, A.J.; Manintveld, O.; Russell, S. Proteinuria in Patients Receiving Left Ventricular Assist Devices Is Highly Associated with Renal Failure and Mortality. J. Am. Coll. Cardiol. 2017, 69, 699. [Google Scholar] [CrossRef]
- Wettersten, N.; Estrella, M.; Brambatti, M.; Horiuchi, Y.; Adler, E.; Pretorius, V.; Murray, P.T.; Shlipak, M.; Ix, J.H. Kidney Function Following Left Ventricular Assist Device Implantation: An Observational Cohort Study. Kidney Med. 2021, 3, 378. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Testani, J.M.; Martens, P.; Mueller, C.; Lassus, J.; Tang, W.W.; Skouri, H.; Verbrugge, F.H.; Orso, F.; et al. Evaluation of kidney function throughout the heart failure trajectory—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 584–603. [Google Scholar] [CrossRef]
- Roehm, B.; Vest, A.R.; Weiner, D.E. Left Ventricular Assist Devices, Kidney Disease, and Dialysis. Am. J. Kidney Dis. 2018, 71, 257–266. [Google Scholar] [CrossRef]
- Mehaffey, J.H.; Cantor, R.; Myers, S.; Teman, N.R.; Kern, J.A.; Ailawadi, G.; Pagani, F.; Kirklin, J.; Yount, K.; Yarboro, L. Impact of preoperative versus postoperative dialysis on left ventricular assist device outcomes: An analysis from the Society of Thoracic Surgeons Interagency Registry for Mechanically Assisted Circulatory Support database. JTCVS Open 2022, 9, 122–143. [Google Scholar] [CrossRef]
- Lakhdar, S.; Nassar, M.; Buttar, C.; Perez, L.M.G.; Akbar, S.; Zafar, A.; Munira, M. Outcomes with Left Ventricular Assist Device in End-Stage Renal Disease: A Systematic Review. Cureus 2022, 14, e24227. [Google Scholar] [CrossRef]
- Walther, C.P.; Niu, J.; Winkelmayer, W.C.; Cheema, F.H.; Nair, A.P.; Morgan, J.A.; Fedson, S.E.; Deswal, A.; Navaneethan, S.D. Implantable Ventricular Assist Device Use and Outcomes in People with End-Stage Renal Disease. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2018, 7, e008664. [Google Scholar] [CrossRef]
- Kono, H.; Kitai, T.; Kim, K.; Kobori, A.; Ehara, N.; Kinoshita, M.; Kaji, S.; Furukawa, Y. Fractional Excretion of Sodium after the Treatment of Acute Decompensated Heart Failure Predicts the Prognosis. J. Am. Coll. Cardiol. 2019, 73, 1002. [Google Scholar] [CrossRef]
- Ahmadi, F.; Torfi, E.; Mohammadreza Afshani, S.; Kazemi-Mansourabad, S.; Hayati, F. Can fractional excretion of sodium predict worsening of renal function, in-hospital mortality, and length of hospital stay in acute decompensated heart failure? ARYA Atheroscler. 2021, 17, 1. [Google Scholar] [CrossRef]
- Nogi, K.; Kawakami, R.; Ueda, T.; Nogi, M.; Ishihara, S.; Nakada, Y.; Hashimoto, Y.; Nakagawa, H.; Nishida, T.; Seno, A.; et al. Prognostic value of fractional excretion of urea nitrogen at discharge in acute decompensated heart failure. J. Am. Heart Assoc. 2021, 10, 20480. [Google Scholar] [CrossRef]
- Carvounis, C.P.; Nisar, S.; Guro-Razuman, S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002, 62, 2223–2229. [Google Scholar] [CrossRef]
- Abbate, M.; Zoja, C.; Remuzzi, G. How Does Proteinuria Cause Progressive Renal Damage? J. Am. Soc. Nephrol. 2006, 17, 2974–2984. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, X.; Dekkers, I.A.; Lamb, H.J. Cardiorenal Syndrome: Emerging Role of Medical Imaging for Clinical Diagnosis and Management. J. Pers. Med. 2021, 11, 734. [Google Scholar] [CrossRef]
- Pasrija, C.; Tran, D.; George, P.; Sorensen, E.; Kaczorowski, D.J.; Ton, V.-K.; Kon, Z.N.; Vorhees, H.; Sawan, M.; Griffith, B.P. Left ventricular assist device implantation may be feasible in appropriately selected patients with severe renal insufficiency. J. Thorac. Cardiovasc. Surg. 2020, 159, 1307–1319.e2. [Google Scholar] [CrossRef]
- Aldiabat, M.; Horoub, A.; Yusuf, M.; Al Jabiri, Y.; Al Khateeb, M.; Alkhdour, M.; Al-Ahmad, M.F.N.; Mahfouz, R.; Alabdallah, K. B-2|Liver Cirrhosis Dose Not Carry Higher Risk of Mortality in Patients Undergoing Left Ventricular Assist Device Placement: A Retrospective Cohort of Seventy-Five Thousand Patients. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100109. [Google Scholar] [CrossRef]
- Sandoval, E.; Carillo, J.A.; Singh, S.K. Prometheus’ predicament: How to address contemporary left ventricular assist devices in patients with liver dysfunction. J. Thorac. Cardiovasc. Surg. 2016, 151, 236–237. [Google Scholar] [CrossRef]
- Yang, J.A.; Kato, T.S.; Shulman, B.P.; Takayama, H.; Farr, M.; Jorde, U.P.; Mancini, D.M.; Naka, Y.; Schulze, P.C. Liver Dysfunction as a Predictor of Outcomes in Patients with Advanced Heart Failure Requiring Ventricular Assist Device Support—Utilization of the MELD and MELD-XI Scoring System. J. Heart Lung Transplant. 2012, 31, 601. [Google Scholar] [CrossRef]
- Robertson, J.O.; Naftel, D.C.; Myers, S.L.; Prasad, S.; Mertz, G.D.; Itoh, A.; Pagani, F.D.; Kirklin, J.K.; Silvestry, S.C. Concomitant aortic valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: An INTERMACS database analysis. J. Heart Lung Transplant. 2015, 34, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Massie, E.; Boulet, J.; de Marco, C.; Noly, P.; Mondésert, B.; Ducharme, A. Ventricular Arrhythmias and Implantable Cardioverter-Defibrillator Use in Patients with Left-Ventricular Assist Device: Validation of the VT-LVAD Prediction Score. J. Heart Lung Transplant. 2022, 41, S357. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Topkara, V.K.; Demmer, R.T.; Dizon, J.M.; Yuzefpolskaya, M.; Fried, J.A.; Mai, X.; Mancini, D.M.; Takeda, K.; Takayama, H.; et al. Implantable Cardioverter-Defibrillators in Patients with a Continuous-Flow Left Ventricular Assist Device: An Analysis of the INTERMACS Registry. JACC Heart Fail. 2017, 5, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.; Jain, A.; Ahmed, S.; Lam, P.; Rao, S.; Hockstein, M.; Kadakkal, A.; Hofmeyer, M.; Rodrigo, M.; Chou, J.; et al. The impact of left ventricular size on outcomes after centrifugal-flow left ventricular assist device implantation. Eur. J. Cardiothorac. Surg. 2022, 62, ezab480. [Google Scholar] [CrossRef] [PubMed]
- Ozbaran, M.; Yagdi, T.; Engin, C.; Nalbantgil, S.; Ozturk, P. Left ventricular assist device implantation with left lateral thoracotomy with anastomosis to the descending aorta. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 186–190. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Lee, J.; Elbatarny, M.; Friedrich, J.O.; Singh, S.; Yau, T.; Yanagawa, B. Left ventricular assist device implantation via lateral thoracotomy: A systematic review and meta-analysis. J. Heart Lung Transplant. 2022, 41, 1440–1458. [Google Scholar] [CrossRef]
- Schlam, I.; Lee, A.Y.; Li, S.; Sheikh, F.H.; Zaghlol, R.; Basyal, B.; Gallagher, C.; Molina, E.; Mahr, C.; Cheng, R.K.; et al. Left Ventricular Assist Devices in Patients with Active Malignancies. Cardio Oncol. 2021, 3, 305–315. [Google Scholar] [CrossRef]
- Maynes, E.J.; Gordon, J.S.; Weber, M.P.; O’malley, T.J.; Bauer, T.M.; Wood, C.T.; Morris, R.J.; Samuels, L.E.; Entwistle, J.W.; Massey, H.T.; et al. Development of malignancies and their outcomes in patients supported on continuous-flow left ventricular assist devices—A systematic review. Ann. Cardiothorac. Surg. 2021, 10, 30110–30310. [Google Scholar] [CrossRef]
- Mulzer, J.; Müller, M.; Schoenrath, F.; Falk, V.; Potapov, E.; Knierim, J. Left Ventricular Assist Device Implantation in Cancer-Therapy-Related Heart Failure. Life 2022, 12, 1485. [Google Scholar] [CrossRef]
- Bhat, G.; Yost, G.; Mahoney, E. Cognitive function and left ventricular assist device implantation. J. Heart Lung Transplant. 2015, 34, 1398–1405. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Flint, K.M.; Matlock, D.D.; Lindenfeld, J.A.; Allen, L.A. Frailty and the selection of patients for destination therapy left ventricular assist device. Circ. Heart Fail. 2012, 5, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Tse, G.; Gong, M.; Wong, S.H.; Wu, W.K.; Bazoukis, G.; Lampropoulos, K.; Wong, W.T.; Xia, Y.; Wong, M.C.; Liu, T.; et al. Frailty and Clinical Outcomes in Advanced Heart Failure Patients Undergoing Left Ventricular Assist Device Implantation: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2018, 19, 255–261.e1. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.N.; Wu, D.S.; Pointer, L.; Dunn, C.L.; Cleveland, J.C.; Moss, M. Simple frailty score predicts postoperative complications across surgical specialties. Am. J. Surg. 2013, 206, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Ritt, M.; Schwarz, C.; Kronawitter, V.; Delinic, A.; Bollheimer, L.C.; Gassmann, K.-G.; Sieber, C.C. Analysis of Rockwood et Al’s Clinical Frailty Scale and Fried et Al’s Frailty Phenotype as Predictors of Mortality and Other Clinical Outcomes in Older Patients Who Were Admitted to a Geriatric Ward. J. Nutr. Health Aging 2015, 19, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Amblàs-Novellas, J.; Martori, J.C.; Espaulella, J.; Oller, R.; Molist-Brunet, N.; Inzitari, M.; Romero-Ortuno, R. Frail-VIG index: A concise frailty evaluation tool for rapid geriatric assessment. BMC Geriatr. 2018, 18, 29. [Google Scholar] [CrossRef]
- Mehra, M.R.; Nayak, A.; Morris, A.A.; Lanfear, D.E.; Nemeh, H.; Desai, S.; Bansal, A.; Guerrero-Miranda, C.; Hall, S.; Cleveland, J.C.; et al. Prediction of Survival after Implantation of a Fully Magnetically Levitated Left Ventricular Assist Device. JACC Heart Fail. 2022, 10, 948–959. [Google Scholar] [CrossRef]
- Lietz, K.; Long, J.W.; Kfoury, A.G.; Slaughter, M.S.; Silver, M.A.; Milano, C.A.; Rogers, J.G.; Naka, Y.; Mancini, D.; Miller, L.W. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: Implications for patient selection. Circulation 2007, 116, 497–505. [Google Scholar] [CrossRef]
- Levy, W.C.; Mozaffarian, D.; Linker, D.T.; Sutradhar, S.C.; Anker, S.D.; Cropp, A.B.; Anand, I.; Maggioni, A.P.; Burton, P.; Sullivan, M.D.; et al. The Seattle Heart Failure Model. Circulation 2006, 113, 1424–1433. [Google Scholar] [CrossRef]
- Ketchum, E.S.; Moorman, A.J.; Fishbein, D.P.; Mokadam, N.A.; Verrier, E.D.; Aldea, G.S.; Andrus, S.; Kenyon, K.W.; Levy, W.C. Predictive value of the Seattle Heart Failure Model in patients undergoing left ventricular assist device placement. J. Heart Lung Transplant. 2010, 29, 1021–1025. [Google Scholar] [CrossRef]
- Cowger, J.; Sundareswaran, K.; Rogers, J.G.; Park, S.J.; Pagani, F.D.; Bhat, G.; Jaski, B.; Farrar, D.J.; Slaughter, M.S. Predicting survival in patients receiving continuous flow left ventricular assist devices: The HeartMate II risk score. J. Am. Coll. Cardiol. 2013, 61, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Teuteberg, J.J.; Ewald, G.A.; Adamson, R.M.; Lietz, K.; Miller, L.W.; Tatooles, A.J.; Kormos, R.L.; Sundareswaran, K.S.; Farrar, D.J.; Rogers, J.G. Risk Assessment for Continuous Flow Left Ventricular Assist Devices: Does the Destination Therapy Risk Score Work? An Analysis of over 1000 Patients. J. Am. Coll. Cardiol. 2012, 60, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Frankfurter, C.; Molinero, M.; Vishram-Nielsen, J.K.; Foroutan, F.; Mak, S.; Rao, V.; Billia, F.; Orchanian-Cheff, A.; Alba, A.C. Predicting the Risk of Right Ventricular Failure in Patients Undergoing Left Ventricular Assist Device Implantation: A Systematic Review. Circ. Heart Fail. 2020, 13, E006994. [Google Scholar] [CrossRef] [PubMed]
- Kormos, R.L.; Antonides, C.F.; Goldstein, D.J.; Cowger, J.A.; Starling, R.C.; Kirklin, J.K.; Rame, J.E.; Rosenthal, D.; Mooney, M.L.; Caliskan, K.; et al. Updated definitions of adverse events for trials and registries of mechanical circulatory support: A consensus statement of the mechanical circulatory support academic research consortium. J. Heart Lung Transplant. 2020, 39, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.A.; Copeland, H.; Alam, A.; Joseph, S.M. The “Right” Definition for Post-Left Ventricular Assist Device Right Heart Failure: The More We Learn, the Less We Know. Front. Cardiovasc. Med. 2022, 9, 893327. [Google Scholar] [CrossRef]
- Muslem, R.; Ong, C.S.; Tomashitis, B.; Schultz, J.; Ramu, B.; Craig, M.L.; Van Bakel, A.B.; Gilotra, N.A.; Sharma, K.; Hsu, S.; et al. Pulmonary arterial elastance and INTERMACS-defined right heart failure following left ventricular assist device. Circ. Heart Fail. 2019, 12, e005923. [Google Scholar] [CrossRef] [PubMed]
- Kormos, R.L.; Teuteberg, J.J.; Pagani, F.D.; Russell, S.D.; John, R.; Miller, L.W.; Massey, T.; Milano, C.A.; Moazami, N.; Sundareswaran, K.S.; et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 2010, 139, 1316–1324. [Google Scholar] [CrossRef]
- Soliman, O.I.I.; Akin, S.; Muslem, R.; Boersma, E.; Manintveld, O.C.; Krabatsch, T.; Gummert, J.F.; de By, T.M.M.H.; Bogers, A.J.J.C.; Zijlstra, F.; et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation 2018, 137, 891–906. [Google Scholar] [CrossRef]
RCT | Study Device | Comparator | Study Population | 1st Outcome | Main Result | Survival 2 Years | Other Results | |
---|---|---|---|---|---|---|---|---|
REMATCH [1], 2001 | HM XVE (1st Generation) | OMT | 129 AHF patients as DT-LVAD | Survival at 1, and 2 years | Survival at 1 year | 52% HM XVE vs. 25% OMT | 23% HM XVE vs. 8% OMT | - More QoL - More infection - More bleeding |
HeartMate II [2], 2009 | HM II (2nd generation) | HM XVE | 200 AHF patients as DT-LVAD | Survival free from disabling stroke or reoperation * | Survival free for disabling stroke or device failure | 46% HM II vs. 11% HM XVE | 58% HM II vs. 24% HM XVE | - Similar QoL and FC - Lower RHF - Lower infection |
ENDURANCE [3], 2017 | HVAD (3rd generation) | HM II | 446 AHF patients as DT-LVAD | Survival free from disabling stroke or device failure | 55% HVAD vs. 57.4% HM II | 60.2% HVAD vs. 67.6% HM II | - Less reoperation - More stroke (ischemic or haemorrhagic) | |
MOMENTUM 3 [4], 2019 | HM 3 (3rd generation) | HM II | 1028 AHF patients Short and long-term support | Survival free from disabling stroke or reoperation * | 76.9% HM3 vs. 64.8% HM II | 79% HM 3 vs. 77% HM II | - Less reoperation - Less events (major bleeding, stroke) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melendo-Viu, M.; Dobarro, D.; Raposeiras Roubin, S.; Llamas Pernas, C.; Moliz Cordón, C.; Vazquez Lamas, M.; Piñón Esteban, M.; Varela Martínez, M.Á.; Abu Assi, E.; Pita Romero, R.; et al. Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life 2023, 13, 1065. https://doi.org/10.3390/life13041065
Melendo-Viu M, Dobarro D, Raposeiras Roubin S, Llamas Pernas C, Moliz Cordón C, Vazquez Lamas M, Piñón Esteban M, Varela Martínez MÁ, Abu Assi E, Pita Romero R, et al. Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life. 2023; 13(4):1065. https://doi.org/10.3390/life13041065
Chicago/Turabian StyleMelendo-Viu, María, David Dobarro, Sergio Raposeiras Roubin, Carmen Llamas Pernas, Candela Moliz Cordón, Miriam Vazquez Lamas, Miguel Piñón Esteban, Maria Ángela Varela Martínez, Emad Abu Assi, Rafael Pita Romero, and et al. 2023. "Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection" Life 13, no. 4: 1065. https://doi.org/10.3390/life13041065
APA StyleMelendo-Viu, M., Dobarro, D., Raposeiras Roubin, S., Llamas Pernas, C., Moliz Cordón, C., Vazquez Lamas, M., Piñón Esteban, M., Varela Martínez, M. Á., Abu Assi, E., Pita Romero, R., Legarra Calderón, J. J., & Íñiguez Romo, A. (2023). Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life, 13(4), 1065. https://doi.org/10.3390/life13041065