Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation and Data Collection
2.3. Experimental Procedure
2.4. Statistical Analysis
3. Results
3.1. Three-Dimensional Kinetic Results of the Knee Joint
3.2. Three-Dimensional Kinematic Results of the Knee Joint
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seki, H.; Miura, A.; Sato, N.; Yuda, J.; Shimauchi, T. Correlation between degree of hallux valgus and kinematics in classical ballet: A pilot study. PLoS ONE 2020, 15, e0231015. [Google Scholar] [CrossRef]
- Steinberg, N.; Siev-Ner, I.; Zeev, A.; Dar, G. The association between hallux valgus and proximal joint alignment in young female dancers. Int. J. Sports Med. 2015, 36, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Nix, S.E.; Vicenzino, B.T.; Collins, N.J.; Smith, M.D. Characteristics of foot structure and footwear associated with hallux valgus: A systematic review. Osteoarthr. Cartil. 2012, 20, 1059–1074. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.F.; Alvarez, R.G.; Ervin, T.B.; Heard, A.; Gilbreath, J.; Richardson, N.S. Biomechanical evaluation of custom foot orthoses for hallux valgus deformity. J. Foot Ankle Surg. 2015, 54, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Ohi, H.; Iijima, H.; Aoyama, T.; Kaneda, E.; Ohi, K.; Abe, K. Association of frontal plane knee alignment with foot posture in patients with medialknee osteoarthritis. BMC Musculoskelet. Disord. 2017, 18, 246. [Google Scholar] [CrossRef]
- León-Muñoz, V.J.; Manca, S.; López-López, M.; Martínez-Martínez, F.; Santonja-Medina, F. Coronal and axial alignment relationship in Caucasian patients with osteoarthritis of the knee. Sci. Rep. 2021, 11, 7836. [Google Scholar] [CrossRef]
- Golightly, Y.M.; Hannan, M.T.; Dufour, A.B.; Renner, J.B.; Jordan, J.M. Factors associated with hallux valgus in a community-based cross-sectional study of adults with and without osteoarthritis. Arthritis Care Res. 2015, 67, 791–798. [Google Scholar] [CrossRef]
- Guler, H.; Karazincir, S.; Turhanoglu, A.D.; Sahin, G.; Balci, A.; Ozer, C. Effect of coexisting foot deformity on disability in women with knee osteoarthritis. J. Am. Podiatr. Med. Assoc. 2009, 99, 23–27. [Google Scholar] [CrossRef]
- Kaya, D.; Atay, O.A.; Callaghan, M.J.; Cil, A.; Cağlar, O.; Citaker, S.; Yuksel, I.; Doral, M.N. Hallux valgus in patients with patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 1364–1367. [Google Scholar] [CrossRef]
- Ozgüçlü, E.; Kiliç, E.; Kaymak, B. A knee osteoarthritis connected with hallux valgus-related pes planus. J. Biomech. 2008, 41, 3523–3524. [Google Scholar] [CrossRef]
- Deschamps, K.; Birch, I.; Desloovere, K.; Matricali, G.A. The impact of hallux valgus on foot kinematics: A cross-sectional, comparative study. Gait Posture 2010, 32, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Richards, J.; Lidtke, R.H.; Trede, R. Characteristics of clinical measurements between biomechanical responders and non-responders to a shoe designed for knee osteoarthritis. Gait Posture 2018, 59, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Inçel, N.A.; Genc, H.; Yorgancioglu, Z.R.; Erdem, H.R. Relation between hallux valgus deformity and lumbar and lower extremity biomechanics. Kaohsiung J. Med. Sci. 2002, 18, 329–333. [Google Scholar] [PubMed]
- Menz, H.B.; Roddy, E.; Thomas, E.; Croft, P.R. Impact of hallux valgus severity on general and foot-specific health-related quality of life. Arthritis Care Res. 2011, 63, 396–404. [Google Scholar]
- Fotoohabadi, M.; Spink, M.J.; Menz, H.B. Relationship between lower limb muscle strength and hallux valgus severity in older people. Foot 2021, 46, 101751. [Google Scholar] [CrossRef]
- Steinberg, N.; Finestone, A.; Noff, M.; Zeev, A.; Dar, G. Relationship between lower extremity alignment and hallux valgus in women. J. Athl. Train. 2013, 48, 118–123. [Google Scholar] [CrossRef]
- Svoboda, Z.; Honzikova, L.; Janura, M.; Vidal, T.; Martinaskova, E. Kinematic gait analysis in children with valgus deformity of the hindfoot. Acta Bioeng. Biomech. 2014, 16, 89–93. [Google Scholar]
- Canseco, K.; Long, J.; Smedberg, T.; Tarima, S.; Marks, R.M.; Harris, G.F. Multisegmental foot and ankle motion analysis after hallux valgus surgery. Foot Ankle Int. 2012, 33, 141–147. [Google Scholar] [CrossRef]
- Shih, K.S.; Chien, H.L.; Lu, T.W.; Chang, C.F.; Kuo, C.C. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait Posture 2014, 40, 38–42. [Google Scholar] [CrossRef]
- Biz, C.; Crimì, A.; Fantoni, I.; Tagliapietra, J.; Ruggieri, P. Functional and Radiographic Outcomes of Minimally Invasive Intramedullary Nail Device (MIIND) for Moderate to Severe Hallux Valgus. Foot Ankle Int. 2021, 42, 409–424. [Google Scholar] [CrossRef]
- Kwan, M.Y.; Yick, K.L.; Yip, J.; Tse, C.Y. Hallux valgus orthosis characteristics and effectiveness: A systematic review with meta-analysis. BMJ Open 2021, 11, e047273. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Effects of Hallux Valgus Orthoses on Ground Reaction Force using 3D Motion Analysis in Individuals with Hallux Valgus Deformity. Phys. Ther. Korea 2020, 27, 227–232. [Google Scholar] [CrossRef]
- Nix, S.E.; Vicenzino, B.T.; Collins, N.F.; Smith, M.D. Gait parameters associated with hallux valgus: A systematic review. J. Foot Ankle Res. 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.D.; Ghoussayni, S.N.; Ewins, D.J.; Kent, J.A. A six degrees-of-freedom marker set for gait analysis: Repeatability and comparison with a modified Helen Hayes set. Gait Posture 2009, 30, 173–180. [Google Scholar] [CrossRef]
- Xiang, L.; Mei, Q.; Wang, A.; Fernandez, J.; Gu, Y. Gait biomechanics evaluation of the treatment effects for hallux valgus patients: A systematic review and meta-analysis. Gait Posture 2022, 94, 67–78. [Google Scholar] [CrossRef]
- Wong, D.W.; Cheung, J.C.; Zhao, J.G.; Ni, M.; Yang, Z.Y. Forefoot Function after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis on Plantar Load Measurement. J. Clin. Med. 2023, 9, 1384. [Google Scholar] [CrossRef]
- Atbaşı, Z.; Erdem, Y.; Kose, O.; Demiralp, B.; Ilkbahar, S.; Tekin, H.O. Relationship Between Hallux Valgus and Pes Planus: Real or Fiction? J. Foot Ankle Surg. 2020, 59, 513–517. [Google Scholar] [CrossRef]
- Nayak, M.; Kumar, V.; Kanojiya, G.; Mellon, S.; Srivastava, D.N.; Pandit, H.; Malhotra, R. A radiographic analysis of alignment in 966 lower extremities with knee pain and its association with osteoarthritis in Indian population. J. Orthop. 2019, 17, 207–212. [Google Scholar] [CrossRef]
- Suh, D.H.; Kim, H.J.; Park, J.H.; Park, Y.H.; Koo, B.M.; Choi, G.W. Relationship between Hallux Valgus and Pes Planus in Adult Patients. J. Foot Ankle Surg. 2021, 60, 297–301. [Google Scholar] [CrossRef]
- Sharma, L. The role of varus and valgus alignment in knee osteoarthritis. Arthritis Rheum. 2007, 56, 1044–1047. [Google Scholar] [CrossRef]
- Hofmann, U.K.; Götze, M.; Wiesenreiter, K.; Müller, O.; Wünschel, M.; Mittag, F. Transfer of plantar pressure from the medial to the central forefoot in patients with hallux valgus. BMC Musculoskelet. Disord. 2019, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture 2011, 34, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Kia, C.; Yoshida, R.; Cote, M.; DiVenere, J.; Geaney, L.E. First Metatarsophalangeal Contact Properties Following Proximal Opening Wedge and Scarf Osteotomies for Hallux Valgus Correction: A Biomechanical Study. Foot Ankle Int. 2017, 38, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Ezzatvar, Y.; López-Bueno, L.; Fuentes-Aparicio, L.; Dueñas, L. Prevalence and Predisposing Factors for Recurrence after Hallux Valgus Surgery: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 5753. [Google Scholar] [CrossRef] [PubMed]
- Baghaei Roodsari, R.; Esteki, A.; Aminian, G.; Ebrahimi, I.; Mousavi, M.E.; Majdoleslami, B.; Bahramian, F. The effect of orthotic devices on knee adduction moment, pain and function in medial compartment knee osteoarthritis: A literature review. Disabil. Rehabil. Assist. Technol. 2017, 12, 441–449. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean ± Standard Deviation |
---|---|
Gender | Male: 8, female: 16 |
Age (years) | 41.2 ± 10.1 |
Height (cm) | 162.3 ± 8.5 |
Weight (kg) | 60.0 ± 8.8 |
Gait speed (m/s) | WTO: 1.29 ± 0.13, HPO: 1.29 ± 0.13, SSO: 1.28 ± 0.12 |
Step length (m) | WTO: 1.31 ± 0.09, HPO: 1.33 ± 0.10, SSO: 1.32 ± 0.09 |
Step width (m) | WTO: 0.12 ± 0.03, HPO: 0.11 ± 0.03, SSO: 0.12 ± 0.02 |
Knee Moment Values (Nm/kg) | Level | F | p Value |
---|---|---|---|
Flexion moment 1st peak 0–25% stance | Orthosis conditions | 5.909 | 0.006 * |
Both knee sides | 0.052 | 0.822 | |
Interaction effect | 2.401 | 0.139 | |
Extension moment peak 0–50% stance | Orthosis conditions | 0.732 | 0.488 |
Both knee sides | 0.236 | 0.633 | |
Interaction effect | 0.103 | 0.752 | |
Elexion moment 2nd peak 50–100% stance | Orthosis conditions | 0.280 | 0.757 |
Both knee sides | 1.274 | 0.269 | |
Interaction effect | 0.885 | 0.427 | |
Adduction moment 1st peak 0–25% stance | Orthosis conditions | 6.570 | 0.004 * |
Both knee sides | 0.070 | 0.794 | |
Interaction effect | 0.705 | 0.412 | |
Adduction moment 25–75% stance | Orthosis conditions | 0.525 | 0.596 |
Both knee sides | 0.009 | 0.926 | |
Interaction effect | 0.815 | 0.378 | |
Adduction moment 2nd peak 50–100% stance | Orthosis conditions | 0.484 | 0.621 |
Both knee sides | 1.857 | 0.111 | |
Interaction effect | 1.369 | 0.257 | |
External rotation moment peak 0–50% stance | Orthosis conditions | 0.817 | 0.450 |
Both knee sides | 2.333 | 0.102 | |
Interaction effect | 2.173 | 0.124 | |
Internal rotation moment peak 50–100% stance | Orthosis conditions | 0.518 | 0.600 |
Both knee sides | 0.779 | 0.389 | |
Interaction effect | 1.333 | 0.281 | |
Interaction effect | 2.753 | 0.076 |
Knee Moment (Nm/kg) | WTO | HPO | SSO | 95% CI |
---|---|---|---|---|
Flexor moment 1st peak 0–25% stance | 0.17 ± 0.11 * | 0.22 ± 0.12 | 0.19 ± 0.12 | 0.02 to 0.08 |
Extensor moment peak 0–50% stance | −0.73 ± 0.33 | −0.73 ± 0.32 | −0.71 ± 0.32 | −0.63 to 0.81 |
Flexor moment 2nd peak 50–100% stance | 0.13 ± 0.16 | 0.14 ± 0.14 | 0.14 ± 0.15 | −0.57 to 0.66 |
Adductor moment 1st peak 0–25% stance | −0.40 ± 0.18 * | −0.34 ± 0.16 | −0.39 ± 0.17 | 0.03 to 0.12 |
Adductor moment 25–75% stance | −0.21 ± 0.14 | −0.21 ± 0.12 | −0.20 ± 0.14 | −0.83 to 0.70 |
Adductor moment 2nd peak 50–100% stance | −0.31 ± 0.16 | −0.31 ± 0.16 | −0.30 ± 0.17 | −0.93 to 0.82 |
External rotator moment peak 0–50% stance | 0.04 ± 0.04 | 0.04 ± 0.05 | 0.04 ± 0.04 | −0.71 to 0.60 |
Internal rotator moment peak 50–100% stance | −0.17 ± 0.09 | −0.17 ± 0.08 | −0.16 ± 0.08 | −0.99 to 0.83 |
Knee Motion (°) | Level | F | p Value |
---|---|---|---|
Maximal extension | Orthosis conditions | 1.133 | 0.332 |
Both knee sides | 1.117 | 0.309 | |
Interaction effect | 0.381 | 0.686 | |
Maximal flexion | Orthosis conditions | 0.989 | 0.382 |
Both knee sides | 0.997 | 0.330 | |
Interaction effect | 0.183 | 0.834 | |
Total range in sagittal plane | Orthosis conditions | 2.119 | 0.133 |
Both knee sides | 0.000 | 0.996 | |
Interaction effect | 0.816 | 0.449 | |
Maximal adduction | Orthosis conditions | 1.170 | 0.321 |
Both knee sides | 2.944 | 0.102 | |
Interaction effect | 0.595 | 0.557 | |
Maximal abduction | Orthosis conditions | 0.318 | 0.792 |
Both knee sides | 1.270 | 0.273 | |
Interaction effect | 0.726 | 0.490 | |
Total range in frontal plane | Orthosis conditions | 0.761 | 0.474 |
Both knee sides | 0.012 | 0.913 | |
Interaction effect | 1.088 | 0.347 | |
Maximal internal rotation | Orthosis conditions | 0.518 | 0.600 |
Both knee sides | 2.888 | 0.122 | |
Interaction effect | 1.782 | 0.181 | |
Maximal external rotation | Orthosis conditions | 6.791 | 0.003 * |
Both knee sides | 2.008 | 0.147 | |
Interaction effect | 2.080 | 0.138 | |
Total range in transverse plane | Orthosis conditions | 2.356 | 0.108 |
Both knee sides | 0.509 | 0.484 | |
Interaction effect | 2.753 | 0.076 |
Knee Motion (°) | WTO | HPO | SSO | 95% CI |
---|---|---|---|---|
Maximal extension | 3.63 ± 2.59 | 3.77 ± 2.50 | 4.11 ± 3.06 | −0.33 to 1.41 |
Maximal flexion | 59.68 ± 6.78 | 60.24 ± 7.18 | 60.29 ± 7.70 | −0.49 to 0.97 |
Total range in sagittal plane | 63.31 ± 6.55 | 64.01 ± 7.07 | 64.33 ± 7.19 | −0.57 to 0.66 |
Maximal adduction | 2.46 ± 1.49 | 2.62 ± 1.41 | 2.53 ± 1.55 | −0.19 to 0.77 |
Maximal abduction | 5.14 ± 2.99 | 5.39 ± 3.65 | 5.32 ± 2.67 | −0.53 to 1.20 |
Total range in frontal plane | 7.60 ± 3.03 | 8.01 ± 3.88 | 7.86 ± 2.90 | −0.85 to 1.04 |
Maximal internal rotation | 16.91 ± 6.07 | 16.58 ± 5.95 | 16.88 ± 6.35 | −1.00 to 0.99 |
Maximal external rotation | 2.48 ± 2.82 * | 1.94 ± 2.46 | 2.24 ± 3.10 | −0.94 to −0.31 |
Total range in transverse plane | 19.39 ± 6.33 | 18.53 ± 5.96 | 19.13 ± 6.97 | −0.55 to 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y. Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life 2023, 13, 1162. https://doi.org/10.3390/life13051162
Kim Y. Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life. 2023; 13(5):1162. https://doi.org/10.3390/life13051162
Chicago/Turabian StyleKim, Yongwook. 2023. "Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus" Life 13, no. 5: 1162. https://doi.org/10.3390/life13051162
APA StyleKim, Y. (2023). Effects of Foot-Toe Orthoses on Moment and Range of Motion of Knee Joint in Individuals with Hallux Valgus. Life, 13(5), 1162. https://doi.org/10.3390/life13051162