Current Treatment Approaches for Thymic Epithelial Tumors
Abstract
:1. Introduction
2. Diagnostic Work-Up
3. Treatment
4. New Therapeutic Options for the Treatment of Patients with Advanced TETs
5. Immune Checkpoint Inhibitors in the Management of TETs: Pros and Cons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siesling, S.; van der Zwan, J.M.; Izarzugaza, I.; Jaal, J.; Treasure, T.; Foschi, R.; Ricardi, U.; Groen, H.; Tavilla, A.; Ardanaz, E.; et al. Rare thoracic cancers, including peritoneum mesothelioma. Eur. J. Cancer 2012, 48, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v40–v55. [Google Scholar] [CrossRef] [PubMed]
- Willner, J.; Zhou, F.; Moreira, A.L. Diagnostic challenges in the cytology of thymic epithelial neoplasms. Cancers 2022, 14, 2013. [Google Scholar] [CrossRef] [PubMed]
- Roden, A.C.; Yi, E.S.; Jenkins, S.M.; Edwards, K.K.; Donovan, J.L.; Cassivi, S.D.; Marks, R.S.; Garces, Y.I.; Aubry, M.C. Modified Masaoka stage and size are independent prognostic predictors in thymoma and modified Masaoka stage is superior to histopathologic classifications. J. Thorac. Oncol. 2015, 10, 691–700. [Google Scholar] [CrossRef]
- Singhal, S.; Hellyer, J.; Ouseph, M.M.; Wakelee, H.A.; Padda, S.K. Autoimmune disease in patients with advanced thymic epithelial tumors. JTO Clin. Res. Rep. 2022, 3, 100323. [Google Scholar]
- Giugliano, F.; Zucali, P.A.; Galli, G.; Ballatore, Z.; Corti, C.; Aliaga, P.T.; Uliano, J.; Vivanet, G.; Curigliano, G.; Conforti, F.; et al. SARS-CoV-2 vaccine in patients with thymic epithelial tumours with and without active or pre-existing autoimmune disorders: Brief report of a TYME network safety analysis. Eur. J. Cancer 2022, 166, 202–207. [Google Scholar] [CrossRef]
- Strange, C.D.; Ahuja, J.; Shroff, G.S.; Truong, M.T.; Marom, E.M. Imaging evaluation of thymoma and thymic carcinoma. Front Oncol. 2022, 11, 810419. [Google Scholar] [CrossRef]
- Ohira, R.; Yanagawa, M.; Suzuki, Y.; Hata, A.; Miyata, T.; Kikuchi, N.; Yoshida, Y.; Yamagata, K.; Doi, S.; Ninomiya, K.; et al. CT-based radiomics analysis for differentiation between thymoma and thymic carcinoma. J. Thorac. Dis. 2022, 14, 1342–1352. [Google Scholar] [CrossRef]
- Araujo-Filho, J.A.B.; Mayoral, M.; Zheng, J.; Tan, K.S.; Gibbs, P.; Shepherd, A.F.; Rimner, A.; Simone, C.B., 2nd; Riely, G.; Huang, J.; et al. CT radiomic features for predicting resectability and TNM staging in thymic epithelial tumors. Ann. Thorac. Surg. 2022, 113, 957–965. [Google Scholar] [CrossRef]
- Dai, H.; Lan, B.; Li, S.; Huang, Y.; Jiang, G.; Tian, J. Prognostic CT features in patients with untreated thymic epithelial tumors. Sci. Rep. 2023, 13, 2910. [Google Scholar] [CrossRef]
- Molina, T.J.; Bluthgen, M.V.; Chalabreysse, L.; de Montpréville, V.T.; de Muret, A.; Dubois, R.; Hofman, V.; Lantuejoul, S.; Le Naoures, C.; Mansuet-Lupo, A.; et al. Impact of expert pathologic review of thymic epithelial tumours on diagnosis and management in a real-life setting: A RYTHMIC study. Eur. J. Cancer 2021, 143, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Angirekula, M.; Chang, S.Y.; Jenkins, S.M.; Greipp, P.T.; Sukov, W.R.; Marks, R.S.; Olivier, K.R.; Cassivi, S.D.; Roden, A.C. CD117, BAP1, MTAP, and TdT is a useful immunohistochemical panel to distinguish thymoma from thymic carcinoma. Cancers 2022, 14, 2299. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Classification of Tumours Online, Thoracic Tumours-Tumours of the Thymus, 5th ed.; World Heath Organization: Geneva, Switzerland, 2021; Available online: https://tumourclassification.iarc.who.int/chapters/35 (accessed on 7 January 2023).
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours, 8th ed.; Wiley Blackwell: Oxford UK, 2017. [Google Scholar]
- Detterbeck, F.C.; Nicholson, A.G.; Kondo, K.; Van Schil, P.; Moran, C. The Masaoka-Koga stage classification for thymic malignancies: Clarification and definition of terms. J. Thorac. Oncol. 2011, 6 (Suppl. S3), S1710–S1716. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.K.; Liu, Y.H.; Hsieh, M.J.; Wu, Y.C.; Chen, T.P.; Lu, M.S.; Lu, H.I.; Liu, H.P. Long-term outcomes after thoracoscopic resection of stage I and II thymoma: A propensity-matched study. Ann. Surg. Oncol. 2015, 22, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, U.; Leuzzi, G.; Sabia, F.; Girotti, P.; Duranti, L.; Radaelli, S.; Fiore, M.; Stacchiotti, S.; Patrizia, G.; Salvioni, R.; et al. Long term outcome of complex surgical resection and reconstruction for rare thoracic cancers. Tumori J. 2023 16, 3008916231154763. [CrossRef]
- Okuma, Y.; Saito, M.; Hosomi, Y.; Sakuyama, T.; Okamura, T. Key components of chemotherapy for thymic malignancies: A systematic review and pooled analysis for anthracycline-, carboplatin- or cisplatin-based chemotherapy. J. Cancer. Res. Clin. Oncol. 2015, 141, 323–331. [Google Scholar] [CrossRef]
- Hao, Y.; Si, J.; Jin, J.; Wei, J.; Xiang, J.; Xu, C.; Song, Z. Comparison of efficacy and safety of platinum-based chemotherapy as first-line therapy between B3 thymoma and thymic carcinoma. Curr. Oncol. 2022, 29, 9452–9460. [Google Scholar] [CrossRef]
- Palmieri, G.; Buonerba, C.; Ottaviano, M.; Federico, P.; Calabrese, F.; Von Arx, C.; De Maio, A.P.; Marino, M.; Lalle, M.; Montella, L.; et al. Capecitabine plus gemcitabine in thymic epithelial tumors: Final analysis of a Phase II trial. Future Oncol. 2014, 10, 2141–2147. [Google Scholar] [CrossRef]
- Thomas, A.; Rajan, A.; Berman, A.; Tomita, Y.; Brzezniak, C.; Lee, M.J.; Lee, S.; Ling, A.; Spittler, A.J.; Carter, C.A.; et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: An open-label phase 2 trial. Lancet Oncol. 2015, 16, 177–186. [Google Scholar] [CrossRef]
- Remon, J.; Girard, N.; Mazieres, J.; Dansin, E.; Pichon, E.; Greillier, L.; Dubos, C.; Lindsay, C.R.; Besse, B. Sunitinib in patients with advanced thymic malignancies: Cohort from the French RYTHMIC network. Lung Cancer 2016, 97, 99–104. [Google Scholar] [CrossRef]
- Rossi, V.; Donini, M.; Sergio, P.; Passalacqua, R.; Rossi, G.; Buti, S. When a thymic carcinoma “becomes” a GIST. Lung Cancer 2013, 80, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Antonarelli, G.; Corti, C.; Zucali, P.A.; Perrino, M.; Manglaviti, S.; Lo Russo, G.; Varano, G.M.; Salvini, P.; Curigliano, G.; Catania, C.; et al. Continuous sunitinib schedule in advanced platinum refractory thymic epithelial neoplasms: A retrospective analysis from the ThYmic MalignanciEs (TYME) Italian collaborative group. Eur. J. Cancer 2022, 174, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Satouchi, M.; Itoh, S.; Okuma, Y.; Niho, S.; Mizugaki, H.; Murakami, H.; Fujisaka, Y.; Kozuki, T.; Nakamura, K.; et al. Lenvatinib in patients with advanced or metastatic thymic carcinoma (REMORA): A multicentre, phase 2 trial. Lancet Oncol. 2020, 21, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Perrino, M.; De Pas, T.; Bozzarelli, S.; Giordano, L.; De Vincenzo, F.; Conforti, F.; Digiacomo, N.; Cordua, N.; D'Antonio, F.; Borea, F.; et al. Resound Trial: A phase 2 study of regorafenib in patients with thymoma (type B2-B3) and thymic carcinoma previously treated with chemotherapy. Cancer 2022, 128, 719–726. [Google Scholar] [CrossRef]
- Choi, H.; Charnsangavej, C.; Faria, S.C.; Macapinlac, H.A.; Burgess, M.A.; Patel, S.R.; Chen, L.L.; Podoloff, D.A.; Benjamin, R.S. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria. J. Clin. Oncol. 2007, 25, 1753–1759. [Google Scholar] [CrossRef]
- Zucali, P.A.; De Pas, T.; Palmieri, G.; Favaretto, A.; Chella, A.; Tiseo, M.; Caruso, M.; Simonelli, M.; Perrino, M.; De Vincenzo, F.; et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy. J. Clin. Oncol. 2018, 36, 342–349. [Google Scholar] [CrossRef]
- Tsukita, Y.; Inoue, A.; Sugawara, S.; Kuyama, S.; Nakagawa, T.; Harada, D.; Tanaka, H.; Watanabe, K.; Mori, Y.; Harada, T.; et al. Phase II study of S-1 in patients with previously-treated invasive thymoma and thymic carcinoma: North Japan lung cancer study group trial 1203. Lung Cancer 2020, 139, 89–93. [Google Scholar] [CrossRef]
- Okuma, Y.; Goto, Y.; Ohyanagi, F.; Sunami, K.; Nakahara, Y.; Kitazono, S.; Kudo, K.; Tambo, Y.; Kanda, S.; Yanagitani, N.; et al. Phase II trial of S-1 treatment as palliative-intent chemotherapy for previously treated advanced thymic carcinoma. Cancer Med. 2020, 9, 7418–7427. [Google Scholar] [CrossRef]
- Rajan, A.; Heery, C.R.; Thomas, A.; Mammen, A.L.; Perry, S.; O'Sullivan Coyne, G.; Guha, U.; Berman, A.; Szabo, E.; Madan, R.A.; et al. Efficacy and tolerability of anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab) treatment in advanced thymoma. J. Immunother. Cancer 2019, 7, 269. [Google Scholar] [CrossRef]
- Cho, J.; Kim, H.S.; Ku, B.M.; Choi, Y.L.; Cristescu, R.; Han, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; et al. Pembrolizumab for patients with refractory or relapsed thymic epithelial tumor: An open-label phase II trial. J. Clin. Oncol. 2019, 37, 2162–2170. [Google Scholar] [CrossRef]
- Giaccone, G.; Kim, C.; Thompson, J.; McGuire, C.; Kallakury, B.; Chahine, J.J.; Manning, M.; Mogg, R.; Blumenschein, W.M.; Tan, M.T.; et al. Pembrolizumab in patients with thymic carcinoma: A single-arm, single-centre, phase 2 study. Lancet Oncol. 2018, 19, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Katsuya, Y.; Horinouchi, H.; Seto, T.; Umemura, S.; Hosomi, Y.; Satouchi, M.; Nishio, M.; Kozuki, T.; Hida, T.; Sukigara, T.; et al. Single-arm, multicentre, phase II trial of nivolumab for unresectable or recurrent thymic carcinoma: PRIMER study. Eur. J. Cancer 2019, 113, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lin, G.; Hao, Y.; Guan, Y.; Zhang, Y.; Xu, C.; Wang, Q.; Wang, D.; Jiang, Z.; Cai, J.; et al. Treatment outcomes and prognosis of immune checkpoint inhibitors therapy in patients with advanced thymic carcinoma: A multicentre retrospective study. Eur. J. Cancer 2022, 174, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Zucali, P.A.; Pala, L.; Catania, C.; Bagnardi, V.; Sala, I.; Della Vigna, P.; Perrino, M.; Zagami, P.; Corti, C.; et al. Avelumab plus axitinib in unresectable or metastatic type B3 thymomas and thymic carcinomas (CAVEATT): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Lou, G.; Wang, Y.; Yang, Z.; Wang, W.; Ji, Y.; Chen, S.; Xu, C.; Hu, X.; Zhang, Y. Apatinib in patients with recurrent or metastatic thymic epithelial tumor: A single-arm, multicenter, open-label, phase II trial. BMC Med. 2022, 20, 154. [Google Scholar] [CrossRef]
- Jung, H.A.; Kim, M.; Kim, H.S.; Kim, J.H.; Choi, Y.H.; Cho, J.; Park, J.H.; Park, K.U.; Ku, B.M.; Park, S.; et al. A Phase 2 study of palbociclib for recurrent or refractory advanced thymic epithelial tumors (KCSG LU17-21). J. Thorac. Oncol. 2023, 18, 223–231. [Google Scholar] [CrossRef]
- Padda, S.K.; Riess, J.W.; Schwartz, E.J.; Tian, L.; Kohrt, H.E.; Neal, J.W.; West, R.B.; Wakelee, H.A. Diffuse high intensity PD-L1 staining in thymic epithelial tumors. J. Thorac. Oncol. 2015, 10, 500–508. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, L.; Wang, P. Dramatic response to anti-PD-1 therapy in a patient of squamous cell carcinoma of thymus with multiple lung metastases. J. Thorac. Dis. 2016, 8, E535–E537. [Google Scholar] [CrossRef]
- Liu, S.; Ma, G.; Wang, H.; Yu, G.; Chen, J.; Song, W. Severe cardiotoxicity in 2 patients with thymoma receiving immune checkpoint inhibitor therapy: A case report. Medicine 2022, 101, e31873. [Google Scholar] [CrossRef]
- Mullenix, C.; Ballman, M.; Chen, H.; Swift, S.; McAdams, M.J.; Tsai, Y.T.; Donahue, R.N.; Poretta, T.; Gupta, S.; Loehrer, P.J.; et al. Joint-predominant rheumatic complications of immune checkpoint inhibitor therapy in patients with thymic epithelial tumors. Oncologist 2022, 27, e353–e356. [Google Scholar] [CrossRef]
- Jing, X.; Zhu, H.; Li, Y.; Jia, W.; Zhai, X.; Li, J.; Yu, J. Fatal toxicity induced by anti-PD-1 immune checkpoint inhibitor in thymic epithelial tumor. Immunotherapy 2022, 14, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Ohm, B.; Jungraithmayr, W. Balancing the risk of adverse events against the efficacy of immunotherapy in advanced thymic epithelial tumors. Cancers 2022, 15, 289. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ramesh, A.; Gusev, Y.; Bhuvaneshwar, K.; Giaccone, G. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep. Med. 2021, 2, 100392. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology, Thymomas and Thymic Carcinomas Version 1.2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/thymic.pdf (accessed on 20 February 2023).
- Clinical Trials Home Page. Available online: https://clinicaltrials.gov (accessed on 2 April 2023).
Heterogeneous Group of Malignancies |
---|
Incidence: 1.7/1 million/year |
Most common tumor type located in the anterior mediastinum |
Any age (mean age at diagnosis 50–60 years), both genders (slight male prevalence) |
No risk factors identified |
Common association with autoimmune diseases (myasthenia gravis in 30% of the cases) |
Prognosis: 5-year survival ~80% for thymoma, ~30% for thymic carcinoma |
Thymoma Subtypes | Obligatory Criteria | Optional Criteria |
---|---|---|
Type A | Occurence of bland, spindle shaped epithelial cells; paucity or absence of immature T cells | Polygonal epithelial cells CD20+ Epithelial cells |
Atypical type A variant | Criteria of type A, in addition comedo-type tumor necrosis; increased mitotic count, nuclear crowding | Polygonal epithelial cells CD20+ Epithelial cells |
Type AB | Occurrence of bland, spindle shaped epithelial cells; abundance of immature T cells | Polygonal epithelial cells CD20+ Epithelial cells |
Type B1 | Thymus-like architecture and cytology; abundance of immature T cells, areas of medullary differentiation; paucity of polygonal or dendritic epithelia cells without clustering | Hassall’s corpuscles; perivascular spaces |
Type B2 | Increased numbers of single or clustered polygonal or dendritic epithelial cells intermingled with abundant immature T cells | Medullary islands; Hassall’s corpuscles; perivascular spaces |
Type B3 | Sheets of polygonal slightly to moderately atypical epithelial cells; absent or rare intercellular bridges; paucity or absence of intermingled T cells | Hassall’s corpuscles; perivascular spaces |
MNT (micronodular thymoma with lymphoid stroma) | Nodules of bland spindle or oval epithelial cells surrounded by an epithelial cell-free lymphoid strome | Lymphoid follicles; monoclonal B cells and/or plasma cells |
Metaplastic thymoma | Biphasic tumor composed of solid areas of epithelial cells in a background of bland-looking spindle cells; absence of immature T cells | Pleomorphism of epithelial cells; actin, keratin, or EMA-positive spindle cells |
Rare others (microscopic thymoma, sclerosing thymoma, lipofibroadenoma) |
Study Title | ClinicalTrials.gov Identifier | Patient Population | Phase | Drug | Primary Endpoint | Country |
---|---|---|---|---|---|---|
Nivolumab in patients with type B3 T and TC (NIVOTHYM) | NCT03134118 | Advanced B3 T and TC relapsed after at least one line of P-CHT | II | Nivolumab | PFS | Several European states |
A pilot study to investigate the safety and clinical activity of avelumab in T and TC after progression on platinum-based chemotherapy | NCT03076554 | Advanced T and TC relapsed after at least one line of P-CHT | II | Avelumab | Safety ORR | United States |
Bintrafusp alfa (M7824) in subjects with T and TC | NCT04417660 | Advanced T and TC relapsed after at least one line of P-CHT | II | Bintrafusp alfa (M7824) | ORR | United States |
Trial of sunitinib in patients with type B3 T or TC in second and further lines (Style Trial) | NCT03449173 | Advanced B3 T and TC relapsed after at least one line of P-CHT | II | Sunitinib | ORR | Italy |
PT-112 in subjects with T and TC | NCT05104736 | Advanced T and TC relapsed after at least one line of P-CHT | II | PT-112 | ORR | United States |
A study of KC1036 in patients with advanced TC | NCT05683886 | Advanced recurrent, unresectable and/or metastatic T | II | KC1036 | ORR | China |
Pembrolizumab in treating participants with unresectable T or TC | NCT03295227 | Unresectable T or TC | I | Pembrolizumab | Safety | United States |
Combination of pembrolizumab and lenvatinib in pre-treated TC patients (PECATI) | NCT04710628 | Advanced B3 T and TC relapsed after at least one line of P-CHT | II | Pembrolizumab Lenvatinib | PFS | Several European states |
A study of KN046 in patients with TC who failed ICIs | NCT04925947 | Advanced TC relapsed after P-CHT and at least one line of ICIs | II | KN046 | ORR | United States |
KN046 in subjects with TC | NCT04469725 | Advanced TC relapsed after at least one line of P-CHT | II | KN046 | ORR | China |
Pembrolizumab and sunitinib malate in treating participants with refractory metastatic or unresectable TC | NCT03463460 | Advanced TC relapsed after at least one line of P-CHT | II | Pembrolizumab Sunitinib | ORR | United States |
Carboplatin and paclitaxel with or without ramucirumab in treating patients with locally advanced, recurrent or metastatic TC | NCT03694002 | Advanced TC with no anti-cancer therapy for locally advanced or metastatic disease | II | Carboplatin Paclitaxel Ramucirumab | PFS | United States |
Ramucirumab and carbo-paclitaxel for untreated thymic carcinoma/B3 thymoma with carcinoma RELEVENT Trial | NCT03921671 | Chemotherapy-naïve patients with thymic carcinoma or B3 thymoma with areas of carcinoma | II | Carboplatin Paclitaxel Ramucirumab | ORR | Italy |
A Phase II, neo-adjuvant pembrolizumab, docetaxel, cisplatin therapy followed by surgery and pembrolizumab consolidation therapy in locally advanced thymic epithelial tumor (TET) | NCT03858582 | Locally advanced thymic epithelial tumor (TET) | II | Pembrolizumab Docetaxel Cisplatin | Major pathologic response rate | Korea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartarone, A.; Lerose, R.; Lettini, A.R.; Tartarone, M. Current Treatment Approaches for Thymic Epithelial Tumors. Life 2023, 13, 1170. https://doi.org/10.3390/life13051170
Tartarone A, Lerose R, Lettini AR, Tartarone M. Current Treatment Approaches for Thymic Epithelial Tumors. Life. 2023; 13(5):1170. https://doi.org/10.3390/life13051170
Chicago/Turabian StyleTartarone, Alfredo, Rosa Lerose, Alessandro Rocco Lettini, and Marina Tartarone. 2023. "Current Treatment Approaches for Thymic Epithelial Tumors" Life 13, no. 5: 1170. https://doi.org/10.3390/life13051170
APA StyleTartarone, A., Lerose, R., Lettini, A. R., & Tartarone, M. (2023). Current Treatment Approaches for Thymic Epithelial Tumors. Life, 13(5), 1170. https://doi.org/10.3390/life13051170