Exploring the Potential of Transcranial Direct Current Stimulation for Relieving Central Post-Stroke Pain: A Randomized Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Concerns and Study Design
2.2. Participants and Procedures
2.3. Intervention and Assessment
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.1.1. General Characteristics
3.1.2. Clinical Symptoms and Pain Sites According to the CPSP Lesion
3.2. Effects of Intervention
3.2.1. Primary Outcome-Pain Profile
3.2.2. Secondary Outcomes-Depression and QOL Profile
3.2.3. The Tendency Analysis of tDCS’s Effect According to Stroke Lesion
3.3. Side Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Scores of BPI, BDI and EQ5D in the tDCS and Sham Groups
Mean(SD) | ANOVA with Repeated Measures T0, T1, and T2 | ANOVA between Groups | ||||||
T0 | T1 | T2 | F | p | F | p | ||
BPI | tDCS | 71(11.97) | 70.36(11.36) | 68.55(11.97) | 4.264 | 0.049 * | 0.004 | 0.950 |
Sham | 69.27(10.88) | 68.45(9.16) | 71.36(10.88) | 0.411 | 0.548 | |||
BDI | tDCS | 32.36(8.54) | 26.55(12.43) | 25.55(9.72) | 9.327 | 0.008 * | 1.325 | 0.263 |
Sham | 31.82(7.25) | 31.36(7.61) | 33.36(4.97) | 0.583 | 0.567 | |||
EQ5D | tDCS | 11.18(2.18) | 10.09(2.07) | 10.55(2.07) | 8.195 | 0.003 * | 0.379 | 0.545 |
Sham | 11.27(2.05) | 10.82(1.83) | 11.18(1.17) | 1.265 | 0.304 | |||
Abbreviations: T0 (before intervention), T1 (immediately after intervention), T2 (one week after completing the intervention), p < 0.05 *. |
Appendix B. Scores of BPI, BDI and EQ5D for Each Stroke Lesion Group in the tDCS Group
Mean(SD) | ANOVA with Repeated Measures T0, T1, and T2 | ANOVA between Groups | ||||||
T0 | T1 | T2 | F | p | F | p | ||
BPI | BG (n = 5) | 75.20(15.04) | 74.60(13.93) | 72.40(13.61) | 1.99 | 0.20 | 0.666 | 0.540 |
Thalamus (n = 3) | 70.33(11.50) | 68.00(12.00) | 69.67(14.01) | 2.36 | 0.21 | |||
Cortex (n = 3) | 64.67(5.13) | 65.67(4.51) | 61.00(5.00) | 40.75 | 0.00 * | |||
BDI | BG (n = 5) | 34.2(6.14) | 25.8(9.58) | 25(7.68) | 6.68 | 0.02 * | 0.021 | 0.979 |
Thalamus (n = 3) | 30(10.82) | 29(15.72) | 27.67(12.66) | 4.54 | 0.09 | |||
Cortex (n = 3) | 31.67(12.42) | 25.33(18.15) | 24.33(13.58) | 0.29 | 0.77 | |||
EQ5D | BG (n = 5) | 11(2.55) | 10(2.24) | 10.4(2.07) | 2.92 | 0.11 | 0.168 | 0.849 |
Thalamus (n = 3) | 12(2.00) | 10.33(1.53) | 11.33(1.53) | 19.00 | 0.05 | |||
Cortex (n = 3) | 10.67(2.31) | 10(3) | 10(3) | 0.57 | 0.61 | |||
Abbreviations: T0 (before intervention), T1 (immediately after intervention), T2 (one week after completing the intervention), p < 0.05 *. |
References
- Niv, D.; Kreitler, S. Pain and quality of life. Pain Pract. 2001, 1, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 2009, 32, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.G. Update on Stroke Rehabilitation for Non-Motor Impairment. Brain Neurorehabil. 2022, 15, e13. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, A.; Smith, D.S. New concepts in acute pain therapy: Preemptive analgesia. Am. Fam. Physician 2001, 63, 1979. [Google Scholar]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Tracey, I.; Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron 2007, 55, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Andersen, G.; Vestergaard, K.; Ingeman-Nielsen, M.; Jensen, T.S. Incidence of central post-stroke pain. Pain 1995, 61, 187–193. [Google Scholar] [CrossRef]
- Merskey, H. Part III pain terms, a current list with definitions and notes on usage. In Classification of Chronic Pain-Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms; IASP Press: Seattle, WA, USA, 1994; pp. 207–214. [Google Scholar]
- Kumar, G.; Soni, C.R. Central post-stroke pain: Current evidence. J. Neurol. Sci. 2009, 284, 10–17. [Google Scholar] [CrossRef]
- Spacek, A. Modern concepts of acute and chronic pain management. Biomed. Pharmacother. 2006, 60, 329–335. [Google Scholar] [CrossRef]
- Furlan, A.D.; Sandoval, J.A.; Mailis-Gagnon, A.; Tunks, E. Opioids for chronic noncancer pain: A meta-analysis of effectiveness and side effects. Cmaj 2006, 174, 1589–1594. [Google Scholar] [CrossRef] [Green Version]
- Riediger, C.; Schuster, T.; Barlinn, K.; Maier, S.; Weitz, J.; Siepmann, T. Adverse effects of antidepressants for chronic pain: A systematic review and meta-analysis. Front. Neurol. 2017, 8, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremont-Lukats, I.W.; Challapalli, V.; McNicol, E.D.; Lau, J.; Carr, D.B. Systemic administration of local anesthetics to relieve neuropathic pain: A systematic review and meta-analysis. Anesth. Analg. 2005, 101, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liu, G.-Q.; Huang, L.-S.; Yang, Z.-X.; Gao, M.-L.; Jing, R.; Liu, Z.; Pan, L.-H. Effects of erector spinae plane block on postoperative pain and side-effects in adult patients underwent surgery: A systematic review and meta-analysis of randomized controlled trials. Int. J. Surg. 2020, 80, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Deckert, S.; Kaiser, U.; Kopkow, C.; Trautmann, F.; Sabatowski, R.; Schmitt, J. A systematic review of the outcomes reported in multimodal pain therapy for chronic pain. Eur. J. Pain 2016, 20, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; Van Tulder, M.W.; Tomlinson, G. Systematic review: Strategies for using exercise therapy to improve outcomes in chronic low back pain. Ann. Int. Med. 2005, 142, 776–785. [Google Scholar] [CrossRef]
- Salt, E.; Wright, C.; Kelly, S.; Dean, A. A systematic literature review on the effectiveness of non-invasive therapy for cervicobrachial pain. Man. Ther. 2011, 16, 53–65. [Google Scholar] [CrossRef]
- O’Connell, N.E.; Marston, L.; Spencer, S.; DeSouza, L.H.; Wand, B.M. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst. Rev. 2018, CD008208. [Google Scholar] [CrossRef] [Green Version]
- Fregni, F.; Freedman, S.; Pascual-Leone, A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007, 6, 188–191. [Google Scholar] [CrossRef]
- Skelly, A.C.; Chou, R.; Dettori, J.R.; Turner, J.A.; Friedly, J.L.; Rundell, S.D.; Fu, R.; Brodt, E.D.; Wasson, N.; Winter, C. Noninvasive Nonpharmacological Treatment for Chronic Pain: A Systematic Review. 2018. Available online: https://europepmc.org/article/nbk/nbk519953 (accessed on 13 January 2023).
- Knotkova, H.; Hamani, C.; Sivanesan, E.; Le Beuffe, M.F.E.; Moon, J.Y.; Cohen, S.P.; Huntoon, M.A. Neuromodulation for chronic pain. Lancet 2021, 397, 2111–2124. [Google Scholar] [CrossRef]
- Ko, M.-H. Safety of transcranial direct current stimulation in neurorehabilitation. Brain Neurorehabil. 2020, 14, e9. [Google Scholar] [CrossRef]
- Miu, K.Y.D.; Kok, C.; Leung, S.S.; Chan, E.Y.; Wong, E. Comparison of repetitive transcranial magnetic stimulation and transcranial direct current stimulation on upper limb recovery among patients with recent stroke. Ann. Rehabil. Med. 2020, 44, 428–437. [Google Scholar]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nature Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Sudbrack-Oliveira, P.; Razza, L.B.; Brunoni, A.R. Non-invasive cortical stimulation: Transcranial direct current stimulation (tDCS). Int. Rev. Neurobiol. 2021, 159, 1–22. [Google Scholar] [PubMed]
- Schulze-Bonhage, A.; Hirsch, M.; Knake, S.; Kaufmann, E.; Kegele, J.; Rademacher, M.; Vonck, K.; Coenen, V.A.; Glaser, M.; Jenkner, C. Focal Cortex Stimulation with a Novel Implantable Device and Antiseizure Outcomes in 2 Prospective Multicenter Single-Arm Trials. JAMA Neurol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Hong, B.Y.; Park, H.-Y.; Yoo, Y.J.; Yoon, M.-J.; Kim, J.-S.; Lim, S.H. Alteration of white matter in patients with central post-stroke pain. J. Personal. Med. 2021, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Chuang, Y.-F.; Huang, A.C.-W.; Chen, C.-K.; Chang, Y.-J. The antalgic effects of non-invasive physical modalities on central post-stroke pain: A systematic review. J. Phys. Ther. Sci. 2016, 28, 1368–1373. [Google Scholar] [CrossRef] [Green Version]
- Ramger, B.C.; Bader, K.A.; Davies, S.P.; Stewart, D.A.; Ledbetter, L.S.; Simon, C.B.; Feld, J.A. Effects of non-invasive brain stimulation on clinical pain intensity and experimental pain sensitivity among individuals with central post-stroke pain: A systematic review. J. Pain Res. 2019, 12, 3319. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, A.T.; Amorim, R.; Rushmore, R.J.; Eden, U.; Afifi, L.; Dipietro, L.; Wagner, T.; Valero-Cabré, A. Motor cortex neurostimulation technologies for chronic post-stroke pain: Implications of tissue damage on stimulation currents. Front. Hum. Neurosci. 2016, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- DosSantos, M.F.; Ferreira, N.; Toback, R.L.; Carvalho, A.C.; DaSilva, A.F. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front. Neurosci. 2016, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Seo, W. A comprehensive review of central post-stroke pain. Pain Manag. Nurs. 2015, 16, 804–818. [Google Scholar] [CrossRef]
- Harden, R.N.; Bruehl, S.; Perez, R.S.; Birklein, F.; Marinus, J.; Maihofner, C.; Lubenow, T.; Buvanendran, A.; Mackey, S.; Graciosa, J. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for complex regional pain syndrome. Pain 2010, 150, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.-H.; Kim, G.-D.; Kim, K.-Y. Analgesic effect of transcranial direct current stimulation on central post-stroke pain. Tohoku J. Exp. Med. 2014, 234, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DaSilva, A.F.; Volz, M.S.; Bikson, M.; Fregni, F. Electrode positioning and montage in transcranial direct current stimulation. JoVE (J. Vis. Exp.) 2011, e2744. [Google Scholar] [CrossRef] [Green Version]
- David, M.C.M.M.; Moraes, A.A.d.; Costa, M.L.d.; Franco, C.I.F. Transcranial direct current stimulation in the modulation of neuropathic pain: A systematic review. Neurol. Res. 2018, 40, 557–565. [Google Scholar] [CrossRef]
- Miettinen, T.; Kautiainen, H.; Mäntyselkä, P.; Linton, S.J.; Kalso, E. Pain interference type and level guide the assessment process in chronic pain: Categorizing pain patients entering tertiary pain treatment with the Brief Pain Inventory. PLoS ONE 2019, 14, e0221437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Braz. J. Psychiatry 2013, 35, 416–431. [Google Scholar] [CrossRef] [Green Version]
- IsHak, W.W.; Wen, R.Y.; Naghdechi, L.; Vanle, B.; Dang, J.; Knosp, M.; Dascal, J.; Marcia, L.; Gohar, Y.; Eskander, L. Pain and depression: A systematic review. Harv. Rev. Psychiatry 2018, 26, 352–363. [Google Scholar] [CrossRef]
- Demyttenaere, K.; De Fruyt, J.; Huygens, R. Measuring quality of life in depression. Curr. Opin. Psychiatry 2002, 15, 89–92. [Google Scholar] [CrossRef]
- Whynes, D.K. Does the correspondence between EQ-5D health state description and VAS score vary by medical condition? Health Qual. Life Outcomes 2013, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Andressa de Souza, J.; Ferrari Corrêa, J.C.; Marduy, A.; Dall’Agnol, L.; Gomes de Sousa, M.H.; Nunes da Silva, V.; Alves, A.B.; Silva, S.M.; Fregni, F.; Corrêa, F.I. To Combine or Not to Combine Physical Therapy with tDCS for Stroke with Shoulder Pain? Analysis From a Combination Randomized Clinical Trial for Rehabilitation of Painful Shoulder in Stroke. Front. Pain Res. 2021, 2, 24. [Google Scholar] [CrossRef]
- DeLong, M.; Alexander, G.; Georgopoulos, A.; Crutcher, M.; Mitchell, S.; Richardson, R. Role of basal ganglia in limb movements. Hum. Neurobiol. 1984, 2, 235–244. [Google Scholar] [PubMed]
- Ferrucci, R.; Mameli, F.; Ruggiero, F.; Priori, A. Transcranial direct current stimulation as treatment for Parkinson’s disease and other movement disorders. Basal Ganglia 2016, 6, 53–61. [Google Scholar] [CrossRef]
- Simpson, M.W.; Mak, M. The effect of transcranial direct current stimulation on upper limb motor performance in Parkinson’s disease: A systematic review. J. Neurol. 2020, 267, 3479–3488. [Google Scholar] [CrossRef] [PubMed]
- Mirbagheri, M.M.; Niu, X.; Varoqui, D. Prediction of Stroke Motor Recovery Using Reflex Stiffness Measures at One Month. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 762–770. [Google Scholar] [CrossRef]
- Molero-Chamizo, A.; Salas Sánchez, Á.; Álvarez Batista, B.; Cordero García, C.; Andújar Barroso, R.; Rivera-Urbina, G.N.; Nitsche, M.A.; Alameda Bailén, J.R. Bilateral motor cortex tDCS effects on post-stroke pain and spasticity: A three cases study. Front. Pharmacol. 2021, 12, 624582. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Lima, M.C.; Ferreira, M.J.; Wagner, T.; Rigonatti, S.P.; Castro, A.W.; Souza, D.R.; Riberto, M.; Freedman, S.D.; et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 2006, 122, 197–209. [Google Scholar] [CrossRef]
- Hassan, A.B.; Danazumi, M.S.; Abdullahi, A.; Yakasai, A.M. Effect of transcranial direct current stimulation (tDCS) delivered via dorsolateral prefrontal cortex on central post-stroke pain and depression: A case report. Physiother. Theory Pract. 2022, 38, 1799–1806. [Google Scholar] [CrossRef]
- Orru, G.; Conversano, C.; Hitchcott, P.K.; Gemignani, A. Motor stroke recovery after tDCS: A systematic review. Rev. Neurosci. 2020, 31, 201–218. [Google Scholar] [CrossRef]
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell 2009, 139, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Galvez-Sánchez, C.M.; Montoro, C.I.; Duschek, S.; Del Paso, G.A.R. Depression and trait-anxiety mediate the influence of clinical pain on health-related quality of life in fibromyalgia. J. Affect. Disord. 2020, 265, 486–495. [Google Scholar] [CrossRef]
- Hanna, M.; Strober, L.B. Anxiety and depression in multiple sclerosis (MS): Antecedents, consequences, and differential impact on well-being and quality of life. Mult. Scler. Relat. Disord. 2020, 44, 102261. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.E.; Renier, C.M.; Palcher, J.A. Chronic pain, depression, and quality of life: Correlations and predictive value of the SF-36. Pain Med. 2003, 4, 331–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitsche, M.A.; Boggio, P.S.; Fregni, F.; Pascual-Leone, A. Treatment of depression with transcranial direct current stimulation (tDCS): A Review. Exp. Neurol. 2009, 219, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Palm, U.; Hasan, A.; Strube, W.; Padberg, F. tDCS for the treatment of depression: A comprehensive review. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for upper limb rehabilitation after stroke: Future directions. J. Neuroeng. Rehabil. 2018, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ayerbe, L.; Ayis, S.; Wolfe, C.D.; Rudd, A.G. Natural history, predictors and outcomes of depression after stroke: Systematic review and meta-analysis. Br. J. Psychiatry 2013, 202, 14–21. [Google Scholar] [CrossRef] [Green Version]
- An, T.-G.; Kim, S.-H.; Kim, K.-U. Effect of transcranial direct current stimulation of stroke patients on depression and quality of life. J. Phys. Ther. Sci. 2017, 29, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Carneiro, M.I.S.; Bolognini, N.; Fregni, F. Safety review of transcranial direct current stimulation in stroke. Neuromodul. Technol. Neural Interface 2017, 20, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cohen, L.; Dowthwaite, G.; Ellrich, J.; Flöel, A. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [Green Version]
Characteristics | tDCS (n = 11) | Sham-tDCS (n = 11) | |
---|---|---|---|
Sex (n (%)) | Male (n = 8) | 6 (54.5) | 2 (18.2) |
Female (n = 14) | 5 (45.5) | 9 (81.8) | |
Age (year) (median [IQR]) | 55.00 (48.00–62.00) | 60.00 (55.00–61.00) | |
Onset (month) (median [IQR]) | 30.00 (24.00–32.00) | 32.00 (19.00–39.00) | |
Affected side (n (%)) | Right | 5 (45.5) | 6 (54.5) |
Left | 6 (54.5) | 4 (36.4) | |
Multifocal | 0 (0) | 1 (9.1) | |
Pathological sites (n (%)) | Basal ganglia (n = 11, 50.0%) | 5 (45.5) | 6 (54.5) |
Thalamus (n = 5, 22.7%) | 3 (27.3) | 2 (18.2) | |
Cortex (MCA or MCA + ACA or MCA + PCA) (n = 6, 27.3%) | 3 (27.3) | 3 (27.3) | |
Pain symptoms (n (%)) | Aching (n = 8, 15.7%) | 3 (11.1) | 5 (20.8) |
Electrical (n = 6, 11.8%) | 3 (11.1) | 3 (12.5) | |
Tingling (n = 6, 11.8%) | 3 (11.1) | 3 (12.5) | |
Numbness (n = 5, 9.8%) | 3 (11.1) | 2 (8.3) | |
Heavy (n = 5, 9.8%) | 4 (14.8) | 1 (4.2) | |
Squeezing (n = 5, 9.8%) | 4 (14.8) | 1 (4.2) | |
Freezing (n = 5, 9.8%) | 3 (11.1) | 2 (8.3) | |
Burning (n = 3, 5.9%) | 1 (3.7) | 2 (8.3) | |
Sharp (n = 3, 5.9%) | 1 (3.7) | 2 (8.3) | |
Stabbing (n = 2, 3.9%) | 1 (3.7) | 1 (4.2) | |
Pins and needles (n = 1, 2.0%) | 1 (3.7) | 0 (0) | |
Pressing (n = 1, 2.0%) | 0 (0) | 1 (4.2) | |
Itchy (n = 1, 2.0%) | 0 (0) | 1 (4.2) | |
Pain site (n (%)) | Lower extremity (n = 11, 28.9%) | 6 (28.6) | 5 (29.4) |
Upper extremity (n = 9, 23.7%) | 5 (23.8) | 4 (23.5) | |
Shoulder (n = 9, 23.7%) | 5 (23.8) | 4 (23.5) | |
Whole body (n = 3, 7.9%) | 1 (4.8) | 2 (11.8) | |
Headache (n = 3, 7.9%) | 2 (9.5) | 1 (5.9) | |
Neck (n = 2, 5.3%) | 1 (4.8) | 1 (5.9) | |
Face (n = 1, 2.6%) | 1 (4.8) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, J.-S.; Yang, J.-H.; Ko, S.-H.; Lee, S.-J.; Shin, Y.-I. Exploring the Potential of Transcranial Direct Current Stimulation for Relieving Central Post-Stroke Pain: A Randomized Controlled Pilot Study. Life 2023, 13, 1172. https://doi.org/10.3390/life13051172
Baik J-S, Yang J-H, Ko S-H, Lee S-J, Shin Y-I. Exploring the Potential of Transcranial Direct Current Stimulation for Relieving Central Post-Stroke Pain: A Randomized Controlled Pilot Study. Life. 2023; 13(5):1172. https://doi.org/10.3390/life13051172
Chicago/Turabian StyleBaik, Ji-Soo, Jung-Hyun Yang, Sung-Hwa Ko, So-Jung Lee, and Yong-Il Shin. 2023. "Exploring the Potential of Transcranial Direct Current Stimulation for Relieving Central Post-Stroke Pain: A Randomized Controlled Pilot Study" Life 13, no. 5: 1172. https://doi.org/10.3390/life13051172
APA StyleBaik, J. -S., Yang, J. -H., Ko, S. -H., Lee, S. -J., & Shin, Y. -I. (2023). Exploring the Potential of Transcranial Direct Current Stimulation for Relieving Central Post-Stroke Pain: A Randomized Controlled Pilot Study. Life, 13(5), 1172. https://doi.org/10.3390/life13051172