Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults
Abstract
:1. Introduction
2. Methodology
2.1. Subject Selection
2.2. Subject Selection and Blood Sample Collection
2.3. DNA Extraction
2.4. Biochemical Parameters and B12 Level Assessment
2.5. TCN-2 Gene Alteration among Overweight, Obese and Healthy Subjects
2.6. Statistical Analysis
3. Results
3.1. Demographics of the Participants
3.2. Comparison of Biochemical Parameters between Healthy Controls, Overweight and Obese Participants
3.3. Genotype Distribution among Healthy Controls, Overweight and Obese Participants
3.4. Odds Ratio with Respect to TCN-2 Genotypes in Healthy Controls, Overweight and Obese Participants
3.5. Relative Risk with Respect to TCN-2 Genotypes in Healthy Control, Overweight and Obese Participants
3.6. Comparison of Vitamin B12 Levels between Healthy Control, Overweight and Obese Participants
3.7. Association Vitamin B12 Level with Blood Pressure, Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2014, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Kahn, S.E.; Ferrannini, E.; Goldfine, A.B.; Nathan, D.M.; Schwartz, M.W.; Smith, R.J.; Smith, S.R. Obesity and type 2 diabetes: What can be unified and what needs to be individualized? J. Clin. Endocrinol. Metab. 2011, 96, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H.; American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and car-diovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 113, 898–918. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef]
- Herrera, B.M.; Lindgren, C.M. The Genetics of Obesity. Curr. Diabetes Rep. 2010, 10, 498–505. [Google Scholar] [CrossRef]
- Lloyd-Wright, Z.; Hvas, A.-M.; Møller, J.; Sanders, T.; Nexø, E. Holotranscobalamin as an Indicator of Dietary Vitamin B12 Deficiency. Clin. Chem. 2003, 49, 2076–2078. [Google Scholar] [CrossRef]
- Lechner, K.; Födinger, M.; Grisold, W.; Püspök, A.; Sillaber, C. Vitamin B12 deficiency: New data on an old disease. Wien. Klin. Wochenschr. 2005, 117, 579–591. [Google Scholar] [CrossRef]
- Boushey, C.J.; Beresford, S.A.A.; Omenn, G.S.; Motulsky, A.G. A Quantitative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease. JAMA 1995, 274, 1049–1057. [Google Scholar] [CrossRef]
- Arendt, J.F.; Nexo, E. Unexpected high plasma cobalamin/Proposal for a diagnostic strategy. Clin. Chem. Lab. Med. 2013, 51, 489–496. [Google Scholar] [CrossRef]
- Arendt, J.F.B.; Pedersen, L.; Nexo, E.; Sørensen, H.T. Elevated Plasma Vitamin B12 Levels as a Marker for Cancer: A Population-Based Cohort Study. J. Natl. Cancer Inst. 2013, 105, 1799–1805. [Google Scholar] [CrossRef]
- Seetharam, B.; Li, N. Transcobalamin II and its cell surface receptor. Vitam. Horm. 2000, 59, 337–366. [Google Scholar] [CrossRef]
- Chen, C.; Gan, Y.-Y. The allele frequencies of three polymorphisms in genes involved in homocysteine metabolism in a group of unrelated healthy Singaporeans. Dis. Markers 2010, 29, 111–119. [Google Scholar] [CrossRef]
- Haggarty, P. B-vitamins, genotype and disease causality. Proc. Nutr. Soc. 2007, 66, 539–547. [Google Scholar] [CrossRef]
- Hebbar, P.; Alkayal, F.; Nizam, R.; Melhem, M.; Elkum, N.; John, S.E.; Abufarha, M.; Alsmadi, O.; Thanaraj, T.A. The TCN2 variant of rs9606756 [Ile23Val] acts as risk loci for obesity-related traits and mediates by interacting with Apo-A1. Obesity 2017, 25, 1098–1108. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Doron-Panush, N.; Reichman, B.; Nitzan-Kaluski, D.; Shalitin, S.; Geva-Lerner, L. Obese Children and Adolescents. Arch. Pediatr. Adolesc. Med. 2006, 160, 933–936. [Google Scholar] [CrossRef]
- Sukumar, N.; Venkataraman, H.; Wilson, S.; Goljan, I.; Selvamoni, S.; Patel, V.; Saravanan, P. Vitamin B12 Status among Pregnant Women in the UK and Its Association with Obesity and Gestational Diabetes. Nutrients 2016, 8, 768. [Google Scholar] [CrossRef]
- Finkelstein, J.L.; Layden, A.J.; Stover, P.J. Vitamin B12 and Perinatal Health. Adv. Nutr. 2015, 6, 552–563. [Google Scholar] [CrossRef]
- Seetharam, B.; Bose, S.; Li, N. Cellular Import of Cobalamin (Vitamin B12). J. Nutr. 1999, 129, 1761–1764. [Google Scholar] [CrossRef]
- Li, N.; Sood, G.K.; Seetharam, S.; Seetharam, B. Polymorphism of human transcobalamin II: Substitution of proline and/or glutamine residues by arginine. Biochim. Biophys. Acta BBA-Gene Struct. Expr. 1994, 1219, 515–520. [Google Scholar] [CrossRef]
- Afman, L.A.; Lievers, K.J.; van der Put, N.M.; Trijbels, F.J.; Blom, H.J. Single nucleotide polymorphisms in the transcobalamin gene: Relationship with transcobalamin concentrations and risk for neural tube defects. Eur. J. Hum. Genet. 2002, 10, 433–438. [Google Scholar] [CrossRef]
- Aléssio, A.C.; Höehr, N.F.; Siqueira, L.H.; Bydlowski, S.P.; Annichino-Bizzacchi, J.M. Polymorphism C776G in the transcobalamin II gene and homocysteine, folate and vitamin B12 concentrations. Association with MTHFR C677T and A1298C and MTRR A66G polymorphisms in healthy children. Thromb. Res. 2007, 119, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Garrod, M.G.; Allen, L.H.; Haan, M.N.; Green, R.; Miller, J.W. Transcobalamin C776G genotype modifies the association between vitamin B12 and homocysteine in older Hispanics. Eur. J. Clin. Nutr. 2010, 64, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Riedel, B.M.; Molloy, A.M.; Meyer, K.; Fredriksen, A.; Ulvik, A.; Schneede, J.; Nexø, E.; Hoff, G.; Ueland, P.M. Transcobalamin Polymorphism 67A->G, but Not 776C->G, Affects Serum Holotranscobalamin in a Cohort of Healthy Middle-Aged Men and Women. J. Nutr. 2011, 141, 1784–1790. [Google Scholar] [CrossRef] [PubMed]
- Stanisławska-Sachadyn, A.; Woodside, J.V.; Sayers, C.; Yarnell, J.W.; Young, I.S.; Evans, A.E.; Mitchell, L.E.; Whitehead, A.S. The transcobalamin (TCN2) 776C>G polymorphism affects homocysteine concentrations among subjects with low vitamin B12 status. Eur. J. Clin. Nutr. 2010, 64, 1338–1343. [Google Scholar] [CrossRef]
- Castro, R.; Barroso, M.; Rocha, M.; Esse, R.; Ramos, R.; Ravasco, P.; Rivera, I.; de Almeida, I.T. The TCN2 776C>G polymorphism correlates with vitamin B12 cellular delivery in healthy adult populations. Clin. Biochem. 2010, 43, 645–649. [Google Scholar] [CrossRef]
- Das, D.; Haloi, A. Vitamin B12 gene polymorphisms and chronic diseases. J. Nutr. Disord. 2014, 4, 149. [Google Scholar] [CrossRef]
- Catalano, P.M.; Shankar, K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Adaikalakoteswari, A.; Finer, S.; Voyias, P.D.; McCarthy, C.M.; Vatish, M.; Moore, J.; Smart-Halajko, M.; Bawazeer, N.; Al-Daghri, N.M.; McTernan, P.G.; et al. Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin. Epigenetics 2015, 7, 14. [Google Scholar] [CrossRef]
- Adaikalakoteswari, A.; Vatish, M.; Alam, M.T.; Ott, S.; Kumar, S.; Saravanan, P. Low Vitamin B12 in Pregnancy Is Associated With Adipose-Derived Circulating miRs Targeting PPARγ and Insulin Resistance. J. Clin. Endocrinol. Metab. 2017, 102, 4200–4209. [Google Scholar] [CrossRef]
- Knight, B.A.; Shields, B.M.; Brook, A.; Hill, A.; Bhat, D.S.; Hattersley, A.T.; Yajnik, C.S. Lower Circulating B12 Is Associated with Higher Obesity and Insulin Resistance during Pregnancy in a Non-Diabetic White British Population. PLoS ONE 2015, 10, e0135268. [Google Scholar] [CrossRef]
- Jayashri, R.; Venkatesan, U.; Rohan, M.; Gokulakrishnan, K.; Rani, C.S.S.; Deepa, M.; Anjana, R.M.; Mohan, V.; Pradeepa, R. Prevalence of vitamin B12 deficiency in South Indians with different grades of glucose tolerance. Acta Diabetol. 2018, 55, 1283–1293. [Google Scholar] [CrossRef]
- Adaikalakoteswari, A.; Jayashri, R.; Sukumar, N.; Venkataraman, H.; Pradeepa, R.; Gokulakrishnan, K.; Anjana, R.M.; McTernan, P.G.; Tripathi, G.; Patel, V.; et al. Vitamin B12 deficiency is associated with adverse lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 129. [Google Scholar] [CrossRef]
- Lai, J.S.; Pang, W.W.; Cai, S.; Lee, Y.S.; Chan, J.K.; Shek, L.P.; Yap, F.K.; Tan, K.H.; Godfrey, K.M.; van Dam, R.M.; et al. High folate and low vitamin B12 status during pregnancy is associated with gestational diabetes mellitus. Clin. Nutr. 2017, 37, 940–947. [Google Scholar] [CrossRef]
- Ozer, S.; Sonmezgoz, E.; Demir, O. Negative correlation among vitamin B12 levels, obesity severity and metabolic syndrome in obese children: A case control study. J. Pak. Med. Assoc. 2017, 67, 1648–1653. [Google Scholar]
- Allin, K.H.; Friedrich, N.; Pietzner, M.; Grarup, N.; Thuesen, B.H.; Linneberg, A.; Pisinger, C.; Hansen, T.; Pedersen, O.; Sandholt, C.H. Genetic determinants of serum vitamin B12 and their relation to body mass index. Eur. J. Epidemiol. 2016, 32, 125–134. [Google Scholar] [CrossRef]
- Alzaman, N.; Ali, A. Obesity and diabetes mellitus in the Arab world. J. Taibah Univ. Med Sci. 2016, 11, 301–309. [Google Scholar] [CrossRef]
- Al-Batayneh, K.M.; Al Zoubi, M.S.; Al-Trad, B.; Hussein, E.; Al Khateeb, W.; Aljabali, A.A.A.; Bodoor, K.; Shehab, M.; Al Hamad, M.A.; Eaton, G.J.; et al. Homologous G776G Variant of Transcobalamin-II Gene is Linked to Vitamin B12 Deficiency. Int. J. Vitam. Nutr. Res. 2020, 90, 151–155. [Google Scholar] [CrossRef]
- Nongmaithem, S.S.; Joglekar, C.V.; Krishnaveni, G.V.; Sahariah, S.A.; Ahmad, M.; Ramachandran, S.; Gandhi, M.; Chopra, H.; Pandit, A.; Potdar, R.D.; et al. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum. Mol. Genet. 2017, 26, 2551–2564. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, W.; Wu, C.; Sun, L.; Lin, D.; Lin, X.; Jiang, L.; Ding, R.; Jiang, Y. Association of ulcerative colitis with transcobalamin II gene polymorphisms and serum homocysteine, vitamin B12, and folate levels in Chinese patients. Immunogenetics 2017, 69, 421–428. [Google Scholar] [CrossRef]
- Kose, E.; Besci, O.; Gudeloglu, E.; Suncak, S.; Oymak, Y.; Ozen, S.; Isguder, R. Transcobalamin II deficiency in twins with a novel variant in the TCN2 gene: Case report and review of literature. J. Pediatr. Endocrinol. Metab. 2020, 33, 1487–1499. [Google Scholar] [CrossRef]
- Zhan, S.; Cheng, F.; He, H.; Hu, S.; Feng, X. Identification of transcobalamin deficiency with two novel mutations in the TCN2 gene in a Chinese girl with abnormal immunity: A case report. BMC Pediatr. 2020, 20, 460. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Yang, W.; Xia, X.; Lin, X.; Jiang, L.; Wu, C.; Ding, R.; Jiang, Y. An Analysis of Transcobalamin II Gene Polymorphisms and Serum Levels of Homocysteine, Folate and Vitamin B12 in Chinese Patients with Crohn’s Disease. Dig. Dis. 2017, 35, 463–471. [Google Scholar] [CrossRef]
- Green, R. Peripheral neuropathy risk and a transcobalamin polymorphism: Connecting the dots between excessive folate intake and disease susceptibility. Am. J. Clin. Nutr. 2016, 104, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, K.; Morawiec-Sztandera, A.; Majsterek, I.; Kaczmarczyk, D. TC2 C776G polymorphism studies in patients with oral cancer in the Polish population. Pol. J. Pathol. 2016, 67, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, A.; Levy, J.; Filhine-Trésarrieu, P.; Namour, F.; Guéant, J.-L. Association of TCN2 rs1801198 c.776G>C polymorphism with markers of one-carbon metabolism and related diseases: A systematic review and meta-analysis of genetic association studies. Am. J. Clin. Nutr. 2017, 106, 1142–1156. [Google Scholar] [CrossRef]
- Shekoohi, N.; Javanbakht, M.H.; Sohrabi, M.; Zarei, M.; Mohammadi, H.; Djalali, M. Smoking Discriminately Changes the Serum Active and Non-Active Forms of Vitamin B12. Acta Med. Iran. 2017, 55, 389–394. [Google Scholar]
- Mannino, D.M.; Mulinare, J.; Ford, E.S.; Schwartz, J. Tobacco smoke exposure and decreased serum and red blood cell folate levels: Data from the Third National Health and Nutrition Examination Survey. Nicotine Tob. Res. 2003, 5, 357–362. [Google Scholar] [CrossRef]
- Adaikalakoteswari, A.; Vatish, M.; Lawson, A.; Wood, C.; Sivakumar, K.; McTernan, P.G.; Webster, C.; Anderson, N.; Yajnik, C.S.; Tripathi, G.; et al. Low Maternal Vitamin B12 Status Is Associated with Lower Cord Blood HDL Cholesterol in White Caucasians Living in the UK. Nutrients 2015, 7, 2401–2414. [Google Scholar] [CrossRef]
Parameter | Healthy Controls (n = 100) | Overweight (n = 100) | Obese (n = 50) | |
---|---|---|---|---|
Gender | Male | 81 (81%) | 87 (87%) | 42 (92%) |
Female | 19 (19%) | 13 (13%) | 8 (8%) | |
Age (years) | 38.38 ± 6.65 | 37.61 ± 6.74 | 39.24 ± 6.69 |
Biochemical Parameters | Healthy Controls (n = 100) | Overweight (n = 100) | Obese (n = 50) | p Value * |
---|---|---|---|---|
Systolic blood pressure | 126.6 ± 7.0 | 148.1 ± 13.6 | 150.7 ± 17.8 | <0.0001 * |
Diastolic blood pressure | 85.5 ± 6.3 | 96.2 ± 7.5 | 97.0 ± 7.8 | <0.0001 * |
HDL-c (mg/dL) | 45.0 ± 13.2 | 39.2 ± 11.1 | 34.8 ± 7.1 | <0.0001 * |
LDL-c (mg/dL) | 181.6 ± 40.1 | 196.9 ± 28.6 | 186.6 ± 30.7 | 0.04 * |
TG (mg/dL) | 165.6 ± 18.2 | 216.2 ± 32.4 | 222.7 ± 43.5 | <0.0001 * |
Cholesterol (mg/dL) | 186.9 ± 35.2 | 233.9 ± 25.5 | 248.8 ± 7.5 | <0.0001 * |
VLDL-c (mg/dL) | 22.9 ± 4.2 | 32.2 ± 4.5 | 36.78 ± 4.5 | <0.0001 * |
Variable | CC (%) | CG (%) | GG (%) | p Value | Allelic Frequency | ||
---|---|---|---|---|---|---|---|
C | G | ||||||
TCN-2 | Control (n = 100) | 59 (59%) | 34 (34%) | 7 (7%) | - | 0.76 | 0.24 |
Overweight (n = 100) | 42 (42%) | 39 (39%) | 19 (19%) | 0.01 | 0.60 | 0.40 | |
Obese (n = 50) | 16 (32%) | 23 (46%) | 11 (22%) | 0.002 | 0.55 | 0.45 |
Gene | Genotype | Healthy Control | Overweight (n = 100) | OR (95%) |
TCN-2 | CC (Pro/Pro) | 59 (59%) | 42 (42%) | Ref |
CG (Pro/Arg) | 34 (34%) | 39 (39%) | 1.61 (0.87–2.95) (p = 0.12) | |
GG (Arg/Arg) | 7 (7%) | 19 (5%) | 3.81 (1.47–9.88) (p = 0.005) | |
Gene | Genotype | Healthy Control | Obese (n = 50) | OR (95%) |
TCN-2 | CC (Pro/Pro) | 59 (59%) | 16 (32%) | Ref |
CG (Pro/Arg) | 34 (34%) | 23 (46%) | 2.49 (1.16–5.36) (p = 0.01) | |
GG (Arg/Arg) | 7 (7%) | 11 (22%) | 5.79 (1.93–17.35) (p = 0.001) |
Gene | Genotype | Healthy Control | Overweight (n = 100) | Relative Risk (95%) |
TCN-2 | CC (Pro/Pro) | 59 (59%) | 42 (42%) | Ref |
CG (Pro/Arg) | 34 (34%) | 39 (39%) | 1.25 (0.93–1.68) (p = 0.13) | |
GG (Arg/Arg) | 7 (7%) | 19 (5%) | 2.17 (1.12–4.17) (p = 0.02) | |
Gene | Genotype | Healthy Control | Obese (n = 50) | Relative Risk (95%) |
TCN-2 | CC (Pro/Pro) | 59 (59%) | 16 (32%) | Ref |
CG (Pro/Arg) | 34 (34%) | 23 (46%) | 1.31 (1.03–1.68) (p = 0.02) | |
GG (Arg/Arg) | 7 (7%) | 11 (22%) | 2.02 (1.12–3.65) (p = 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, F.; Aljaadi, A.M.; Salaka, A.S.; Noorwali, E.A.; Khatoon, F.; Khan, M.I. Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults. Life 2023, 13, 1185. https://doi.org/10.3390/life13051185
Ashfaq F, Aljaadi AM, Salaka AS, Noorwali EA, Khatoon F, Khan MI. Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults. Life. 2023; 13(5):1185. https://doi.org/10.3390/life13051185
Chicago/Turabian StyleAshfaq, Fauzia, Abeer M. Aljaadi, Afnan S. Salaka, Essra A. Noorwali, Fahmida Khatoon, and Mohammad Idreesh Khan. 2023. "Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults" Life 13, no. 5: 1185. https://doi.org/10.3390/life13051185
APA StyleAshfaq, F., Aljaadi, A. M., Salaka, A. S., Noorwali, E. A., Khatoon, F., & Khan, M. I. (2023). Comparison of TCN-2 (776C>G) Gene Polymorphism and Vitamin B12 Status with Different Body Mass Index among Saudi Adults. Life, 13(5), 1185. https://doi.org/10.3390/life13051185