Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. GCRSim Exposure
2.3. Composite Garcia Neuroscore
- Axial sensation (AS): Tactile stimuli was applied on each side of the mouse’s trunk using a cotton swab. Scores indicate the following: 3, mouse is equally startled on both sides; 2, slower response on one side; 1, missing response on one side.
- Vibrissae proprioception (VP): A cotton swab was moved from the rear of the mouse towards its head and gently touching the vibrissae on each side at a time. Scores indicate: 3, mouse equally turns head on both sides; 2, asymmetric response; 1, missing response on one side.
- Spontaneous activity (SA): The mouse was observed for 3 min in their homecage environment. Scores indicate the following: 3, mouse approaches at least 3 walls of the cage; 2, mouse approaches less than 3 walls; 1, mouse does not approach any walls; 0, mouse does not move at all.
- Symmetry of limb movement (LS): The mouse was suspended by the tail to assess movement of the four limbs. Scores indicate: 3, all four limbs were extended symmetrically; 2, asymmetric extension; 1, limbs on one side showed minimal movement; 0, hemiplegia (no limb movement).
- Lateral turning (LT): The mouse was suspended by the tail and a blunt stick was moved along each side of the body to cause lateral turning towards the stimulus. Scores indicate: 3, animal turns at least 45 degrees on both sides; 2, animal turns equally to both sides but less than 45 degrees; 1, unequal turning; 0, no turning at all.
- Forelimb outstretching (FO): The mouse was suspended by its tail (<30 s) allowing both forepaws to touch the edge of a table. Scores indicate: 3, forepaws are equally outstretched and the mouse walked symmetrically on forepaws; 2, asymmetric outstretch and impaired forepaw walking; 1, minimal movement of one forepaw; 0, hemiplegia (no limb movement).
- Climbing (CL): The mouse was placed on a rough surface (22 × 44 cm) at a 45° angle with the table. Scores indicate: 3, mouse climbs to the top of the surface; 2, asymmetric or impaired climbing; 1, mouse fails to climb or showed tendency of circling.
2.4. Homecage Behavioral Analysis
2.5. Statistical Analysis
3. Results
3.1. Neuroscore
3.2. Frequency of Homecage Behaviors
3.3. Duration of Homecage Behaviors
3.4. Deacon Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Euston, D.R.; Gruber, A.J.; McNaughton, B.L. The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron 2012, 76, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Parihar, V.K.; Allen, B.; Tran, K.K.; Macaraeg, T.G.; Chu, E.M.; Kwok, S.F.; Chmielewski, N.N.; Craver, B.M.; Baulch, J.E.; Acharya, M.M.; et al. What Happens to Your Brain on the Way to Mars. Sci. Adv. 2015, 1, e1400256. [Google Scholar] [CrossRef] [PubMed]
- Parihar, V.K.; Maroso, M.; Syage, A.; Allen, B.D.; Angulo, M.C.; Soltesz, I.; Limoli, C.L. Persistent Nature of Alterations in Cognition and Neuronal Circuit Excitability after Exposure to Simulated Cosmic Radiation in Mice. Exp. Neurol. 2018, 305, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Raber, J.; Torres, E.R.S.; Akinyeke, T.; Lee, J.; Boutros, S.J.W.; Turker, M.S.; Kronenberg, A. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int. J. Mol. Sci. 2018, 19, 1247. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, S.D.; Iyer, J.; Puukila, S.; Paul, A.M.; Tahimic, C.G.T.; Rubinstein, L.; Lowe, M.; Alwood, J.S.; Sowa, M.B.; Bhattacharya, S.; et al. Neuro-Consequences of the Spaceflight Environment. Neurosci. Biobehav. Rev. 2022, 132, 908–935. [Google Scholar] [CrossRef]
- Krukowski, K.; Grue, K.; Becker, M.; Elizarraras, E.; Frias, E.S.; Halvorsen, A.; Koenig-Zanoff, M.; Frattini, V.; Nimmagadda, H.; Feng, X.; et al. The Impact of Deep Space Radiation on Cognitive Performance: From Biological Sex to Biomarkers to Countermeasures. Sci. Adv. 2021, 7, eabg6702. [Google Scholar] [CrossRef]
- Nelson, G.A. Space Radiation and Human Exposures, A Primer. Radiat. Res. 2016, 185, 349–358. [Google Scholar] [CrossRef]
- Jandial, R.; Hoshide, R.; Waters, J.D.; Limoli, C.L. Space-Brain: The Negative Effects of Space Exposure on the Central Nervous System. Surg. Neurol. Int. 2018, 9, 9. [Google Scholar] [CrossRef]
- Huff, J.L.; Poignant, F.; Rahmanian, S.; Khan, N.; Blakely, E.A.; Britten, R.A.; Chang, P.; Fornace, A.J.; Hada, M.; Kronenberg, A.; et al. Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory—Progress, Challenges and Recommendations on Mixed-Field Effects. Life Sci. Space Res. 2023, 36, 90–104. [Google Scholar] [CrossRef]
- Parihar, V.K.; Allen, B.D.; Caressi, C.; Kwok, S.; Chu, E.; Tran, K.K.; Chmielewski, N.N.; Giedzinski, E.; Acharya, M.M.; Britten, R.A.; et al. Cosmic Radiation Exposure and Persistent Cognitive Dysfunction. Sci. Rep. 2016, 6, 34774. [Google Scholar] [CrossRef]
- Britten, R.A.; Fesshaye, A.; Ihle, P.; Wheeler, A.; Baulch, J.E.; Limoli, C.L.; Stark, C.E. Dissecting Differential Complex Behavioral Responses to Simulated Space Radiation Exposures. Radiat. Res. 2022, 197, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, A.A.; Tracz, J.A.; Fesshaye, A.S.; Tidmore, A.; Osterlund Oltmanns, J.R.; Schaeffer, E.A.; Lake, R.I.; Wallace, D.G.; Britten, R.A. Fine Motor Deficits Exhibited in Rat String-Pulling Behavior Following Exposure to Sleep Fragmentation and Deep Space Radiation. Exp. Brain Res. 2023, 241, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, A.A.; Fesshaye, A.; Tidmore, A.; Lake, R.I.; Wallace, D.G.; Britten, R.A. Rapid Loss of Fine Motor Skills after Low Dose Space Radiation Exposure. Behav. Brain Res. 2022, 430, 113907. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.A.; Fesshaye, A.; Tidmore, A.; Blackwell, A.A. Similar Loss of Executive Function Performance after Exposure to Low (10 CGy) Doses of Single (4He) Ions and the Multi-Ion GCRSim Beam. Radiat. Res. 2022, 198, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era. In Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2011; pp. 1–444. [Google Scholar] [CrossRef]
- Mark, S.; Scott, G.B.I.; Donoviel, D.B.; Leveton, L.B.; Mahoney, E.; Charles, J.B.; Siegel, B. The Impact of Sex and Gender on Adaptation to Space: Executive Summary. J. Womens Health 2014, 23, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Parihar, V.K.; Angulo, M.C.; Allen, B.D.; Syage, A.; Usmani, M.T.; Passerat de la Chapelle, E.; Amin, A.N.; Flores, L.; Lin, X.; Giedzinski, E.; et al. Sex-Specific Cognitive Deficits Following Space Radiation Exposure. Front. Behav. Neurosci. 2020, 14, 535885. [Google Scholar] [CrossRef] [PubMed]
- Raber, J.; Yamazaki, J.; Torres, E.R.S.; Kirchoff, N.; Stagaman, K.; Sharpton, T.; Turker, M.S.; Kronenberg, A. Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Front. Physiol. 2019, 10, 179. [Google Scholar] [CrossRef]
- Raber, J.; Fuentes Anaya, A.; Torres, E.R.S.; Lee, J.; Boutros, S.; Grygoryev, D.; Hammer, A.; Kasschau, K.D.; Sharpton, T.J.; Turker, M.S.; et al. Effects of Six Sequential Charged Particle Beams on Behavioral and Cognitive Performance in B6D2F1 Female and Male Mice. Front. Physiol. 2020, 11, 959. [Google Scholar] [CrossRef]
- Krukowski, K.; Grue, K.; Frias, E.S.; Pietrykowski, J.; Jones, T.; Nelson, G.; Rosi, S. Female Mice Are Protected from Space Radiation-Induced Maladaptive Responses. Brain Behav. Immun. 2018, 74, 106–120. [Google Scholar] [CrossRef]
- Rienecker, K.D.A.; Grue, K.; Paladini, M.S.; Frias, E.S.; Frattini, V.; Borlongan, M.C.; Chou, A.; Torres-Espin, A.; Krukowski, K.; Ferguson, A.R.; et al. Combined Space Stressors Induce Independent Behavioral Deficits Predicted by Early Peripheral Blood Monocytes. Sci. Rep. 2023, 13, 1749. [Google Scholar] [CrossRef]
- Richardson, C.A. The Power of Automated Behavioural Homecage Technologies in Characterizing Disease Progression in Laboratory Mice: A Review. Appl. Anim. Behav. Sci. 2015, 163, 19–27. [Google Scholar] [CrossRef]
- Si, Y.; Guo, C.; Xiao, F.; Mei, B.; Meng, B. Noncognitive Species-Typical and Home-Cage Behavioral Alterations in Conditional Presenilin 1/Presenilin 2 Double Knockout Mice. Behav. Brain Res. 2022, 418, 113652. [Google Scholar] [CrossRef] [PubMed]
- Codita, A.; Gumucio, A.; Lannfelt, L.; Gellerfors, P.; Winblad, B.; Mohammed, A.H.; Nilsson, L.N.G. Impaired Behavior of Female Tg-ArcSwe APP Mice in the IntelliCage: A Longitudinal Study. Behav. Brain Res. 2010, 215, 83–94. [Google Scholar] [CrossRef] [PubMed]
- BNL|NSRL User Guide. Available online: https://www.bnl.gov/nsrl/userguide/simgcrsim.php (accessed on 7 April 2023).
- Garcia, J.H.; Wagner, S.; Liu, K.F.; Hu, X.J. Neurological Deficit and Extent of Neuronal Necrosis Attributable to Middle Cerebral Artery Occlusion in Rats. Statistical Validation. Stroke 1995, 26, 627–634. [Google Scholar] [CrossRef]
- Hausser, N.; Johnson, K.; Parsley, M.A.; Guptarak, J.; Spratt, H.; Sell, S.L. Detecting Behavioral Deficits in Rats after Traumatic Brain Injury. J. Vis. Exp. 2018, 2018, e56044. [Google Scholar] [CrossRef]
- McBride, D.W.; Wang, Y.; Adam, L.; Oudin, G.; Louis, J.S.; Tang, J.; Zhang, J.H. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury. Acta Neurochir. Suppl. 2016, 121, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Krafft, P.R.; McBride, D.W.; Lekic, T.; Rolland, W.B.; Mansell, C.E.; Ma, Q.; Tang, J.; Zhang, J.H. Correlation between Subacute Sensorimotor Deficits and Brain Edema in Two Mouse Models of Intracerebral Hemorrhage. Behav. Brain Res. 2014, 264, 151–160. [Google Scholar] [CrossRef]
- Friard, O.; Gamba, M. BORIS: A Free, Versatile Open-Source Event-Logging Software for Video/Audio Coding and Live Observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Deacon, R.M.J. Assessing Nest Building in Mice. Nat. Protoc. 2006, 1, 1117–1119. [Google Scholar] [CrossRef]
- Balzani, E.; Falappa, M.; Balci, F.; Tucci, V. An Approach to Monitoring Home-Cage Behavior in Mice That Facilitates Data Sharing. Nat. Protoc. 2018, 13, 1331–1347. [Google Scholar] [CrossRef]
- Voikar, V.; Gaburro, S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front. Behav. Neurosci. 2020, 14, 193. [Google Scholar] [CrossRef] [PubMed]
- Pond, H.L.; Heller, A.T.; Gural, B.M.; McKissick, O.P.; Wilkinson, M.K.; Manzini, M.C. Digging Behavior Discrimination Test to Probe Burrowing and Exploratory Digging in Male and Female Mice. J. Neurosci. Res. 2021, 99, 2046–2058. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Stewart, A.M.; Song, C.; Berridge, K.C.; Graybiel, A.M.; Fentress, J.C. Neurobiology of Rodent Self-Grooming and Its Value for Translational Neuroscience. Nat. Rev. Neurosci. 2016, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory Rearing: A Context- and Stress-Sensitive Behavior Recorded in the Open-Field Test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef]
- Liu, B.; Hinshaw, R.G.; Le, K.X.; Park, M.A.; Wang, S.; Belanger, A.P.; Dubey, S.; Frost, J.L.; Shi, Q.; Holton, P.; et al. Space-like 56Fe Irradiation Manifests Mild, Early Sex-Specific Behavioral and Neuropathological Changes in Wildtype and Alzheimer’s-like Transgenic Mice. Sci. Rep. 2019, 9, 12118. [Google Scholar] [CrossRef]
- Osterlund Oltmanns, J.R.; Schaeffer, E.A.; Blackwell, A.A.; Lake, R.I.; Einhaus, R.M.; Kartje, G.L.; Wallace, D.G. Age-Related Changes in the Organization of Spontaneously Occurring Behaviors. Behav. Process. 2022, 201, 104713. [Google Scholar] [CrossRef]
- Bains, R.S.; Wells, S.; Sillito, R.R.; Armstrong, J.D.; Cater, H.L.; Banks, G.; Nolan, P.M. Assessing Mouse Behaviour throughout the Light/Dark Cycle Using Automated in-Cage Analysis Tools. J. Neurosci. Methods 2018, 300, 37. [Google Scholar] [CrossRef]
- Peirson, S.N.; Brown, L.A.; Pothecary, C.A.; Benson, L.A.; Fisk, A.S. Light and the Laboratory Mouse. J. Neurosci. Methods 2018, 300, 26. [Google Scholar] [CrossRef]
- Steel, L.C.E.; Tir, S.; Tam, S.K.E.; Bussell, J.N.; Spitschan, M.; Foster, R.G.; Peirson, S.N. Effects of Cage Position and Light Transmission on Home Cage Activity and Circadian Entrainment in Mice. Front. Neurosci. 2022, 15, 1833. [Google Scholar] [CrossRef]
- Dournes, C.; Beeské, S.; Belzung, C.; Griebel, G. Deep Brain Stimulation in Treatment-Resistant Depression in Mice: Comparison with the CRF1 Antagonist, SSR125543. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 213–220. [Google Scholar] [CrossRef]
- Otabi, H.; Goto, T.; Okayama, T.; Kohari, D.; Toyoda, A. Subchronic and Mild Social Defeat Stress Alter Mouse Nest Building Behavior. Behav. Process. 2016, 122, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Otabi, H.; Goto, T.; Okayama, T.; Kohari, D.; Toyoda, A. The Acute Social Defeat Stress and Nest-Building Test Paradigm: A Potential New Method to Screen Drugs for Depressive-like Symptoms. Behav. Process. 2017, 135, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.; Hong, C.J.; Jung, S.; Choe, S.; Yu, S.W. Chronic Restraint Stress Induces Hippocampal Memory Deficits by Impairing Insulin Signaling. Mol. Brain 2018, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Gjendal, K.; Ottesen, J.L.; Olsson, I.A.S.; Sørensen, D.B. Burrowing and Nest Building Activity in Mice after Exposure to Grid Floor, Isoflurane or Ip Injections. Physiol. Behav. 2019, 206, 59–66. [Google Scholar] [CrossRef]
- Newman, E.L.; Covington, H.E.; Suh, J.; Bicakci, M.B.; Ressler, K.J.; DeBold, J.F.; Miczek, K.A. Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice. Biol. Psychiatry 2019, 86, 657–668. [Google Scholar] [CrossRef]
- Jacobson, M.L.; Wulf, H.A.; Tsuda, M.C.; Browne, C.A.; Lucki, I. Sex Differences in the Modulation of Mouse Nest Building Behavior by Kappa Opioid Receptor Signaling. Neuropharmacology 2020, 177, 108254. [Google Scholar] [CrossRef]
- Cunningham, C.; Deacon, R.; Wells, H.; Boche, D.; Waters, S.; Picanco Diniz, C.; Scott, H.; Rawlins, J.N.P.; Perry, V.H. Synaptic Changes Characterize Early Behavioural Signs in the ME7 Model of Murine Prion Disease. Eur. J. Neurosci. 2003, 17, 2147–2155. [Google Scholar] [CrossRef]
- Reiber, M.; Koska, I.; Pace, C.; Schönhoff, K.; von Schumann, L.; Palme, R.; Potschka, H. Development of Behavioral Patterns in Young C57BL/6J Mice: A Home Cage-Based Study. Sci. Rep. 2022, 12, 2550. [Google Scholar] [CrossRef]
- Xiong, X.D.; Xiong, W.D.; Xiong, S.S.; Chen, G.H. Age- and Gender-Based Differences in Nest-Building Behavior and Learning and Memory Performance Measured Using a Radial Six-Armed Water Maze in C57BL/6 Mice. Behav. Neurol. 2018, 2018, 8728415. [Google Scholar] [CrossRef]
- Lippi, S.L.P. Chronic Mild Unpredictable Stress and High-Fat Diet Given during Adolescence Impact Both Cognitive and Noncognitive Behaviors in Young Adult Mice. Brain Sci. 2021, 11, 260. [Google Scholar] [CrossRef]
- Joseph, J.A.; Hunt, W.A.; Rabin, B.M.; Dalton, T.K. Possible Accelerated Striatal Aging Induced by 56Fe Heavy-Particle Irradiation: Implications for Manned Space Flights. Radiat. Res. 1992, 130, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Howerton, C.L.; Garner, J.P.; Mench, J.A. A System Utilizing Radio Frequency Identification (RFID) Technology to Monitor Individual Rodent Behavior in Complex Social Settings. J. Neurosci. Methods 2012, 209, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Jackson, W.S.; King, O.D.; Lindquist, S. The Power of Automated High-Resolution Behavior Analysis Revealed by Its Application to Mouse Models of Huntington’s and Prion Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bermudez-Contreras, E.; Nazari, M.; Sutherland, R.J.; Mohajerani, M.H. Low-Cost Solution for Rodent Home-Cage Behaviour Monitoring. PLoS ONE 2019, 14, e0220751. [Google Scholar] [CrossRef] [PubMed]
- Pernold, K.; Rullman, E.; Ulfhake, B. Major Oscillations in Spontaneous Home-Cage Activity in C57BL/6 Mice Housed under Constant Conditions. Sci. Rep. 2021, 11, 4961. [Google Scholar] [CrossRef]
Ion | Energy (MeV/n) | Fraction |
---|---|---|
H | 1000 | 35% |
Si | 600 | 1% |
He | 250 | 18% |
O | 350 | 6% |
Fe | 600 | 1% |
H | 250 | 39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puukila, S.; Siu, O.; Rubinstein, L.; Tahimic, C.G.T.; Lowe, M.; Tabares Ruiz, S.; Korostenskij, I.; Semel, M.; Iyer, J.; Mhatre, S.D.; et al. Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice. Life 2023, 13, 1214. https://doi.org/10.3390/life13051214
Puukila S, Siu O, Rubinstein L, Tahimic CGT, Lowe M, Tabares Ruiz S, Korostenskij I, Semel M, Iyer J, Mhatre SD, et al. Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice. Life. 2023; 13(5):1214. https://doi.org/10.3390/life13051214
Chicago/Turabian StylePuukila, Stephanie, Olivia Siu, Linda Rubinstein, Candice G. T. Tahimic, Moniece Lowe, Steffy Tabares Ruiz, Ivan Korostenskij, Maya Semel, Janani Iyer, Siddhita D. Mhatre, and et al. 2023. "Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice" Life 13, no. 5: 1214. https://doi.org/10.3390/life13051214
APA StylePuukila, S., Siu, O., Rubinstein, L., Tahimic, C. G. T., Lowe, M., Tabares Ruiz, S., Korostenskij, I., Semel, M., Iyer, J., Mhatre, S. D., Shirazi-Fard, Y., Alwood, J. S., Paul, A. M., & Ronca, A. E. (2023). Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice. Life, 13(5), 1214. https://doi.org/10.3390/life13051214