Association of Low Arousal Threshold Obstructive Sleep Apnea Manifestations with Body Fat and Water Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population
2.3. Body Composition Variables
2.4. PSG Parameters
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics of Study Participants
3.2. PSG Variables of Study Participants
3.3. Associations between PSG Variables, Visceral Fat Level, and Distribution of Body Fat and Body Water
3.4. Alteration in Body Fat and Water Associated with the Risk of Low-ArTH
3.5. Supplementary Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Maspero, C.; Giannini, L.; Galbiati, G.; Rosso, G.; Farronato, G. Obstructive sleep apnea syndrome: A literature review. Minerva Stomatol. 2015, 64, 97–109. [Google Scholar] [PubMed]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef]
- White, D.P. Sleep apnea. Proc. Am. Thorac. Soc. 2006, 3, 124–128. [Google Scholar] [CrossRef]
- Eikermann, M.; Jordan, A.S.; Chamberlin, N.L.; Gautam, S.; Wellman, A.; Lo, Y.L.; White, D.P.; Malhotra, A. The influence of aging on pharyngeal collapsibility during sleep. Chest 2007, 131, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Antonaglia, C.; Passuti, G.; Giudici, F.; Salton, F.; Ruaro, B.; Radovanovic, D.; Confalonieri, M. Low arousal threshold: A common pathophysiological trait in patients with obstructive sleep apnea syndrome and asthma. Sleep Breath. 2022. [Google Scholar] [CrossRef]
- Rundo, J.V.; Downey, R., III. Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar]
- Edwards, B.A.; Eckert, D.J.; McSharry, D.G.; Sands, S.A.; Desai, A.; Kehlmann, G.; Bakker, J.P.; Genta, P.R.; Owens, R.L.; White, D.P. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 1293–1300. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Liu, W.-T.; Lin, Y.-T.; Lin, S.-Y.; Houghton, R.; Hsu, W.-H.; Wu, D.; Lee, H.-C.; Wu, C.-J.; Li, L.Y.J. Machine learning approaches for screening the risk of obstructive sleep apnea in the Taiwan population based on body profile. Inform. Health Soc. Care 2022, 47, 373–388. [Google Scholar] [CrossRef]
- Ahbab, S.; Ataoğlu, H.E.; Tuna, M.; Karasulu, L.; Çetin, F.; Temiz, L.Ü.; Yenigün, M. Neck circumference, metabolic syndrome and obstructive sleep apnea syndrome; evaluation of possible linkage. Med. Sci. Monit. 2013, 19, 111–117. [Google Scholar]
- Tsai, C.-Y.; Kuan, Y.-C.; Hsu, W.-H.; Lin, Y.-T.; Hsu, C.-R.; Lo, K.; Hsu, W.-H.; Majumdar, A.; Liu, Y.-S.; Hsu, S.-M. Differentiation model for insomnia disorder and the respiratory arousal threshold phenotype in obstructive sleep apnea in the taiwanese population based on oximetry and anthropometric features. Diagnostics 2022, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.K.; Lin, C.C. Work of breathing and respiratory drive in obesity. Respirology 2012, 17, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Hlavac, M.C.; Catcheside, P.G.; McDonald, R.; Eckert, D.J.; Windler, S.; McEvoy, R.D. Hypoxia Impairs the Arousal Response to External Resistive Loading and Airway Occlusion During Sleep. Sleep 2006, 29, 624–631. [Google Scholar] [CrossRef]
- Yang, A.L.; Lo, M.J.; Ting, H.; Chen, J.S.; Huang, C.Y.; Lee, S.D. GABA(A) and GABA(B) receptors differentially modulate volume and frequency in ventilatory compensation in obese Zucker rats. J. Appl. Physiol. 2007, 102, 350–357. [Google Scholar] [CrossRef]
- Edwards, B.A.; Sands, S.A.; Eckert, D.J.; White, D.P.; Butler, J.P.; Owens, R.L.; Malhotra, A.; Wellman, A. Acetazolamide improves loop gain but not the other physiological traits causing obstructive sleep apnoea. J. Physiol. 2012, 590, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.J.; Freire, C.; Fleury Curado, T.; Jun, J.C.; Polotsky, V.Y. The role of animal models in developing pharmacotherapy for obstructive sleep apnea. J. Clin. Med. 2019, 8, 2049. [Google Scholar] [CrossRef]
- Locke, B.W.; Lee, J.J.; Sundar, K.M. OSA and chronic respiratory disease: Mechanisms and epidemiology. Int. J. Environ. Res. Public Health 2022, 19, 5473. [Google Scholar] [CrossRef]
- Koka, V.; De Vito, A.; Roisman, G.; Petitjean, M.; Filograna Pignatelli, G.R.; Padovani, D.; Randerath, W. Orofacial myofunctional therapy in obstructive sleep apnea syndrome: A pathophysiological perspective. Medicina 2021, 57, 323. [Google Scholar] [CrossRef]
- Bertuzzi, F.; Santagostini, A.; Pollis, M.; Meola, F.; Segù, M. The Interaction of Craniofacial Morphology and Body Mass Index in Obstructive Sleep Apnea. Dent. J. 2022, 10, 136. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef]
- Kosacka, M.; Korzeniewska, A.; Jankowska, R. The evaluation of body composition, adiponectin, C-reactive protein and cholesterol levels in patients with obstructive sleep apnea syndrome. Adv. Clin. Exp. Med. 2013, 22, 817–824. [Google Scholar]
- Tang, S.C.; Lam, B.; Ku, P.P.; Leung, W.S.; Chu, C.M.; Ho, Y.W.; Ip, M.S.; Lai, K.N. Alleviation of sleep apnea in patients with chronic renal failure by nocturnal cycler–assisted peritoneal dialysis compared with conventional continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 2006, 17, 2607–2616. [Google Scholar] [CrossRef]
- Metin, M.; Avcu, M.; Ulcay, T.; Yavaş, M.C. The relationship between extracellular fluid and obstructive sleep apnea in non-obese patients. J. Craniomandib. Sleep Pract. 2021, 1–8. [Google Scholar] [CrossRef]
- Edition, F. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Virginia, VA, USA, 2013; p. 21. [Google Scholar]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM scoring manual updates for 2017 (version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef]
- Quan, S.; Gillin, J.C.; Littner, M.; Shepard, J. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. editorials. Sleep 1999, 22, 662–689. [Google Scholar] [CrossRef]
- Suzuki, M. Obstructive sleep apnea -consideration of its pathogenesis. Auris Nasus Larynx 2022, 49, 313–321. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Li, J.; Wang, J.; Shen, J.; Wu, H.; Guo, K.; Chen, R. Low Arousal Threshold: A Potential Bridge between OSA and Periodic Limb Movements of Sleep. Nat. Sci. Sleep 2021, 13, 229–238. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Hsu, W.H.; Lin, Y.T.; Liu, Y.S.; Lo, K.; Lin, S.Y.; Majumdar, A.; Cheng, W.H.; Lee, K.Y.; Wu, D.; et al. Associations among sleep-disordered breathing, arousal response, and risk of mild cognitive impairment in a northern Taiwan population. J. Clin. Sleep Med. 2022, 18, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Wu, S.M.; Kuan, Y.C.; Lin, Y.T.; Hsu, C.R.; Hsu, W.H.; Liu, Y.S.; Majumdar, A.; Stettler, M.; Yang, C.M.; et al. Associations between risk of Alzheimer’s disease and obstructive sleep apnea, intermittent hypoxia, and arousal responses: A pilot study. Front. Neurol. 2022, 13, 1038735. [Google Scholar] [CrossRef] [PubMed]
- Babb, T.G.; Wyrick, B.L.; Chase, P.J.; DeLorey, D.S.; Rodder, S.G.; Feng, M.Y.; Ranasinghe, K.G. Weight loss via diet and exercise improves exercise breathing mechanics in obese men. Chest 2011, 140, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Topete, M.V.; Andrade, S.; Bernardino, R.L.; Guimarães, M.; Pereira, A.M.; Oliveira, S.B.; Costa, M.M.; Nora, M.; Monteiro, M.P.; Pereira, S.S. Visceral Adipose Tissue Bioenergetics Varies According to Individuals’ Obesity Class. Int. J. Mol. Sci. 2023, 24, 1679. [Google Scholar] [CrossRef] [PubMed]
- Crummy, F.; Piper, A.; Naughton, M.T. Obesity and the lung: 2· Obesity and sleep-disordered breathing. Thorax 2008, 63, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Baron, K.; Reid, K.; Kim, T.; Van Horn, L.; Attarian, H.; Wolfe, L.; Siddique, J.; Santostasi, G.; Zee, P. Circadian timing and alignment in healthy adults: Associations with BMI, body fat, caloric intake and physical activity. Int. J. Obes. 2017, 41, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Abate, N. Body fat distribution and insulin resistance. Nutrients 2013, 5, 2019–2027. [Google Scholar] [CrossRef]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef]
- Zammit, C.; Liddicoat, H.; Moonsie, I.; Makker, H. Obesity and respiratory diseases. Int. J. Gen. Med. 2010, 3, 335–343. [Google Scholar]
- Tsai, C.-Y.; Huang, H.-T.; Cheng, H.-C.; Wang, J.; Duh, P.-J.; Hsu, W.-H.; Stettler, M.; Kuan, Y.-C.; Lin, Y.-T.; Hsu, C.-R. Screening for Obstructive Sleep Apnea Risk by Using Machine Learning Approaches and Anthropometric Features. Sensors 2022, 22, 8630. [Google Scholar] [CrossRef]
- Borel, A.-L. Sleep apnea and sleep habits: Relationships with metabolic syndrome. Nutrients 2019, 11, 2628. [Google Scholar] [CrossRef]
- Lee, S.D.; Nakano, H.; Farkas, G.A. Adenosinergic modulation of ventilation in obese zucker rats. Obes. Res. 2005, 13, 545–555. [Google Scholar] [CrossRef]
- Guilleminault, C.; Chowdhuri, S. Upper airway resistance syndrome is a distinct syndrome. Am. J. Respir. Crit. Care Med. 2000, 161, 1412–1413. [Google Scholar] [CrossRef]
- Ma, M.A.; Kumar, R.; Macey, P.M.; Yan-Go, F.L.; Harper, R.M. Epiglottis cross-sectional area and oropharyngeal airway length in male and female obstructive sleep apnea patients. Nat. Sci. Sleep 2016, 8, 297–304. [Google Scholar] [CrossRef]
- Li, Y.; Orr, J.; Jen, R.; Sands, S.A.; DeYoung, P.; Smales, E.; Edwards, B.; Owens, R.L.; Malhotra, A. Is there a threshold that triggers cortical arousals in obstructive sleep apnea. Sleep 2019, 42, zsz047. [Google Scholar] [CrossRef]
- Ding, F.; O’donnell, J.; Xu, Q.; Kang, N.; Goldman, N.; Nedergaard, M. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016, 352, 550–555. [Google Scholar] [CrossRef] [PubMed]
- White, L.H.; Lyons, O.D.; Yadollahi, A.; Ryan, C.M.; Bradley, T.D. Night-to-night variability in obstructive sleep apnea severity: Relationship to overnight rostral fluid shift. J. Clin. Sleep Med. 2015, 11, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Motwani, S.S.; Elias, R.M.; Gabriel, J.M.; Taranto Montemurro, L.; Yanagisawa, N.; Spiller, N.; Paul, N.; Bradley, T.D. Influence of rostral fluid shift on upper airway size and mucosal water content. J. Clin. Sleep Med. 2014, 10, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.; Lam, B.; Lai, A.S.; Pang, C.B.; Tso, W.K.; Khong, P.L.; Ip, M.S.; Lai, K.N. Improvement in sleep apnea during nocturnal peritoneal dialysis is associated with reduced airway congestion and better uremic clearance. Clin. J. Am. Soc. Nephrol. 2009, 4, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Prado, E.; Dunn, J.F.; Vasconez, J.; Castillo, D.; Viscor, G. Partial pressure of oxygen in the human body: A general review. Am. J. Blood Res. 2019, 9, 1. [Google Scholar] [PubMed]
- Lyons, O.D.; Chan, C.T.; Yadollahi, A.; Bradley, T.D. Effect of ultrafiltration on sleep apnea and sleep structure in patients with end-stage renal disease. Am. J. Respir. Crit. Care Med. 2015, 191, 1287–1294. [Google Scholar] [CrossRef]
- Gusbeth-Tatomir, P.; Boisteanu, D.; Seica, A.; Buga, C.; Covic, A. Sleep disorders: A systematic review of an emerging major clinical issue in renal patients. Int. Urol. Nephrol. 2007, 39, 1217–1226. [Google Scholar] [CrossRef]
- Malhotra, A.; Jordan, A. The importance of arousal in obstructive sleep apnea—Updates from the American Thoracic Society 2016. J. Thorac. Dis. 2016, 8 (Suppl. S7), S542. [Google Scholar] [CrossRef]
- Eckert, D.J.; Owens, R.L.; Kehlmann, G.B.; Wellman, A.; Rahangdale, S.; Yim-Yeh, S.; White, D.P.; Malhotra, A. Eszopiclone increases the respiratory arousal threshold and lowers the apnoea/hypopnoea index in obstructive sleep apnoea patients with a low arousal threshold. Clin. Sci. 2011, 120, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.G.; Eckert, D.J. Effects of hypnotics on obstructive sleep apnea endotypes and severity: Novel insights into pathophysiology and treatment. Sleep Med. Rev. 2021, 58, 101492. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J. Phenotypic approaches to obstructive sleep apnoea–new pathways for targeted therapy. Sleep Med. Rev. 2018, 37, 45–59. [Google Scholar] [CrossRef]
- Antonaglia, C.; Vidoni, G.; Contardo, L.; Giudici, F.; Salton, F.; Ruaro, B.; Confalonieri, M.; Caneva, M. Low Arousal Threshold Estimation Predicts Failure of Mandibular Advancement Devices in Obstructive Sleep Apnea Syndrome. Diagnostics 2022, 12, 2548. [Google Scholar] [CrossRef] [PubMed]
- Taranto-Montemurro, L.; Messineo, L.; Wellman, A. Targeting endotypic traits with medications for the pharmacological treatment of obstructive sleep apnea. A review of the current literature. J. Clin. Med. 2019, 8, 1846. [Google Scholar] [CrossRef]
- Lee, R.W.; Vasudavan, S.; Hui, D.S.; Prvan, T.; Petocz, P.; Darendeliler, M.A.; Cistulli, P.A. Differences in craniofacial structures and obesity in Caucasian and Chinese patients with obstructive sleep apnea. Sleep 2010, 33, 1075–1080. [Google Scholar] [CrossRef]
- Collop, N.A. Scoring variability between polysomnography technologists in different sleep laboratories. Sleep Med. 2002, 3, 43–47. [Google Scholar] [CrossRef]
- Riedel, B.W.; Winfield, C.F.; Lichstein, K.L. First night effect and reverse first night effect in older adults with primary insomnia: Does anxiety play a role? Sleep Med. 2001, 2, 125–133. [Google Scholar] [CrossRef]
- Hızlı, Ö.; Özcan, M.; Ünal, A. Evaluation of comorbidities in patients with OSAS and simple snoring. Sci. World J. 2013, 2013, 709292. [Google Scholar] [CrossRef]
- Veldi, M.; Ani, R.; Vaher, H.; Eller, T.; Hion, T.; Aluoja, A.; Vasar, V. Obstructive sleep apnea syndrome (OSAS): Pathophysiology in Estonians. Pathophysiology 2010, 17, 219–223. [Google Scholar] [CrossRef]
Categorical Variables | Non-OSA Group (n = 368) | Low-ArTH Group (n = 1850) | p |
---|---|---|---|
Age (years) | 39.08 ± 12.43 | 48.83 ± 13.55 | <0.01 |
Sex (men/women) * | 132/236 | 1121/729 | <0.01 |
BMI (kg/m2) | 22.74 ± 3.53 | 25.99 ± 4.26 | <0.01 |
Neck circumference (cm) | 33.9 ± 4.1 | 36.88 ± 4.49 | <0.01 |
Waist circumference (cm) | 79.09 ± 10.39 | 89.82 ± 10.8 | <0.01 |
Body composition | |||
Visceral fat level (score) | 6.35 ± 3.9 | 10.95 ± 4.27 | <0.01 |
Body Fat percent (%) | 26.61 ± 8.0 | 28.61 ± 8.94 | <0.01 |
trunk–limb fat ratio | 1.17 ± 0.23 | 1.35 ± 0.2 | <0.01 |
Muscle percent (%) | 18.36 ± 4.02 | 17.79 ± 4.8 | 0.41 |
Basal metabolic rate (kcal) | 5449.27 ± 982.4 | 6072.31 ± 1152.2 | <0.01 |
Body water distribution | |||
TBW (%) | 50.97 ± 4.93 | 49.74 ± 5.46 | <0.01 |
ECW (%) | 40.95 ± 2.03 | 41.96 ± 2.61 | <0.01 |
ICW (%) | 59.05 ± 2.03 | 58.04 ± 2.61 | <0.01 |
E-I water ratio | 0.7 ± 0.06 | 0.73 ± 0.08 | <0.01 |
OSA severity (n, %) * | <0.01 | ||
Normal | 368 (100%) | - | |
Mild | - | 745 (40.27%) | |
Moderate | - | 805 (43.51%) | |
Severe | - | 300 (16.22%) |
Categorical Variables | Non-OSA Group (n = 367) | Low-ArTH Group (n = 1784) | p |
---|---|---|---|
Sleep architecture | |||
Sleep efficiency (%) | 77.55 ± 12.99 | 76.25 ± 13.28 | 0.08 |
NREM (% of TST) | 85.65 ± 7.42 | 85.9 ± 7.03 | 0.66 |
REM (% of TST) | 14.34 ± 7.42 | 14.1 ± 7.03 | 0.67 |
WASO (min) | 47.85 ± 39.92 | 57.33 ± 40.34 | <0.01 |
Event Duration (s) | |||
Apnea | 7.04 ± 9.42 | 14.36 ± 10.12 | <0.01 |
Hypopnea | 24.16 ± 7.56 | 26.13 ± 6.01 | <0.01 |
Low ArTH criteria | |||
AHI (events/h) | 2.6 ± 1.27 | 20.56 ± 13.32 | <0.01 |
minSpO2 (%) | 92.58 ± 2.85 | 86.37 ± 5.53 | <0.01 |
F-hypopnea (%) | 92.51 ± 12.61 | 89.11 ± 13.6 | <0.01 |
Sleep disorder variables (events/h) | |||
Oxygen desaturation index | 1.17 ± 1.13 | 13.96 ± 12.01 | <0.01 |
Arousal index | 11.87 ± 7.14 | 17.79 ± 10.26 | <0.01 |
Categorical Variables | β Coefficient (95% CI) | |
---|---|---|
Crude Model a | Adjusted Model b | |
Sleep architecture | ||
Sleep efficiency (%) | −0.58 (−1.14 to −0.03) * | −2.14 (−4.3 to 0.01) |
WASO (min) | 4.83 (3.16 to 6.5) ** | 1.69 (−4.67 to 8.05) |
Event Duration (s) | ||
Apnea | 1.22 (0.79 to 1.64) ** | −0.69 (−2.37 to 0.98) |
Hypopnea | 0.01 (−0.25 to 0.28) | 0.13 (−0.86 to 1.12) |
Low ArTH criteria | ||
AHI (events/h) | 6.12 (5.6 to 6.64) ** | 3.78 (1.75 to 5.81) ** |
minSpO2 (%) | −1.96 (−2.18 to −1.74) ** | 0.65 (−0.22 to 1.52) |
F-hypopnea (%) | −0.35 (−0.92 to 0.21) | −1.15 (−3.38 to 1.07) |
Sleep disorder variables (events/h) | ||
Oxygen desaturation index | 5.62 (5.18 to 6.06) ** | 2.52 (0.8 to 4.25) ** |
Arousal index | 1.31 (0.89 to 1.72) ** | 2.96 (1.33 to 4.59) ** |
Categorical Variables | β Coefficient (95% CI) | |
---|---|---|
Crude Model a | Adjusted Model b | |
Sleep architecture | ||
Sleep efficiency (%) | −4.47 (−7.02 to −1.92) ** | −2.42 (−5.49 to 0.66) |
WASO (min) | 24.61 (16.88 to 32.34) ** | 4.11 (−4.96 to 13.18) |
Event Duration (s) | ||
Apnea | 6.43 (4.45 to 8.42) ** | 1.28 (−1.11 to 3.67) |
Hypopnea | 2.43 (1.21 to 3.64) ** | −0.15 (−1.57 to 1.27) |
Low ArTH criteria | ||
AHI (events/h) | 18.18 (15.61 to 20.75) ** | 3.43 (0.53 to 6.33) ** |
minSpO2 (%) | −5.13 (−6.2 to −4.05) ** | −0.39 (−1.63 to 0.85) |
F-hypopnea (%) | −3.8 (−6.4 to −1.2) * | −1.73 (−4.9 to 1.44) |
Sleep disorder variables (events/h) | ||
Oxygen desaturation index | 13.87 (11.63 to 16.1) ** | 0.29 (−2.18 to 2.76) |
Arousal index | 7.35 (5.44 to 9.27) ** | 5.17 (2.85 to 7.49) ** |
Categorical Variables | β Coefficient (95% CI) | |
---|---|---|
Crude Model a | Adjusted Model b | |
Sleep architecture | ||
Sleep efficiency (%) | −31.19 (−38.17 to −24.21) ** | −24.73 (−34.25 to −15.2) ** |
WASO (min) | 97.51 (76.22 to 118.81) ** | 37.03 (8.83 to 65.24) * |
Event Duration (s) | ||
Apnea | −4.94 (−10.5 to 0.62) | −1.91 (−9.35 to 5.53) |
Hypopnea | −9.37 (−12.74 to −5.99) ** | −4.99 (−9.4 to −0.58) * |
Low ArTH criteria | ||
AHI (events/h) | 24.22 (16.84 to 31.6) ** | 8.49 (−0.56 to 17.54) |
minSpO2 (%) | −6.69 (−9.72 to −3.66) ** | 1.03 (−2.83 to 4.89) |
F-hypopnea (%) | 5.21 (−2.03 to 12.44) | −3.06 (−12.93 to 6.81) |
Sleep disorder variables (events/h) | ||
Oxygen desaturation index | 16.77 (10.39 to 23.15) ** | −0.78 (−8.47 to 6.91) |
Arousal index | 24.52 (19.23 to 29.82) ** | 22.09 (14.89 to 29.29) ** |
Arousal Variables (Arousals/h) | Crude OR (95% CI) a | Adjusted OR (95% CI) b |
---|---|---|
Body composition | ||
Visceral fat level (score) | 3.68 (3.15 to 4.31) ** | 1.11 (0.66 to 1.87) |
Body fat percentage (%) | 1.27 (1.13 to 1.42) ** | 1.58 (1.08 to 2.30) * |
Trunk–limb fat ratio | 2.36 (2.08 to 2.67) ** | 1.22 (1.04 to 1.43) * |
Body water distribution | ||
E-I water ratio | 1.59 (1.39 to 1.81) ** | 1.32 (1.08 to 1.62) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-H.; Yang, C.-C.; Tsai, C.-Y.; Majumdar, A.; Lee, K.-Y.; Feng, P.-H.; Tseng, C.-H.; Chen, K.-Y.; Kang, J.-H.; Lee, H.-C.; et al. Association of Low Arousal Threshold Obstructive Sleep Apnea Manifestations with Body Fat and Water Distribution. Life 2023, 13, 1218. https://doi.org/10.3390/life13051218
Hsu W-H, Yang C-C, Tsai C-Y, Majumdar A, Lee K-Y, Feng P-H, Tseng C-H, Chen K-Y, Kang J-H, Lee H-C, et al. Association of Low Arousal Threshold Obstructive Sleep Apnea Manifestations with Body Fat and Water Distribution. Life. 2023; 13(5):1218. https://doi.org/10.3390/life13051218
Chicago/Turabian StyleHsu, Wen-Hua, Cheng-Chang Yang, Cheng-Yu Tsai, Arnab Majumdar, Kang-Yun Lee, Po-Hao Feng, Chien-Hua Tseng, Kuan-Yuan Chen, Jiunn-Horng Kang, Hsin-Chien Lee, and et al. 2023. "Association of Low Arousal Threshold Obstructive Sleep Apnea Manifestations with Body Fat and Water Distribution" Life 13, no. 5: 1218. https://doi.org/10.3390/life13051218
APA StyleHsu, W. -H., Yang, C. -C., Tsai, C. -Y., Majumdar, A., Lee, K. -Y., Feng, P. -H., Tseng, C. -H., Chen, K. -Y., Kang, J. -H., Lee, H. -C., Wu, C. -J., Kuan, Y. -C., & Liu, W. -T. (2023). Association of Low Arousal Threshold Obstructive Sleep Apnea Manifestations with Body Fat and Water Distribution. Life, 13(5), 1218. https://doi.org/10.3390/life13051218