Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Samples
2.2. Chromosome Preparations and Analysis
2.3. Heat-Shock Assay
2.4. Hsp70 Expression Quantification by ELISA (Enzyme-Linked Immunosorbent Assay)
2.5. Statistical Analysis
3. Results
3.1. Inversion Polymorphism
3.2. Hsp70 Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, A.A.; Rieseberg, L.H. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 2008, 39, 21–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobzhansky, T. A review of some fundamental concepts and problems of population genetics. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1955; pp. 1–15. [Google Scholar]
- Dobzhansky, T. Genetics of Natural Populations IX. Temporal Changes in the Composition of Populations of Drosophila pseudoobscura. Genetics 1943, 28, 162–186. [Google Scholar] [CrossRef] [PubMed]
- Dobzhansky, T. Genetics of natural populations. XIV. A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics 1947, 32, 142. [Google Scholar] [CrossRef] [PubMed]
- Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 1950, 35, 288–302. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, M. Recombination-induced chromosomal heterosis. Genetics 1968, 58, 125. [Google Scholar] [CrossRef]
- Kirkpatrick, M.; Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 2006, 173, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, E.; Kerdaffrec, E.; Katsianis, G.; Kapun, M.; Flatt, T. How selection acts on chromosomal inversions. eLS 2020, 1, 307–315. [Google Scholar]
- Puig Giribets, M. Evolution of the hsp70 Gene Family at the Nucleotide, Genome Organization and Gene Expression Levels in Drosophila subobscura; Universitat Autònoma de Barcelona: Barcelona, Spain, 2018. [Google Scholar]
- Rodríguez-Trelles, F.; Rodríguez, M.A. Rapid micro-evolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol. Ecol. 1998, 12, 829–838. [Google Scholar] [CrossRef]
- Stamenkovic-Radak, M.; Kenig, B.; Djurakic, M.; Jelic, M.; Eric, K.; Andjelkovic, M. Associations between environmental variability and inversion polymorphism of Drosophila subobscura: Meta-analysis of populations from the Central Balkans. Clim. Res. 2019, 77, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Kapun, M.; Flatt, T. The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster. Mol. Ecol. 2019, 28, 1263–1282. [Google Scholar] [CrossRef] [Green Version]
- Kenig, B.; Kurbalija Novičić, Z.; Patenković, A.; Stamenković-Radak, M.; Anđelković, M. Adaptive role of inversion polymorphism of Drosophila subobscura in lead stressed environment. PLoS ONE 2015, 10, e0131270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevosti, A.; Serra, L.; Ribo, G.; Aguade, M.; Sagarra, E.; Monclús, M.; Garcia, M.P. The colonization of Drosophila subobscura in Chile. II. Clines in the chromosomal arrangements. Evolution 1985, 39, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Balanyà, J.; Serra, L.; Gilchrist, G.W.; Huey, R.B.; Pascual, M.; Mestres, F.; Solé, E. Evolutionary pace of chromosomal polymorphism in colonizing populations of Drosophila subobscura: An evolutionary time series. Evolution 2003, 57, 1837–1845. [Google Scholar]
- Rodríguez-Trelles, F.; Tarrío, R.; Santos, M. Genome-wide evolutionary response to a heat wave in Drosophila. Biol. Lett. 2013, 9, 20130228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orengo, D.-J.; Prevosti, A. Temporal changes in chromosomal polymorphism of Drosophila subobscura related to climatic changes. Evolution 1996, 50, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Balanyá, J.; Oller, J.M.; Huey, R.B.; Gilchrist, G.W.; Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 2006, 313, 1773–1775. [Google Scholar] [CrossRef]
- Santos, M.; Céspedes, W.; Balanya, J.; Trotta, V.; Calboli, F.C.; Fontdevila, A.; Serra, L. Temperature-related genetic changes in laboratory populations of Drosophila subobscura: Evidence against simple climatic-based explanations for latitudinal clines. Am. Nat. 2005, 165, 258–273. [Google Scholar] [CrossRef]
- Fragata, I.; Lopes-Cunha, M.; Bárbaro, M.; Kellen, B.; Lima, M.; Santos, M.A.; Faria, G.S.; Santos, M.; Matos, M.; Simoes, P. How much can history constrain adaptive evolution? A real-time evolutionary approach of inversion polymorphisms in Drosophila subobscura. J. Evol. Biol. 2014, 27, 2727–2738. [Google Scholar] [CrossRef]
- Krimbas, C.B. Drosophila subobscura. Biology, Genetics and Inversion Polymorphism; Kovač Publishing: Sydney, Australia, 1993. [Google Scholar]
- Krimbas, C.; Alevizos, V. Genetics of Drosophila subobscura populations. IV. Further data on inversion polymorphism in Greece: Evidence of microdifferentiation. Egypt. J. Genet. Cytol. 1973, 2, 121–132. [Google Scholar]
- Menozzi, P.; Krimbas, C. The inversion polymorphism of D. subobscura revisited: Synthetic maps of gene arrangement frequencies and their interpretation. J. Evol. Biol. 1992, 5, 625–641. [Google Scholar] [CrossRef]
- Prevosti, A.; Ribo, G.; Serra, L.; Aguade, M.; Balaña, J.; Monclus, M.; Mestres, F. Colonization of America by Drosophila subobscura: Experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc. Natl. Acad. Sci. USA 1988, 85, 5597–5600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, C.; Balanya, J.; Fragata, I.; Matos, M.; Rezende, E.L.; Santos, M. Clinal patterns of chromosomal inversion polymorphisms in Drosophila subobscura are partly associated with thermal preferences and heat stress resistance. Evolution 2010, 64, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Munté, A.; Rozas, J.; Aguadé, M.; Segarra, C. Chromosomal inversion polymorphism leads to extensive genetic structure: A multilocus survey in Drosophila subobscura. Genetics 2005, 169, 1573–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laayouni, H.; Garcia-Franco, F.; Chavez-Sandoval, B.E.; Trotta, V.; Beltran, S.; Corominas, M.; Santos, M. Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evol. Biol. 2007, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegueroles, C.; Laurie, S.; Albà, M.M. Accelerated evolution after gene duplication: A time-dependent process affecting just one copy. Mol. Biol. Evol. 2013, 30, 1830–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, R.A.; Feder, M.E. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 1997, 2, 60–71. [Google Scholar] [CrossRef]
- Feder, J.H.; Rossi, J.M.; Solomon, J.; Solomon, N.; Lindquist, S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev. 1992, 6, 1402–1413. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Puig Giribets, M.; Santos, M.; García Guerreiro, M.P. Basal hsp70 expression levels do not explain adaptive variation of the warm- and cold-climate O3+4+7 and OST gene arrangements of Drosophila subobscura. BMC Evol. Biol. 2020, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Calabria, G.; Máca, J.; Bächli, G.; Serra, L.; Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 2012, 136, 139–147. [Google Scholar] [CrossRef]
- Puerma, E.; Orengo, D.J.; Salguero, D.; Papaceit, M.; Segarra, C.; Aguadé, M. Characterization of the breakpoints of a polymorphic inversion complex detects strict and broad breakpoint reuse at the molecular level. Mol. Biol. Evol. 2014, 31, 2331–2341. [Google Scholar] [CrossRef] [Green Version]
- Puerma, E.; Orengo, D.J.; Aguadé, M. Inversion evolutionary rates might limit the experimental identification of inversion breakpoints in non-model species. Sci. Rep. 2017, 7, 17281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerma, E.; Orengo, D.J.; Aguadé, M. Multiple and diverse structural changes affect the breakpoint regions of polymorphic inversions across the Drosophila genus. Sci. Rep. 2016, 6, 36248. [Google Scholar] [CrossRef] [Green Version]
- Puerma, E.; Orengo, D.J.; Aguadé, M. The origin of chromosomal inversions as a source of segmental duplications in the Sophophora subgenus of Drosophila. Sci. Rep. 2016, 6, 30715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaceit, M.; Segarra, C.; Aguadé, M. Structure and population genetics of the breakpoints of a polymorphic inversion in Drosophila subobscura. Evolution 2013, 67, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Orengo, D.J.; Puerma, E.; Papaceit, M.; Segarra, C.; Aguadé, M. A molecular perspective on a complex polymorphic inversion system with cytological evidence of multiply reused breakpoints. Heredity 2015, 114, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karageorgiou, V.; Papaioannou, T.G.; Bellos, I.; Alexandraki, K.; Tentolouris, N.; Stefanadis, C.; Chrousos, G.P.; Tousoulis, D. Effectiveness of artificial pancreas in the non-adult population: A systematic review and network meta-analysis. Metabolism 2019, 90, 20–30. [Google Scholar] [CrossRef]
- Karageorgiou, C.; Tarrío, R.; Rodríguez-Trelles, F. The cyclically seasonal Drosophila subobscura inversion O7 originated from fragile genomic sites and relocated immunity and metabolic genes. Front. Genet. 2020, 11, 565836. [Google Scholar] [CrossRef]
- Erić, K.; Patenković, A.; Erić, P.; Davidović, S.; Veselinović, M.S.; Stamenković-Radak, M.; Tanasković, M. Stress Resistance Traits under Different Thermal Conditions in Drosophila subobscura from Two Altitudes. Insects 2022, 13, 138. [Google Scholar] [CrossRef]
- Kunze-Mühl, E.; Müller, E. Weitere Untersuchungen über die chromosomale Struktur und die naturlichen Strukturtypen von Drosophila subobscura coll. Chromosoma 1957, 9, 559–570. [Google Scholar] [CrossRef]
- Calabria, G.; Dolgova, O.; Rego, C.; Castañeda, L.E.; Rezende, E.L.; Balanyà, J.; Pascual, M.; Sørensen, J.G.; Loeschcke, V.; Santos, M. Hsp70 protein levels and thermotolerance in Drosophila subobscura: A reassessment of the thermal co-adaptation hypothesis. J. Evol. Biol. 2012, 25, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Rezende, E.L.; Balanyà, J.; Rodríguez-Trelles, F.; Rego, C.; Fragata, I.; Matos, M.; Serra, L.; Santos, M. Climate change and chromosomal inversions in Drosophila subobscura. Clim. Res. 2010, 43, 103–114. [Google Scholar] [CrossRef]
- Madrenas, R.; Balanyà, J.; Arenas, C.; Khadem, M.; Mestres, F. Global warming and chromosomal inversion adaptation in isolated islands: Drosophila subobscura populations from Madeira. Entomol. Sci. 2020, 23, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Solé, E.; BalanyáG, J.; Sperlich, D.; Serra, L. Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean populations from southwestern Europe. Evolution 2002, 56, 830–835. [Google Scholar]
- Balanyà, J.; Solé, E.; Oller, J.; Sperlich, D.; Serra, L. Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. II. European populations. J. Zool. Syst. Evol. Res. 2004, 42, 191–201. [Google Scholar] [CrossRef]
- Galludo, M.; Canals, J.; Pineda-Cirera, L.; Esteve, C.; Rosselló, M.; Balanyà, J.; Arenas, C.; Mestres, F. Climatic adaptation of chromosomal inversions in Drosophila subobscura. Genetica 2018, 146, 433–441. [Google Scholar] [CrossRef]
- Huey, R.; Rosenzweig, F. Laboratory evolution meets catch-22: Balancing simplicity and realism. Exp. Evol. Concepts Methods Appl. Sel. Exp. 2009, 671–702. [Google Scholar]
- Balanyà, J.; Huey, R.; Gilchrist, G.; Serra, L. The chromosomal polymorphism of Drosophila subobscura: A microevolutionary weapon to monitor global change. Heredity 2009, 103, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Dobzhansky, T. Experiments on sexual isolation in Drosophila: X. Reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis under natural and under laboratory conditions. Proc. Natl. Acad. Sci. USA 1951, 37, 792–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, S.; Lewontin, R. A molecular approach to the study of genic heterozygosity in natural populations. 3. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc. Natl. Acad. Sci. USA 1968, 59, 398–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, S.; Lewontin, R. A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptation in inversions of Drosophila. Genetics 1971, 69, 405. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, S.W.; Goetting-Minesky, M.P.; Kovacevic, M.; Peoples, J.R.; Graybill, J.L.; Miller, J.M.; Kim, K.; Nelson, J.G.; Anderson, W.W. Evolutionary genomics of inversions in Drosophila pseudoobscura: Evidence for epistasis. Proc. Natl. Acad. Sci. USA 2003, 100, 8319–8324. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, B. Inversion polymorphism in a two-locus genetic system. Genet. Res. 1974, 23, 259–280. [Google Scholar] [CrossRef]
- Dobzhansky, T.; Pavlovsky, O. An experimental study of interaction between genetic drift and natural selection. Evolution 1957, 11, 311–319. [Google Scholar] [CrossRef]
- Lewontin, R.C. The Genetic Basis of Evolutionary Change; Columbia University Press: New York, NY, USA, 1974; Volume 560. [Google Scholar]
- Seabra, S.G.; Fragata, I.; Antunes, M.A.; Faria, G.S.; Santos, M.A.; Sousa, V.C.; Simões, P.; Matos, M. Different genomic changes underlie adaptive evolution in populations of contrasting history. Mol. Biol. Evol. 2018, 35, 549–563. [Google Scholar] [CrossRef]
- Sørensen, J.; Loeschcke, V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol. 2001, 47, 1301–1307. [Google Scholar] [CrossRef]
- Kristensen, T.N.; SØrensen, J.G.; Loeschcke, V. Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J. Genet. 2003, 82, 89–94. [Google Scholar] [CrossRef]
- Roberts, S.; Feder, M. Changing fitness consequences of hsp70 copy number in transgenic Drosophila larvae undergoing natural thermal stress. Funct. Ecol. 2000, 14, 353–357. [Google Scholar] [CrossRef]
- Hoekstra, L.A.; Montooth, K.L. Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evol. Biol. 2013, 13, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.D.; Helin, A.B.; Posluszny, J.; Roberts, S.P.; Feder, M.E. Effect of heat shock, pretreatment and hsp70 copy number on wing development in Drosophila melanogaster. Mol. Ecol. 2003, 12, 1165–1177. [Google Scholar] [CrossRef]
- Garbuz, D.G.; Evgen’ev, M.B. The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats. Genetika 2017, 53, 12–30. [Google Scholar] [CrossRef]
- Feder, M.E.; Cartaño, N.V.; Milos, L.; Krebs, R.A.; Lindquist, S.L. Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. J. Exp. Biol. 1996, 199, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Garbuz, D.; Molodtsov, V.; Velikodvorskaia, V.; Evgen’ev, M.; Zatsepina, O. Evolution of the response to heat shock in genus Drosophila. Russ. J. Genet. 2002, 38, 925–936. [Google Scholar] [CrossRef]
- Garbuz, D.; Evgenev, M.B.; Feder, M.E.; Zatsepina, O.G. Evolution of thermotolerance and the heat-shock response: Evidence from inter/intraspecific comparison and interspecific hybridization in the virilis species group of Drosophila. I. Thermal phenotype. J. Exp. Biol. 2003, 206, 2399–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evgen’ev, M.B.; Zatsepina, O.G.; Garbuz, D.; Lerman, D.N.; Velikodvorskaya, V.; Zelentsova, E.; Feder, M.E. Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma 2004, 113, 223–232. [Google Scholar] [CrossRef]
- Bettencourt, B.R.; Hogan, C.C.; Nimali, M.; Drohan, B.W. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol. 2008, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Zatsepina, O.G.; Velikodvorskaia, V.V.; Molodtsov, V.B.; Garbuz, D.; Lerman, D.N.; Bettencourt, B.R.; Feder, M.E.; Evgenev, M.B. A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J. Exp. Biol. 2001, 204, 1869–1881. [Google Scholar] [CrossRef]
- Trotta, V.; Calboli, F.C.; Ziosi, M.; Guerra, D.; Pezzoli, M.C.; David, J.R.; Cavicchi, S. Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations. BMC Evol. Biol. 2006, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, D.; Gaston, K.J.; Butlin, R.K.; Snook, R.R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 2017, 30, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.J.; Moehring, A.J. Local thermal adaptation detected during multiple life stages across populations of Drosophila melanogaster. J. Evol. Biol. 2019, 32, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Klepsatel, P.; Gáliková, M.; De Maio, N.; Huber, C.D.; Schlötterer, C.; Flatt, T. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Evolution 2013, 67, 3573–3587. [Google Scholar] [CrossRef]
- Clemson, A.S.; Sgrò, C.M.; Telonis-Scott, M. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: Quantitative traits to transcripts. J. Evol. Biol. 2016, 29, 2447–2463. [Google Scholar] [CrossRef] [PubMed]
- Fragata, I.; Lopes-Cunha, M.; Bárbaro, M.; Kellen, B.; Lima, M.; Faria, G.S.; Seabra, S.G.; Santos, M.; Simões, P.; Matos, M. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Evolution 2016, 70, 195–206. [Google Scholar] [CrossRef]
- Santos, M.A.; Antunes, M.A.; Grandela, A.; Carromeu-Santos, A.; Quina, A.S.; Santos, M.; Matos, M.; Simões, P. Past history shapes evolution of reproductive success in a global warming scenario. J. Therm. Biol. 2023, 103478. [Google Scholar] [CrossRef]
Population H | n | Population L | n |
---|---|---|---|
Wild-caught males | 29 | Wild-caught males | 25 |
F5 at 16 °C | 31 | F5 at 16 °C | 31 |
F16 at 16 °C | 31 | F16 at 16 °C | 33 |
F5 at 19 °C | 34 | F5 at 19 °C | 30 |
F16 at 19 °C | 28 | F16 at 19 °C | 29 |
F5 at 25 °C | 29 | F5 at 25 °C | 28 |
F16 at 25 °C | 30 | F16 at 25 °C | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erić, K.; Veselinović, M.S.; Patenković, A.; Davidović, S.; Erić, P.; Stamenković-Radak, M.; Tanasković, M. Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura. Life 2023, 13, 1333. https://doi.org/10.3390/life13061333
Erić K, Veselinović MS, Patenković A, Davidović S, Erić P, Stamenković-Radak M, Tanasković M. Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura. Life. 2023; 13(6):1333. https://doi.org/10.3390/life13061333
Chicago/Turabian StyleErić, Katarina, Marija Savić Veselinović, Aleksandra Patenković, Slobodan Davidović, Pavle Erić, Marina Stamenković-Radak, and Marija Tanasković. 2023. "Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura" Life 13, no. 6: 1333. https://doi.org/10.3390/life13061333
APA StyleErić, K., Veselinović, M. S., Patenković, A., Davidović, S., Erić, P., Stamenković-Radak, M., & Tanasković, M. (2023). Population History Shapes Responses to Different Temperature Regimes in Drosophila subobscura. Life, 13(6), 1333. https://doi.org/10.3390/life13061333