Staphylococcus aureus and Coagulase-Negative Staphylococci from Bloodstream Infections: Frequency of Occurrence and Antimicrobial Resistance, 2018–2021
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Toole, R.F. The interface between COVID-19 and bacterial healthcare-associated infections. Clin. Microbiol. Infect. 2021, 27, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.J.; Rawson, T.M.; Mookerjee, S.; Price, J.R.; Davies, F.; Otter, J.; Aylin, P.; Hope, R.; Gilchrist, M.; Shersing, Y.; et al. Changing Patterns of Bloodstream Infections in the Community and Acute Care Across 2 Coronavirus Disease 2019 Epidemic Waves: A Retrospective Analysis Using Data Linkage. Clin. Infect. 2022, 75, e1082–e1091. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg. Infect. Control. 2020, 15, 35. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control. 2022, 11, 45. [Google Scholar] [CrossRef]
- Sepulveda, J.; Westblade, L.F.; Whittier, S.; Satlin, M.J.; Greendyke, W.G.; Aaron, J.G.; Zucker, J.; Dietz, D.; Sobieszczyk, M.; Choi, J.J.; et al. Bacteremia and Blood Culture Utilization during COVID-19 Surge in New York City. J Clin Microbiol. 2020, 58, e00875-20. [Google Scholar] [CrossRef]
- Dargère, S.; Cormier, H.; Verdon, R. Contaminants in blood cultures: Importance, implications, interpretation and prevention. Clin. Microbiol. Infect. 2018, 24, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti Infect Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef]
- Asaad, A.M.; Qureshi, M.A.; Hasan, S.M. Clinical significance of coagulase-negative staphylococci isolates from nosocomial bloodstream infections. Infect. Dis. 2016, 48, 356–360. [Google Scholar] [CrossRef]
- Bassetti, M.; Magnasco, L.; Vena, A.; Portunato, F.; Giacobbe, D.R. Methicillin-resistant Staphylococcus aureus lung infection in coronavirus disease 2019: How common? Curr. Opin. Infect. Dis. 2022, 35, 149–162. [Google Scholar] [CrossRef]
- Raoofi, S.; Kan, F.P.; Rafiei, S.; Hosseinipalangi, Z.; Mejareh, Z.N.; Khani, S.; Abdollahi, B.; Talab, F.S.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for the Eastern Mediterranean. Monitoring Health and Health System Performance in the Eastern Mediterranean Region: Core Indicators and Indicators on the Health-Related Sustainable Development Goals 2020. World Health Organization. Regional Office for the Eastern Mediterranean. Available online: https://apps.who.int/iris/handle/10665/346297 (accessed on 5 February 2022).
- França, A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics 2023, 12, 554. [Google Scholar] [CrossRef] [PubMed]
- Grazul, M.; Balcerczak, E.; Sienkiewicz, M. Analysis of the Presence of the Virulence and Regulation Genes from Staphylococcus aureus (S. aureus) in Coagulase Negative Staphylococci and the Influence of the Staphylococcal Cross-Talk on Their Functions. Int. J. Environ. Res. Public Health 2023, 20, 5155. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Ininbergs, K.; Hedman, K.; Giske, C.G.; Strålin, K.; Özenci, V. Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PLoS ONE 2020, 15, e0242533. [Google Scholar] [CrossRef] [PubMed]
- Michels, R.; Last, K.; Becker, S.L.; Papan, C. Update on Coagulase-Negative Staphylococci-What the Clinician Should Know. Microorganisms 2021, 9, 830. [Google Scholar] [CrossRef]
- Nicolosi, D.; Cina, D.; Di Naso, C.; D’angeli, F.; Salmeri, M.; Genovese, C. Antimicrobial resistance profiling of coagulase-negative staphylococci in a referral center in south Italy: A surveillance study. Open Microbiol. J. 2020, 14, 91–97. [Google Scholar] [CrossRef]
- US Government. Antibiotic Prescribing and Use. Centers for Disease Control and Prevention (CDC). Available online: https://www.cdc.gov/antibiotic-use/healthcare/implementation/clinicianguide.html (accessed on 21 December 2020).
- Di Carlo, P.; Serra, N.; Lo Sauro, S.; Carelli, V.M.; Giarratana, M.; Signorello, J.C.; Lucchesi, A.; Manta, G.; Napolitano, M.S.; Rea, T.; et al. Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy. Antibiotics 2021, 10, 1402. [Google Scholar] [CrossRef]
- National Healthcare Safety Network. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line-Associated Bloodstream Infection). Available online: http://www.cdc.gov/nhsn/PDFs/pscManual/4PSC_CLABScurrent.pdf (accessed on 31 January 2022).
- Report on the Microorganisms Distribution in Sicily Region. Available online: https://qlik.qualitasiciliassr.it/anonimo/single/?appid=85ada16c-4b41-4bc6-9ca1-405b8243d0c2&sheet=6ad6f3ac-3369-41c5-bd72-792243f9091b&opt=ctxmenu,currsel (accessed on 23 May 2023).
- The European Committee on Antimicrobial Susceptibility Testing–EUCAST. Staphylococcus aureus Calibration of Zone Diameter Breakpoints to MIC Values and/or Resistance Mechanisms. Version 9.0, January 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_criteria/Validation_2022/S._aureus_v_9.0_January_2022.pdf (accessed on 5 February 2022).
- The European Committee on Antimicrobial Susceptibility Testing–EUCAST. Coagulase-Negative Staphylococci Calibration of Zone Diameter Breakpoints to MIC Values and/or Resistance Mechanisms. Version 5.0, January 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_criteria/Validation_2022/CoNS_v_5.0_January_2022.pdf (accessed on 5 February 2022).
- Serra, N.; Di Carlo, P.; D’Arpa, F.; Battaglia, E.; Fasciana, T.; Gulotta, G.; Maida, C.M.; Rodolico, V.; Giammanco, A.; Sergi, C. Human bile microbiota: A retrospective study focusing on age and gender. J. Infect. Public Health 2021, 14, 206–213. [Google Scholar] [CrossRef]
- Vicentini, C.; Blengini, V.; Libero, G.; Raso, R.; Zotti, C.M. Antimicrobial stewardship experiences in acute-care hospitals of Northern Italy: Assessment of structure, process and outcome indicators, 2017–2019. Am. J. Infect. Control. 2023, 51, 282–288. [Google Scholar] [CrossRef]
- Ohki, R.; Fukui, Y.; Morishita, N.; Iwata, K. Increase of blood culture contamination during COVID-19 pandemic. A retrospective descriptive study. Am. J. Infect. Control. 2021, 49, 1359–1361. [Google Scholar] [CrossRef]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Adalbert, J.R.; Varshney, K.; Tobin, R.; Pajaro, R. Clinical outcomes in patients co-infected with COVID-19 and Staphylococcus aureus: A scoping review. BMC Infect. Dis. 2021, 21, 985. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Muzzammil, M.; Ahmad, M.; Rehman, S.; Garout, M.; Khojah, T.M.; Al-Eisa, K.M.; Breagesh, S.A.; Hamdan, R.M.; Alibrahim, H.I.; et al. Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic. Antibiotics 2023, 12, 157. [Google Scholar] [CrossRef]
- Meschiari, M.; Onorato, L.; Bacca, E.; Orlando, G.; Menozzi, M.; Franceschini, E.; Bedini, A.; Cervo, A.; Santoro, A.; Sarti, M.; et al. Long-Term Impact of the COVID-19 Pandemic on In-Hospital Antibiotic Consumption and Antibiotic Resistance: A Time Series Analysis (2015–2021). Antibiotics 2022, 11, 826. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, M.; Saleem, W.; Karobari, M.I.; Mohamed, R.N.; Heboyan, A.; Rabaan, A.A.; Mutair, A.A.; Alhumaid, S.; Alsadiq, S.A.; et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients. Antibiotics 2022, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Hema-Ouangraoua, S.; Tranchot-Diallo, J.; Zongo, I.; Kabore, N.F.; Nikièma, F.; Yerbanga, R.S.; Tinto, H.; Chandramohan, D.; Ouedraogo, G.A.; Greenwood, B.; et al. Impact of mass administration of azithromycin as a preventive treatment on the prevalence and resistance of nasopharyngeal carriage of Staphylococcus aureus. PLoS ONE 2021, 16, e0257190. [Google Scholar] [CrossRef]
- Ruotsalainen, E.; Järvinen, A.; Koivula, I.; Kauma, H.; Rintala, E.; Lumio, J.; Kotilainen, P.; Vaara, M.; Nikoskelainen, J.; Valtonen, V.; et al. Levofloxacin does not decrease mortality in Staphylococcus aureus bacteraemia when added to the standard treatment: A prospective and randomized clinical trial of 381 patients. J. Intern. Med. 2006, 259, 179–190. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M. Mechanisms of Resistance to Macrolide Antibiotics among Staphylococcus aureus. Antibiotics 2021, 10, 1406. [Google Scholar] [CrossRef]
- Monsel, A.; Rouby, J. Inoculation Pneumonia Caused by Coagulase Negative Staphylococcus. Front. Microbiol. 2019, 10, 2198. [Google Scholar] [CrossRef]
- Liderot, K.; Ahl, M.; Özenci, V. Secondary Bacterial Infections in Patients with Seasonal Influenza A and Pandemic H1N1. BioMed. Res. Int. 2013, 2013, 376219. [Google Scholar] [CrossRef] [Green Version]
- Decalonne, M.; Santos, S.D.; Gimenes, R.; Goube, F.; Abadie, G.; Aberrane, S.; Ambrogi, V.; Baron, R.; Barthelemy, P.; Bauvin, I.; et al. Staphylococcus capitis isolated from bloodstream infections: A nationwide 3-month survey in 38 neonatal intensive care units. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Tevell, S.; Baig, S.; Hellmark, B.; Simoes, P.M.; Wirth, T.; Butin, M.; Nilsdotter-Augustinsson, Å.; Söderquist, B.; Stegger, M. Presence of the neonatal Staphylococcus capitis outbreak clone (NRCS-A) in prosthetic joint infections. Sci. Rep. 2020, 10, 22389. [Google Scholar] [CrossRef] [PubMed]
- Laurent, F.; Butin, M. Staphylococcus capitis and NRCS-A clone: The story of an unrecognized pathogen in neonatal intensive care units. Clin. Microbiol. Infect. 2019, 25, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R. Mechanisms of Resistance to Macrolides and Lincosamides: Nature of the Resistance Elements and Their Clinical Implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef] [Green Version]
- França, A.; Gaio, V.; Lopes, N.; Melo, L.D.R. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021, 10, 170. [Google Scholar] [CrossRef]
- The Use of Antibiotics in Italy. Italian Medicines Agency (AIFA) National Report. 2022. Available online: https://www.aifa.gov.it/documents/20142/1664282/Rapporto_Antibiotici_2020.pdf (accessed on 15 April 2022).
- Batiha, G.E.; Zayed, M.A.; Awad, A.A.; Shaheen, H.M.; Mustapha, S.; Pagnossa, J.P.; Algammal, A.M.; Zahoor, M.; Adhikari, A.; Pandey, I.; et al. Management of SARS-CoV-2 Infection: Key Focus in Macrolides Efficacy for COVID-19. Front. Med. 2021, 8, 642313. [Google Scholar] [CrossRef]
- Federica, G.; Casula, M.; Olmastroni, E.; Catapano, A.L.; Tragni, E.; EDU.RE.DRUG Group. Antibiotic Prescription in the Community-Dwelling Elderly Population in Lombardy, Italy: A Sub-Analysis of the EDU.RE.DRUG Study. Antibiotics 2022, 11, 1369. [Google Scholar] [CrossRef]
- Reports of the National Institute of Statistics (ISTAT). Available online: https://www.istat.it/en/archivio/AGE (accessed on 24 May 2023).
- Frazer, J.S.; Frazer, G.R. Analysis of primary care prescription trends in England during the COVID-19 pandemic compared against a predictive model. Fam. Med. Community Health 2021, 9, e001143. [Google Scholar] [CrossRef]
- Wasag, D.R.; Cannings-John, R.; Hughes, K.; Ahmed, H. Antibiotic dispensing during the COVID-19 pandemic: Analysis of Welsh primary care dispensing data. Fam Pract. 2022, 39, 420–425. [Google Scholar] [CrossRef]
- Oikonomou, M.-E.; Gkentzi, D.; Karatza, A.; Fouzas, S.; Vervenioti, A.; Dimitriou, G. Parental Knowledge, Attitude, and Practices on Antibiotic Use for Childhood Upper Respiratory Tract Infections during COVID-19 Pandemic in Greece. Antibiotics 2021, 10, 802. [Google Scholar] [CrossRef]
- Kurotschka, P.K.; Serafini, A.; Demontis, M.; Serafini, A.; Mereu, A.; Moro, M.F.; Carta, M.G.; Ghirotto, L. General Practitioners’ Experiences During the First Phase of the COVID-19 Pandemic in Italy: A Critical Incident Technique Study. Front. Public Health 2021, 9, 623904. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total Sample | SARS-CoV-2- Negative | SARS-CoV-2- Positive | Negative vs. Positive p-Value (Test) |
---|---|---|---|---|
Patients | 177 | 131 | 46 | |
Age | ||||
Mean ± SD | 65.5 ± 16.6 | 66.1 ± 16.3 | 66.7 ± 17.4 | |
Median (IQR) | 69 (55, 78) | 69 (55, 77) | 71 (57, 82) | 0.42 (MW) |
Gender | ||||
Male | 66.7% (118) | 71.8% (94) | 52.2% (24) | |
Female | 33.3% (59) | 28.2% (37) | 47.8% (22) | 0.0154 * (C) |
Hospital length of stay (days) | ||||
Mean ± SD | 36.5 ± 35.5 | 36.7 ± 37.9 | 35.7 ± 28.1 | |
Median (IQR) | 22 (13, 43.25) | 22 (13, 43) | 27 (14, 48) | 0.57 (MW) |
Mortality percentage | 32.8% (58) | 29.8% (39) | 41.3% (19) | 0.0119 * (C) |
Operative unit | 0.23 (C) | |||
Non-ICU | 57.6% (102) | 55.0% (72) | 65.2% (30) | |
ICU | 42.4% (75) | 45.0% (59) | 34.8% (16) | |
Staphylococcus aureus | 33.9% (60) * | 35.1% (46) * | 30.4% (14) * | |
Staphylococcus capitis | 18.6% (33) * | 17.6% (23) * | 21.7% (10) * | |
Staphylococcus hominis | 18.1% (32) * | 17.6% (23) * | 19.7% (9) * | |
Staphylococcus epidermidis | 11.3% (20) | 10.7% (14) | 13.0% (6) | |
Staphylococcus haemolyticus | 10.2% (18) | 9.9% (13) | 10.9% (5) | |
Staphylococcus warneri | 2.8% (5) | 3.8% (5) | 0.0% (0) | 0.91 (F) |
Staphylococcus auricularis | 1.1% (2) | 1.5% (2) | 0.0% (0) | |
Staphylococcus sciuri | 1.1% (2) | 1.5% (2) | 0.0% (0) | |
Staphylococcus cohnii | 1.1% (2) | 0.8% (1) | 0.0% (0) | |
Staphylococcus lugdunensis | 0.6% (1) | 0.8% (1) | 2.2% (1) | |
Staphylococcus simulans | 0.6% (1) | 0.8% (1) | 0.0% (0) | |
Staphylococcus saprophyticus | 0.6% (1) | 0.0% (0) | 2.2% (1) |
Antibiotic | S. aureus N = 46 | S. auricularis N = 2 | S. capitis N = 23 | S. cohnii N = 1 | S. epidermidis N = 14 | S. haemolyticus N = 13 | S. hominis N = 23 | S. lugdunensis N = 1 | S. sciuri N = 2 | S. simulans N = 1 | S. warneri N = 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Fusidic acid | 22.2% (10/45) | 0.0% (0/2) | 26.1% (6/23) | 0.0% (0/1) | 50.0% (7/14) | 61.5% (8/13) | 45.5% (10/22) | 0.0% (0/1) | 100% (2/2) | 0.0% (0/1) | 50.0% (2/4) |
Penicillin | 93.0% * (40/43) | - | - | - | - | - | - | 0.0% (0/1) | - | - | - |
Clindamycin | 42.2% (19/45) | 50.0% (1/2) | 40.9% (9/22) | 0.0% (0/1) | 57.1% (8/14) | 69.2% (9/13) | 77.3% * (17/22) | 0.0% (0/1) | 50.0% (1/2) | 100% (1/1) | 50.0% (2/4) |
Daptomycin | 24.4% (11/45) | 0.0% (0/2) | 43.5% (10/23) | 0.0% (0/1) | 50.0% (7/14) | 23.1% (3/13) | 22.7% (5/22) | 0.0% (0/1) | 50.0% (1/2) | 0.0% (0/1) | 0.0% (0/5) |
Erythromycin | 60.0% * (27/45) | 50.0% (1/2) | 36.4% (8/22) | 100% (1/1) | 64.3% (9/14) | 100% (13/13) | 90.9% * (20/22) | 0.0% (0/1) | 100% (2/2) | 100% (1/1) | 80.0% (4/5) |
Gentamicin | 35.6% (16/45) | 0.0% (0/2) | 73.9% * (17/23) | 0.0% (0/1) | 42.9% (6/14) | 100% (13/13) | 45.5% (10/22) | 0.0% (0/1) | 50.0% (1/2) | 0.0% (0/1) | 20.0% (1/5) |
Levofloxacin | 62.2% * (28/45) | 100% (2/2) | 69.6% * (16/23) | 0.0% (0/1) | 78.6% (11/14) | 100% (13/13) | 56.5% (13/23) | 100% (1/1) | 100% (2/2) | 0.0% (0/1) | 60.0% (3/5) |
Linezolid | 8.9% (4/45) | 0.0% (0/2) | 13.0% (3/23) | 0.0% (0/1) | 28.6% (4/14) | 23.1% (3/13) | 17.4% (4/23) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 0.0% (0/5) |
Oxacillin | 65.2% * (30/46) | 50.0% (1/2) | 78.3% * (18/23) | 100% (1/1) | 85.7% * (12/14) | 100% (13/13) | 76.2% * (16/21) | 0.0% (0/1) | 100% (2/2) | 100% (1/1) | 40.0% (2/5) |
Rifampicin | 40.0% (18/45) | 0.0% (0/2) | 13.6% (3/22) | 0.0% (0/1) | 42.9% (6/14) | 84.6% (11/13) | 45.5% (10/22) | 0.0% (0/1) | 50.0% (1/2) | 0.0% (0/1) | 20.0% (1/5) |
Teicoplanin | 24.4% (11/45) | 0.0% (0/2) | 17.4% (4/23) | 0.0% (0/1) | 50.0% (7/14) | 37.5% (3/8) | 26.1% (6/23) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 60.0% (3/5) |
Tetracycline | 11.1% (5/45) | 0.0% (0/2) | 8.7% (2/23) | 0.0% (0/1) | 21.4% (3/14) | 38.5% (5/13) | 27.3% (6/22) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 20.0% (1/5) |
Tigecycline | 6.7% (3/45) | 0.0% (0/2) | 4.3% (1/23) | 0.0% (0/1) | 14.3% (2/14) | 15.4% (2/13) | 4.5% (1/22) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 0.0% (0/5) |
Trimethoprim-sulfamethoxazole | 8.9% (4/45) | 0.0% (0/2) | 0.0% (0/23) | 0.0% (0/1) | 14.3% (2/14) | 46.2% (6/13) | 4.3% (1/23) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 0.0% (0/5) |
Vancomycin | 17.8% (8/45) | 0.0% (0/2) | 8.7% (2/23) | 0.0% (0/1) | 35.7% (5/14) | 23.1% (3/13) | 13.0% (3/23) | 0.0% (0/1) | 0.0% (0/2) | 0.0% (0/1) | 20.0% (1/5) |
Antibiotic | S. aureus N = 14 | S. capitis N = 10 | S. epidermidis N = 6 | S. haemolyticus N = 5 | S. hominis N = 9 | S. lugdunesis N = 1 | S. saprophyticus N = 1 |
---|---|---|---|---|---|---|---|
Fusidic acid | 25% (3/12) | 20% (2/10) | 50% (3/6) | 80% (4/5) | 11.1% (1/9) | 0.0% (0/1) | 100% (1/1) |
Penicillin | 85.7% * (12/14) | - | - | - | - | 0.0% (0/1) | - |
Clindamycin | 50% (7/14) | 40% (4/10) | 50% (3/6) | 60% (3/5) | 22.2% (2/9) | 100% (1/1) | 100% (1/1) |
Daptomycin | 14.3% (2/14) | 20% (2/10) | 0.0% (0/6) | 0.0% (0/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Erythromycin | 57.1% * (8/14) | 40% (4/10) | 100% * (6/6) | 60% (3/5) | 44.4% (4/9) | 100% (1/1) | 100% (1/1) |
Gentamicin | 0.0% (0/14) | 80% * (8/10) | 33.3% (2/6) | 60% (3/5) | 44.4% (4/9) | 0.0% (0/1) | 100% (1/1) |
Levofloxacin | 42.9% (6/14) | 80% * (8/10) | 66.7% (4/6) | 60% (3/5) | 55.6% * (5/9) | 0.0% (0/1) | 100% (1/1) |
Linezolid | 7.1% (1/14) | 10% (1/10) | 0.0% (0/6) | 0.0% (0/5) | 0.0% (0/9) | 0.0% (0/1) | 100% (1/1) |
Oxacillin | 42.9% (6/14) | 90% * (9/10) | 100% * (6/6) | 40% (2/5) | 55.6% * (5/9) | 0.0% (0/1) | 100% (1/1) |
Rifampicin | 14.3% (2/14) | 40% (4/10) | 16.7% (1/6) | 20% (1/5) | 22.2% (2/9) | 0.0% (0/1) | 100% (1/1) |
Teicoplanin | 7.1% (1/14) | 30% (3/10) | 16.7% (1/6) | 20% (1/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Tetracycline | 14.3% (2/14) | 10% (1/10) | 16.7% (1/6) | 20% (1/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Tigecycline | 7.1% (1/14) | 10% (1/10) | 0.0% (0/6) | 0.0% (0/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Trimethoprim-sulfamethoxazole | 7.1% (1/14) | 0.0% (0/10) | 16.7% (1/6) | 0.0% (0/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Vancomycin | 14.3% (2/14) | 10% (1/10) | 0.0% (0/6) | 0.0% (0/5) | 0.0% (0/9) | 0.0% (0/1) | 0.0% (0/1) |
Antibiotic | Staphylococcus spp. | SARS-CoV-2: Negative vs. Positive |
---|---|---|
Gentamicin | S. aureus | 35.6 vs. 0.0, p = 0.007 * (F) |
Oxacillin | S. haemolyticus | 100 vs. 40.0, p = 0.012 * (F) |
Rifampicin | S. haemolyticus | 84.6 vs. 20.0, p = 0.022 * (F) |
Clindamycin | S. hominis | 77.3 vs. 22.2, p = 0.012 * (F) |
Erythromycin | S. hominis | 90.9 vs. 44.4, p = 0.012 * (F) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, N.; Di Carlo, P.; Andriolo, M.; Mazzola, G.; Diprima, E.; Rea, T.; Anastasia, A.; Fasciana, T.M.A.; Pipitò, L.; Capra, G.; et al. Staphylococcus aureus and Coagulase-Negative Staphylococci from Bloodstream Infections: Frequency of Occurrence and Antimicrobial Resistance, 2018–2021. Life 2023, 13, 1356. https://doi.org/10.3390/life13061356
Serra N, Di Carlo P, Andriolo M, Mazzola G, Diprima E, Rea T, Anastasia A, Fasciana TMA, Pipitò L, Capra G, et al. Staphylococcus aureus and Coagulase-Negative Staphylococci from Bloodstream Infections: Frequency of Occurrence and Antimicrobial Resistance, 2018–2021. Life. 2023; 13(6):1356. https://doi.org/10.3390/life13061356
Chicago/Turabian StyleSerra, Nicola, Paola Di Carlo, Maria Andriolo, Giovanni Mazzola, Elena Diprima, Teresa Rea, Antonio Anastasia, Teresa Maria Assunta Fasciana, Luca Pipitò, Giuseppina Capra, and et al. 2023. "Staphylococcus aureus and Coagulase-Negative Staphylococci from Bloodstream Infections: Frequency of Occurrence and Antimicrobial Resistance, 2018–2021" Life 13, no. 6: 1356. https://doi.org/10.3390/life13061356
APA StyleSerra, N., Di Carlo, P., Andriolo, M., Mazzola, G., Diprima, E., Rea, T., Anastasia, A., Fasciana, T. M. A., Pipitò, L., Capra, G., Giammanco, A., & Cascio, A. (2023). Staphylococcus aureus and Coagulase-Negative Staphylococci from Bloodstream Infections: Frequency of Occurrence and Antimicrobial Resistance, 2018–2021. Life, 13(6), 1356. https://doi.org/10.3390/life13061356