Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, H.; Cano, E.J.; Khan, M.Q.; Yetmar, Z.A.; Smith, B.; Rizza, S.A.; Badley, A.D.; Mahmood, M.; Leise, M.D.; Cummins, N.W. Changing Landscape of Liver Transplantation in the Post-DAA and Contemporary ART Era. Life 2022, 12, 1755. [Google Scholar] [CrossRef]
- Kim, D.; Ahn, J.H.; Han, S.; Ko, J.S.; Gwak, M.S.; Kim, G.S. Femoral Pulse Pressure Variation Is Not Interchangeable with Radial Pulse Pressure Variation during Living Donor Liver Transplantation. J. Pers. Med. 2022, 12, 1352. [Google Scholar] [CrossRef]
- Lin, T.S.; Chen, C.L.; Concejero, A.M.; Yap, A.Q.; Lin, Y.H.; Liu, C.Y.; Chiang, Y.C.; Wang, C.C.; Wang, S.H.; Lin, C.C.; et al. Early and long-term results of routine microsurgical biliary reconstruction in living donor liver transplantation. Liver Transplant. 2013, 19, 207–214. [Google Scholar] [CrossRef]
- Sierra, L.; Barba, R.; Ferrigno, B.; Goyes, D.; Diaz, W.; Patwardhan, V.R.; Saberi, B.; Bonder, A. Living-Donor Liver Transplant and Improved Post-Transplant Survival in Patients with Primary Sclerosing Cholangitis. J. Clin. Med. 2023, 12, 2807. [Google Scholar] [CrossRef]
- Parente, A.; Cho, H.-D.; Kim, K.-H.; Schlegel, A. Association between Hepatocellular Carcinoma Recurrence and Graft Size in Living Donor Liver Transplantation: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 6224. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, Y.-K. Emergency, ABO-Incompatible Living Donor Liver Re-Transplantation for Graft Failure Complicated by Pneumonia-Associated Sepsis. J. Clin. Med. 2023, 12, 1110. [Google Scholar] [CrossRef]
- Compston, J.E. Osteoporosis after liver transplantation. Liver Transpl. 2003, 9, 321–330. [Google Scholar] [CrossRef]
- Kuo, S.-J.; Siu, K.-K.; Wu, K.-T.; Ko, J.-Y.; Wang, F.-S. The Differential Systemic Biological Effects between Computer Navigation and Conventional Total Knee Arthroplasty (TKA) Surgeries: A Prospective Study. J. Pers. Med. 2022, 12, 1835. [Google Scholar] [CrossRef]
- Ying, M.; Mao, J.; Sheng, L.; Wu, H.; Bai, G.; Zhong, Z.; Pan, Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J. Pers. Med. 2023, 13, 705. [Google Scholar] [CrossRef]
- Sakr, H.; Khired, Z.; Moqadass, M. In Rats, Whole and Refined Grains Decrease Bone Mineral Density and Content through Modulating Osteoprotegerin and Receptor Activator of Nuclear Factor Kappa B. Biomedicines 2023, 11, 1686. [Google Scholar] [CrossRef]
- Maffei, F.; Masini, A.; Marini, S.; Buffa, A.; Malavolta, N.; Maietta Latessa, P.; Dallolio, L. The Impact of an Adapted Physical Activity Program on Bone Turnover, Physical Performance and Fear of Falling in Osteoporotic Women with Vertebral Fractures: A Quasi-Experimental Pilot Study. Biomedicines 2022, 10, 2467. [Google Scholar] [CrossRef]
- Saeki, C.; Oikawa, T.; Ueda, K.; Nakano, M.; Torisu, Y.; Saruta, M.; Tsubota, A. Serum Insulin-Like Growth Factor 1 Levels, Facture Risk Assessment Tool Scores and Bone Disorders in Patients with Primary Biliary Cholangitis. Diagnostics 2022, 12, 1957. [Google Scholar] [CrossRef]
- Knechtle, B.; Jastrzębski, Z.; Hill, L.; Nikolaidis, P.T. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina 2021, 57, 223. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Physiological Basis for Using Vitamin D to Improve Health. Biomedicines 2023, 11, 1542. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Papadopoulou, S.K.; Detopoulou, P.; Tsoumana, D.; Giaginis, C.; Kondyli, F.S.; Lymperaki, E.; Pritsa, A. Vitamin D and Calcium in Osteoporosis, and the Role of Bone Turnover Markers: A Narrative Review of Recent Data from RCTs. Diseases 2023, 11, 29. [Google Scholar] [CrossRef]
- Jura-Półtorak, A.; Szeremeta, A.; Olczyk, K.; Zoń-Giebel, A.; Komosińska-Vassev, K. Bone Metabolism and RANKL/OPG Ratio in Rheumatoid Arthritis Women Treated with TNF-α Inhibitors. J. Clin. Med. 2021, 10, 2905. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Wang, F.-S.; Chen, S.-H.; Kuo, S.-J. Micro Ribonucleic Acid−29a (miR−29a) Antagonist Normalizes Bone Metabolism in Osteogenesis Imperfecta (OI) Mice Model. Biomedicines 2023, 11, 465. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, N.; Fu, Z.; Zhang, Q. Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023, 13, 483. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Liao, P.-S.; Chou, Y.-T.; Lin, C.-L.; Hung, C.-H.; Lin, C.-C.; Hsu, C.-C.; Hsu, H.-C.; Huang, J.-M.; Wang, Y.-Y.; et al. The Incidence and Risk Factors of Hip Fracture after Liver Transplantation (LT): A Nationwide Population-Based Study. BioMed Res. Int. 2019, 2019, 5845709. [Google Scholar] [CrossRef] [Green Version]
- Bjoro, K.; Brandsaeter, B.; Wiencke, K.; Bjoro, T.; Godang, K.; Bollerslev, J.; Schrumpf, E. Secondary osteoporosis in liver transplant recipients: A longitudinal study in patients with and without cholestatic liver disease. Scand. J. Gastroenterol. 2003, 38, 320–327. [Google Scholar] [CrossRef]
- Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet 2011, 377, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Kim, D.J. An Overview of the Molecular Mechanisms Contributing to Musculoskeletal Disorders in Chronic Liver Disease: Osteoporosis, Sarcopenia, and Osteoporotic Sarcopenia. Int. J. Mol. Sci. 2021, 22, 2604. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.S.; Ko, J.Y.; Yeh, D.W.; Ke, H.C.; Wu, H.L. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 2008, 149, 1793–1801. [Google Scholar] [CrossRef]
- Behari, J. The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert. Rev. Gastroenterol. Hepatol. 2010, 4, 745–756. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, X.; Zhao, F.; Shen, Q.; Wang, Z.; Lv, X.; Hu, B.; Yu, B.; Fan, J.; Qin, W. Overexpression of Dickkopf-1 predicts poor prognosis for patients with hepatocellular carcinoma after orthotopic liver transplantation by promoting cancer metastasis and recurrence. Med. Oncol. 2014, 31, 966. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Yamashita, T.; Sunagozaka, H.; Okada, H.; Nio, K.; Sakai, Y.; Yamashita, T.; Mizukoshi, E.; Honda, M.; Kaneko, S. Dickkopf-1 Promotes Angiogenesis and is a Biomarker for Hepatic Stem Cell-like Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 2801. [Google Scholar] [CrossRef]
- Amer, O.E.; Wani, K.; Ansari, M.G.A.; Alnaami, A.M.; Aljohani, N.; Abdi, S.; Hussain, S.D.; Al-Daghri, N.M.; Alokail, M.S. Associations of Bone Mineral Density with RANKL and Osteoprotegerin in Arab Postmenopausal Women: A Cross-Sectional Study. Medicina 2022, 58, 976. [Google Scholar] [CrossRef]
- Monegal, A.; Navasa, M.; Peris, P.; Alvarez, L.; Pons, F.; Rodes, J.; Guanabens, N. Serum osteoprotegerin and its ligand in cirrhotic patients referred for orthotopic liver transplantation: Relationship with metabolic bone disease. Liver Int. 2007, 27, 492–497. [Google Scholar] [CrossRef]
- Fabrega, E.; Orive, A.; Garcia-Unzueta, M.; Amado, J.A.; Casafont, F.; Pons-Romero, F. Osteoprotegerin and receptor activator of nuclear factor-kappaB ligand system in the early post-operative period of liver transplantation. Clin. Transplant. 2006, 20, 383–388. [Google Scholar] [CrossRef]
- Ho, O.T.W.; Ng, W.C.A.; Ow, Z.G.W.; Ho, Y.J.; Lim, W.H.; Yong, J.N.; Wang, R.S.; Wong, K.L.; Ng, C.H.; Muthiah, M.D.; et al. Bisphosphonate therapy after liver transplant improves bone mineral density and reduces fracture rates: An updated systematic review and meta-analysis. Transpl. Int. 2021, 34, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
Sex | Age | Etiology | Fracture after LDLT (within 3 Years) | |
---|---|---|---|---|
1 | F | 32 | PLD | |
2 | M | 40 | ALC | |
3 | M | 43 | HBV, HCC | T12/L1 VCF (12 months) |
4 | F | 43 | HBV | |
5 | M | 44 | HCV, HCC | |
6 | F | 46 | HBV | |
7 | M | 46 | HBV | |
8 | M | 47 | HBV, HCC | T12/L1 VCF (12 months) |
9 | M | 48 | HBV, HCC | |
10 | M | 48 | HCV, ALC | |
11 | M | 50 | HBV, HCV | L4 VCF (15 months) |
12 | M | 51 | ALC | L5 VCF (24 months) |
13 | F | 51 | HBV | |
14 | M | 53 | HBV, HCV, HCC | |
15 | M | 54 | HCV | |
16 | M | 54 | HCV | T12/L1 VCF (15 months) |
17 | M | 56 | HCC, ALC | |
18 | F | 56 | HBV, HCC | |
19 | M | 57 | HBV, HCC | |
20 | M | 57 | HBV | T12 VCF (24 months) |
21 | M | 60 | HCV, HCC | |
22 | M | 58 | HCV | |
23 | M | 65 | HBV | |
24 | M | 67 | HCV, HCC | |
25 | M | 66 | HBV, HCC |
0M | 3M | 6M | 12M | p Value | |
---|---|---|---|---|---|
LS T score | −1.30 (−1.60, −0.80) | −1.20 (−2.00, −0.90) | −1.50 (−2.00, −1.10) | −1.40 (−2.00, −0.90) | 0.024 |
FN T score | −1.30 (−1.80, −0.50) | −1.60 (−2.00, −0.90) | −1.60 (−1.90, −1.10) | −1.70 (−1.90, −1.00) | <0.001 |
BAP | 24.86 (15.76, 27.83) | 21.25 (18.39, 27.60) | 21.64 (17.76, 28.48) | 20.55 (12.38, 31.03) | 0.577 |
OCN | 5.83 (5.15, 7.65) | 7.08 (6.06, 11.30) | 7.88 (6.17, 13.32) | 6.52 (6.06, 8.74) | 0.082 |
TRAP | 4.10 (3.31, 5.18) | 2.38 (1.42, 3.57) | 2.57 (1.63, 3.17) | 2.98 (2.31, 4.11) | <0.001 |
CTX | 0.76 (0.44, 1.09) | 0.57 (0.34, 0.83) | 0.39 (0.27, 0.59) | 0.37 (0.23, 0.64) | 0.001 |
IGF-1 | 84.76 (34.52, 107.29) | 243.63 (157.45, 272.90) | 190.07 (165.51, 248.58) | 114.69 (889.30, 149.10) | <0.001 |
25-OH-D | 16.00 (13.60, 20.90) | 24.10 (21.40, 28.10) | 23.80 (21.70, 29.70) | 25.40 (18.80, 29.70) | 0.001 |
iPTH | 31.80 (14.80, 39.50) | 34.80 (20.55, 44.65) | 41.50 (30.95, 50.45) | 36.90 (27.65, 46.20) | 0.054 |
Ca | 8.10 (7.60, 8.50) | 8.90 (8.70, 9.30) | 8.80 (8.65, 8.95) | 8.80 (8.50, 9.00) | <0.001 |
P | 3.20 (2.40, 3.90) | 3.50 (3.20, 3.70) | 3.20 (2.75, 3.55) | 2.90 (2.60, 3.50) | 0.045 |
OPG | 8.47 (6.36, 10.74) | 4.56 (2.87, 5.13) | 4.41 (3.04, 5.61) | 3.98 (2.77, 4.81) | 0.002 |
RANKL | 86.72 (53.54, 163.89) | 61.53 (24.20, 162.53) | 51.19 (28.36, 159.87) | 55.91 (18.02, 206.27) | 0.744 |
OPG/RANKL ratio | 0.09 (0.05, 0.16) | 0.05 (0.03, 0.20) | 0.09 (0.03, 0.17) | 0.04 (0.02, 0.29) | 0.491 |
DKK-1 | 618.37 (300.64, 882.44) | 1262.53 (650.08,1079.65) | 1067.14 (599.35, 1713.41) | 1096.26 (809.19, 1352.73) | 0.006 |
L-Spine | Femoral Neck | |||
---|---|---|---|---|
ρ | p Value | ρ | p Value | |
BAP | 0.041 | 0.691 | 0.221 | 0.032 |
Osteocalcin | 0.075 | 0.467 | 0.054 | 0.602 |
TRAP | 0.102 | 0.325 | 0.133 | 0.196 |
CTX | 0.164 | 0.110 | 0.446 | <0.001 |
IGF-1 | −0.020 | 0.848 | −0.005 | 0.956 |
25-OH-D | −0.011 | 0.914 | −0.302 | 0.003 |
iPTH | 0.099 | 0.358 | 0.164 | 0.125 |
Ca | −0.033 | 0.751 | −0.330 | 0.001 |
P | −0.165 | 0.283 | 0.122 | 0.242 |
OPG | 0.050 | 0.655 | −0.027 | 0.810 |
RANKL | −0.019 | 0.869 | −0.099 | 0.378 |
OPG/RANKL ratio | 0.014 | 0.898 | 0.066 | 0.562 |
DKK-1 | 0.057 | 0.589 | −0.162 | 0.122 |
Fracture (+) | Fracture (−) | p Value | |
---|---|---|---|
LS T score | −1.50 (−1.60, −1.10) | −1.30 (−1.55, −0.75) | 0.424 |
FN T score | −1.75 (−2.10, −0.30) | −1.20 (−1.70, −0.55) | 0.465 |
BAP | 16.43 (14.44, 24.86) | 25.01 (17.99, 31.98) | 0.134 |
Osteocalcin | 6.91 (5.38, 8.71) | 5.72 (4.63, 7.11) | 0.238 |
TRAP | 3.73 (3.38, 4.08) | 4.52 (3.22, 5.62) | 0.194 |
CTX | 0.55 (0.34, 0.63) | 0.93 (0.52, 1.61) | 0.080 |
IGF-1 | 80.79 (28.69, 88.42) | 84.76 (35.99, 107.86) | 0.631 |
25-OH-D | 18.20 (14.30, 21.50) | 16.00 (12.85, 19.85) | 0.589 |
iPTH | 38.50 (9.00, 39.90) | 26.30 (14.80, 36.50) | 0.298 |
Ca | 8.45 (7.70, 8.80) | 8.00 (7.55, 8.25) | 0.171 |
P | 2.85 (2.20, 3.90) | 3.30 (2.50, 4.10) | 0.749 |
OPG | 10.88 (9.71, 11.45) | 7.22 (6.31, 9.92) | 0.046 |
RANKL | 32.27 (29.93, 52.60) | 104.75 (76.34, 189.34) | 0.001 |
OPG/RANKL ratio | 0.28 (0.24, 0.36) | 0.08 (0.04, 0.11) | <0.001 |
DKK-1 | 1181.37 (930.30, 1705.89) | 353.29 (260.95, 792.56) | 0.020 |
Fracture (+) versus Fracture (−) | |||
---|---|---|---|
AUC | p Value | Cut-Off Value for Fracture | |
OPG | 0.78 ± 0.10 | 0.042 | >8.31 |
RANKL | 0.96 ± 0.04 | <0.001 | <54.47 |
OPG/RANKL ratio | 1.00 ± 0.00 | <0.001 | >0.17 |
DKK-1 | 0.82 ± 0.08 | 0.019 | >661.35 |
Cut-Off Value | 0M | 3M | 6M | 12M | |||||
---|---|---|---|---|---|---|---|---|---|
(+) | (−) | (+) | (−) | (+) | (−) | (+) | (−) | ||
OPG | >8.31 | 5/6 | 5/19 | 5/6 | 3/19 | 5/6 | 3/19 | 5/6 | 3/19 |
RANKL | <54.47 | 5/6 | 2/19 | 6/6 | 2/19 | 6/6 | 3/19 | 6/6 | 3/19 |
OPG/RANKL ratio | >0.17 | 6/6 | 0/19 | 6/6 | 0/19 | 6/6 | 0/19 | 6/6 | 1/19 |
DKK-1 | >661.35 | 5/6 | 2/19 | 6/6 | 3/19 | 6/6 | 3/19 | 6/6 | 2/19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, S.-J.; Chen, C.-L.; Chen, S.-H.; Ko, J.-Y. Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences. Life 2023, 13, 1438. https://doi.org/10.3390/life13071438
Kuo S-J, Chen C-L, Chen S-H, Ko J-Y. Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences. Life. 2023; 13(7):1438. https://doi.org/10.3390/life13071438
Chicago/Turabian StyleKuo, Shu-Jui, Chao-Long Chen, Sung-Hsiung Chen, and Jih-Yang Ko. 2023. "Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences" Life 13, no. 7: 1438. https://doi.org/10.3390/life13071438
APA StyleKuo, S. -J., Chen, C. -L., Chen, S. -H., & Ko, J. -Y. (2023). Changes in Serum Bone Metabolism Markers after Living Donor Liver Transplantation (LDLT) and Their Association with Fracture Occurrences. Life, 13(7), 1438. https://doi.org/10.3390/life13071438