Surgery in the Next Space Missions
Abstract
:1. Introduction
2. Materials and Methods
3. Space Missions Overview
4. Autonomous Medical Care and the Crew
4.1. Surgery in Space: From Parabolic Flight Experiments to Surgical Robot Autonomy
What does haptic mean in robotic surgery? | Haptic is an adjective relating to the sense of touch, specifically relating to the perception and manipulation of objects using the senses of touch and prio-prioception. “Haptic technology is a technology that can create an experience of touch by applying forces, vibrations or motions to [62] ” |
Short overview | Vision and haptics are the primary senses employed in manipulating objects by humans, but while visual capabilities have reached an advanced stage in robotic surgery, tactile feedback is affected by other challenges such as circuit stability control. The lack of tactile feedback in a teleoperated system, such as that used in operating rooms today, forces the surgeon to depend only on visual cues, increasing the risk of tissue laceration or suture breakage. The goal is to provide the surgeon with information on the strength required for operations so that the operator feels as if she/he is present at the remote site [63] |
Terminology | Touch and somatic senses: perception is induced by pressure, vibration, skin stretching and temperature. These mechanisms are divided into cutaneous or tactile and kinesthetic, they are linked to the awareness of the position of the person and the movement of the parts of the body through sense organs (proprioceptors) in the muscles and joints [63]. Consequently haptic devices also are categorized as follows: kinesthetic devices that generate force/torque feedback usually actuated by electric motors, tactile displays that convey contact information to the skin, with small influence on kinesthetic sensation [63] |
Applications | On Earth: In minimally invasive surgery (MIS) and robot-assisted minimally invasive surgery (RAMIS) and simulation for surgical training. In Space Research: In Robonaut-2, a humanoid robot in space, [63] and its possible subsequent improvements |
4.2. Crew and Crew Medical Officer (CMO)
4.3. Exploration-Class Missions
5. Discussion
- build a lunar base;
- explore deep space;
- planning space flights to another planet (Mars);
- plan to settle on another planet (Mars) after a long stay in space.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.nasa.gov/about/whats_next.html (accessed on 22 August 2022).
- Witze, A. Next Stop, Uranus? Icy Planet Is Top Priority for Big NASA Mission. Nature 2022, 604, 607. Available online: https://eospso.nasa.gov/future-missions (accessed on 23 March 2023). [CrossRef]
- NASA-Office of Inspector General. Office of Audits-NASA’s Effort to Manage Health and Human Performance Risks for Space Exploration. October 2015. Available online: https://www.oversight.gov>nasa (accessed on 24 August 2022).
- Medicine on the Moon: Artemis I Launch Sets Stage for Medical Treatment in the Final Frontier. Available online: https://news.cuanschutz.edu/news-stories/medicine-on-the-moon-artemis-i-launch-sets-stage-for-medical-treatment-in-the-final-frontier (accessed on 23 March 2023).
- Patel, Z.S.; Brunstetter, T.J.; Tarver, W.J.; Whitmire, A.M.; Zwart, S.R.; Smith, S.M.; Huff, J.L. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020, 6, 33. [Google Scholar] [CrossRef]
- Barrat, M.R. Physical and Bioenvironmental aspects of human Space Flight. In Principles of Clinical Medicine for Space Flight, 2nd ed.; Barratt, M.R., Pool, S.L., Eds.; Springer Science Business Media, LLC, Part of Springer Nature: New York, NY, USA, 2019; pp. 3–37. [Google Scholar]
- Robertson, J.; Dias, R.D.; Gupta, A.; Marshburn, T.; Lipsitz, S.R.; Pozner, C.N.; Doyle, T.E.; Smink, D.S.; Musson, D.M.; Yule, S. Medical event management for future deep space exploration missions to Mars. J. Surg. Res. 2020, 246, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.A.; Karouia, F.; Pinsky, L.; Cristea, O. Radiation and Radiation Disorders. In Principles of Clinical Medicine for Space Flight, 2nd ed.; Springer Science+Business Media, LLC, Part of Springer Nature: New York, NY, USA, 2019; pp. 39–108. [Google Scholar]
- Keebler, J.R.; Dietz, A.S.; Baker, A. Effect of communication lag in long duration space flight missions: Potential mitigation strategies. In Proceedings of the Human Factors and Ergonomics Society 59th Annual Meeting, Los Angeles, CA, USA, 26–30 October 2015. [Google Scholar]
- ESA. Deep Space Communication and Navigation. Updated 28 June 2022. Available online: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Deep_space_communication_and_navigation (accessed on 21 March 2023).
- Panesar, S.; Cagle, Y.; Chander, D.; Morey, J.; Fernandez-Miranda, J.; Kliot, M. Artificial Intelligence and the Future of Surgical Robotics. Ann. Surg. 2019, 270, 223–226. [Google Scholar] [CrossRef]
- Komorowsky, M.; Fleming, S.; Kirkpatrick, A.W. Fundamental in Anesthesiology for spaceflight. J. Cardiothorac. Vasc. Anesth. 2016, 30, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Komorowski, M.; Fleming, S.; Mawkin, M.; Hinkelbein, J. Anesthesia in austere environments: Literature review and considerations for future space exploration missions. NPJ Microgravity 2018, 4, 5. [Google Scholar] [CrossRef]
- NASA. NASA’s Journey to Mars: Pioneering Next Steps in Space Exploration. Available online: https://www.nasa.gov/sites/default/files/atoms/files/journey-to-mars-next-steps-20151008_508.pdf (accessed on 3 August 2022).
- Kuypers, M.I. Emergency and wilderness medicine training for physician astronauts on exploration class missions. Wilderness Environ. Med. 2013, 24, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Anderton, R.; Posselt, B.; Komorowski, M.; Hodkinson, P. Medical considerations for a return to the Moon. Occup. Med. 2019, 69, 311–313. [Google Scholar] [CrossRef]
- Komorowsky, M.; Thierry, S.; Stark, C.; Sykes, M.; Hinkelbein, J. On the challenge of anesthesia and surgery during interplanetary spaceflight. Anesthesiol. V 2021, 135, 155–163. [Google Scholar] [CrossRef]
- Prisk, G.K. Pulmonary challenges of prolonged journeys to space: Taking your lungs to the moon. Med. J. 2019, 211, 271–276. [Google Scholar] [CrossRef]
- Comet, B.; Berry, I.; Berthier, A.; Marescaux, J.; Mutter, D.; Bouabene, A.; Magee, P. MARSTECHCARE, Necessary Biomedical Technologies for Crew Health Control during Long-Duration Interplanetary Manned Missions; ESTEC Report No:16423/02/NL/LvH; ESTEC: Noordwijk, The Netherlands, 2002. [Google Scholar]
- Kirkpatrick, A.W.; Ball, C.G.; Campbell, M.; Williams, D.R.; Parazynsky, S.E.; Mattox, K.L.; Broderick, T.J. Severe traumatic injury during long-duration spaceflight: Light years beyond ATLS. J. Trauma Manag. Outcomes 2009, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaffield, T.P.; Neviaser, A.S.; Lehnhardt, K. Fracture risk in spaceflight and potential treatment options. Aerosp. Med. Hum. Perform. 2018, 89, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Panesar, S.S.; Ashkan, K. Surgery in space. Br. J. Surg. 2018, 105, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Taddeo, T.A.; Gilmore, S.; Armstrong, C.W. Space flight medical systems. In Principles of Clinical Medicine for Space Flight, 2nd ed.; Barratt, M.R., Pool, S.L., Eds.; Springer Science+Business Media, LLC, Part of Springer Nature: New York, NY, USA, 2019; pp. 201–231. [Google Scholar]
- Barratt, M.R.; Pool, S.L. (Eds.) Principles of Clinical Medicine for Space Flight, 2nd ed.; Springer Science+Business Media, LLC, Part of Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Available online: https://www.esa.int/Science_Exploration/Space_Science/Extreme_space/Surviving_extreme_conditions_in_space (accessed on 19 March 2023).
- Hamilton, D.; Smart, K.; Melton, S.; Polk, J.D.; Johnson-Throop, K. Autonomous Medical Care for Exploration Class Space Missions. J. Trauma 2008, 64, S354–S363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NASA Is Sending a Surgical Robot to the International Space Station. Available online: https://virtualincision.com/nasa-is-sending-a-surgical-robot-to-the-international-space-station (accessed on 19 March 2023).
- Available online: https://news.unl.edu/newsrooms/today/article/husker-developed-surgical-robot-readies-for-space-station-test/ (accessed on 19 March 2023).
- Campbell, M.R.; Williams, D.R.; Buckey, J.C., Jr.; Kirkpatrick, A.W. Animal surgery during spaceflight on the Neurolab Shuttle mission. Aviat. Space Environ. Med. 2005, 76, 589–593. [Google Scholar]
- Gravity Free-Flights. Available online: https://www.airzerog.com/zero-g-flights-overview/ (accessed on 19 March 2023).
- Pletser, V. European aircraft parabolic flights for microgravity research, application and exploration: A review. Reach. Rev. Hum. Space Explor. 2016, 1, 11–19. [Google Scholar] [CrossRef]
- Campbell, M.R.; Billica, R.D.; Jennings, R.; Johnston, S., 3rd. Laparoscopic surgery in weightlessness. Surg. Endosc. 1996, 10, 11–117. [Google Scholar] [CrossRef]
- Campbell, M.R.; Kirkpatrick, A.W.; Billica, R.D.; Johnston, S.L.; Jennings, R.; Shorth, D.; Hamilton, D.; Dulchavsky, S.A. Endoscopic surgery in weightlessness: The investigation of basic principles for surgery in space. Surg. Endosc. 2001, 15, 1413–1418. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. The Neurolab Spacelab Mission: Neruscience Research in Space; Buckey, J.C., Homick, J.L., Eds.; Lindon Johnson Space Center: Houston, TX, USA, 2002.
- Pantalone, D.; Chiara, O.; Henry, S.; Cimbanassi, S.; Gupta, S.; Scalea, T. Facing Trauma and Surgical Emergency in Space: Hemorrhagic Shock. Front. Bioeng. Biotechnol. 2022, 10, 780553. [Google Scholar] [CrossRef]
- Nowak, E.S.; Reyes, D.P.; Bryant, B.J.; Cap, A.P.; Kerstman, E.L.; Antonsen, E.L. Blood transfusion for deep space exploration. Transfusion 2019, 59, 3077–3083. [Google Scholar] [CrossRef]
- Haidegger, T.; Benyo, Z. Surgical robotic support for long duration space missions. Acta Astronaut. 2008, 63, 996–1005. [Google Scholar] [CrossRef]
- Takacs, A.; Nagy, D.A.; Rudas, I.J.; Haidegger, T. Origin of surgical robotics: From space to operating room. Acta Polytech. Hung. 2016, 13, 13–30. [Google Scholar]
- Haidegger, T.; Sandor, J.; Benyo, Z. Surgery in space: The future of robotic telesurgery. Surg. Endosc. 2001, 25, 681–690. [Google Scholar] [CrossRef]
- Doarn, C.R.; Anvari, M.; Low, T.; Broderick, T.J. Evaluation of Teleoperated Surgical Robots in an Enclosed Undersea Environment. Telemed. e-Health 2009, 15, 325–335. [Google Scholar]
- Thirsk, R.; Williams, D.; Anvari, M. NEEMO7 undersea mission. Acta Astronaut. 2007, 60, 512–517. [Google Scholar] [CrossRef]
- About NEMO (NASA Extreme Environment Mission Operation). Available online: http://www.nasa.gov/mission_pages/NEMO (accessed on 19 March 2023).
- Hannaford, B.; Friedman, D.; King, H.; Lum, M.; Rosen, J.; Sankaranarayanan, G. Evaluation of Raven Surgical Telerobot during the NASA Extreme Environment Mission Operations (NEEMO), 12th Mission; UWEE Technical Report numberUWWEETR-2009.002; Department of Electrical Engineering, University of Washington: Washington, DC, USA, 2009. [Google Scholar]
- Imray, C.H.; Grocott, M.P.; Wilson, M.H.; Hughes, A.; Auerbach, P.S. Extreme, expedition, and wilderness medicine. Lancet 2015, 386, 2520–2525. [Google Scholar] [CrossRef]
- Kirkpatrick, A.W.; McKee, J.L.; Tien, H.; LaPorta, A.J.; Lavell, K.; Leslie, T.; King, D.R.; McBeth, P.B.; Brien, S.; Roberts, D.J.; et al. Damage control surgery in weightlessness: A comparative study of simulated torso hemorrhage control comparing terrestrial and weightless conditions. J. Trauma Acute Care Surg. 2017, 82, 392–399. [Google Scholar] [CrossRef]
- Doarn, C.R.; Pantalos, G.; Strangmare, G.; Broderick, T.J. NASA/TP-2016-219281. Surgical Capabilities for Exploration and Colonization in Space Flight; An exploratory Symposium Johnson Space Center: Houston, TX, USA, 2016. [Google Scholar]
- Doarn, C.R.; Williams, R.S.; Schneider, V.S.; Polk, J.D. Principles of Crew Health Monitoring and Care. In Space Physiology and Medicine Nicogossian; Nicogossian, A.E., Ed.; Springer: New York, NY, USA, 2016; pp. 393–421. [Google Scholar]
- Takacs, A.; Jordan, S.; Nagy, D.A.; Tar, J.K.; Rudas, I.J.; Haidegger, T. Surgical robotics: Born in space. In Proceedings of the 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 21–23 May 2015. [Google Scholar]
- Takacs, A.; Rudas, I.J.; Haidegger, T. The other end of human-robot interaction: Models for safe and efficient tool tissue interactions. In Human-Robot Interaction: Safety, Standardization, Benchmarking; Baratini, P., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; pp. 137–170. [Google Scholar]
- The MIRA Project at the Robot Report. Available online: https://www.therobotreport.com/virtual-incisions-mira-to-be-sent-to-the-iss-2024 (accessed on 7 August 2022).
- Kirkpatrick, A.W.; Keaney, M.; Kmet, L.; Ball, C.G.; Campbell, M.R.; Kindratsky, C.; Groleau, M.; Tyssen, M.; Keyte, J.; Broderick, T.J. Intraperitoneal Gas Insufflation Will Be Required for Laparoscopic Visualization in Space: A Comparison of Laparoscopic Techniques in Weightlessness. J. Am. Coll. Surg. 2009, 209, 233–241. [Google Scholar] [CrossRef]
- Kirkpatrick, A.W.; Keaney, M.; Hemmelgarn, B.; Zhang, J.; Ball, C.G.; Groleau, M.; Tyssen, M.; Keyte, J.; Campbell, M.R.; Kmet, L. Intra-abdominal pressure effects on porcine thoracic compliance in weightlessness: Implications for physiologic tolerance of laparoscopic surgery in space. Crit. Care Med. 2009, 37, 591–597. [Google Scholar] [CrossRef]
- Saeidi, H.; Opfermann, J.D.; Kam, M.; Wei, S.; Leonard, S.; Hsieh, M.H.; Kang, J.U.; Krieger, A. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci. Robot. 2022, 7, eabj2908. [Google Scholar] [CrossRef]
- Shademan, A.; Decker, R.S.; Opfermann, J.D.; Leonard, S.; Kriegel, A.; Kim, P.C.W. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 2016, 8, 337ra64. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Visel, J. Haptic perception, mechanism, and material technologies for virtual reality. Adv. Funct. Mater. 2021, 31, 2008186. [Google Scholar] [CrossRef]
- Metzger, A.; Drewing, K. Memory influences haptic perception of softness. Sci. Rep. 2019, 9, 14383. [Google Scholar] [CrossRef] [PubMed]
- Cu, H.; Lynch, L.; Huang, K.; Truccolo, W.; Nurmikko, A. Graspsqueeze adaptation to changes in object compliance leads to dynamic betaband communication between primary somatosensory and motor cortices. Sci. Rep. Nat. 2022, 12, 6776. [Google Scholar] [CrossRef]
- Lee, S.; Byun, S.H.; Kim, K.Y.; Cho, S.; Park, S.; Sim, J.Y.; Jeong, J.W. Beyond Human Touch Perception: An Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation. Adv. Mater. 2022, 34, 2204805. [Google Scholar] [CrossRef]
- De Fazio, R.; Mastronardi, V.M.; Petruzzi, M.; De Vittorio, M.; Visconti, P. Human–Machine Interaction through Advanced Haptic Sensors: A Piezoelectric Sensory Glove with Edge Machine Learning for Gesture and Object Recognition. Future Internet 2023, 15, 14. [Google Scholar] [CrossRef]
- Nagy, T.D.; Haidegger, T. Autonomous Surgical Robotics at Task and Subtask Levels. In Advanced Robotics and Intelligent Automation in Manufacturing; Habib, M.A., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 296–319. [Google Scholar]
- Cambridge Essential British Dictionary (Book)—Cambridge Universitity Press and Assessment 2023. Shaftesbury Road Cambridge CB2 8EA England. Available online: https://dictionary.cambridge.org/dictionary/english/haptic (accessed on 21 March 2023).
- Enayaty, N.; De Momi, E.; Ferrigno, G. Haptic in robot assisted surgery: Challenges and benefits. IEEE Rev. Biotmedical Eng. 2019, 9, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.J. The genesis of crew resources management. In Trauma Team Dynamics; Gillman, L.M., Widder, S., Blaivas, M., Karakitsos, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–7. [Google Scholar]
- Phelphs, S.E.; Eater, B.; Lahnhardt, K. Developing the foundations of an exploration class medical system: Bridging the capability gap between LEO and Mars. In Proceedings of the AIAA, Virtual AIAA SCHITWECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Thompson Ms Easter, B.D.; Passmore, R.; Watkins, S.; Piper, S. The exploration crew Medical Officer of the Future. In Proceedings of the ASMA 91st Annual Scientific Meeting, Denver, CO, USA, 29 August–3 September 2021; NASA Johnson Space Center: Houston, TX, USA; University of Colorado School of Medicine: Aurora, CO, USA; KBR Inc.: Houston, TX, USA, 2021. [Google Scholar]
- Reyws, D.P.; Carrol, D.J.; Walton, M.E.; Antonsen, E.L.; Kerstman, E.L. Probabilistic risk assessment prophylactic surgery before extended-duration spaceflight. Surg. Innov. 2021, 38, 573–581. [Google Scholar] [CrossRef]
- Ball, C.; Kirkpatrick, A.W.; Williams, D.R.; Jones, J.A.; Polk, J.D.; Vanderploeg, J.M.; Talamini, M.A.; Campbell, M.R.; Broderick, T.S. Prophylactic surgery prior to extended-duration space flight: Is the benefit worth the risk? Can. J. Surg. 2012, 55, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Hodkinson, P.D.; Anderton, R.A.; Posselt, B.N.; Fong, K.J. An overview of space medicine. Br. J. Anaest. 2017, 119, i143–i153. [Google Scholar] [CrossRef] [Green Version]
- NASA Space Flight Human System Standard. Vol 1 Revision A: 26 June 2015. Revision Completed in September 2018. Available online: https://standards.nasa.gov/standard/nasa/nasa-std-3001-vol-1 (accessed on 19 August 2022).
- Stewart, L.H.; Trunkey, D.; Rebagliati, G.S. Emergency medicine in space. J. Emerg. Med. 2007, 32, 45–54. [Google Scholar] [CrossRef]
- Alexander, D.J. Trauma and Surgical Capabilities for Space Exploration. In Trauma Team Dynamics; Gillman, L.M., Widder, S., Blaivas, M., Karakitsos, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 253–266. [Google Scholar]
- Halabi, O.; Balakrishnan, S.; Dakua, S.P.; Navab, N.; Warfa, M. Virtual and Augmented Reality in Surgery. In Electrical Engineering; Doorsamy, W., Paul, B., Marwala, T., Eds.; Springer: Cham, Switzerland, 2021; Volume 674. [Google Scholar] [CrossRef]
- Broderick, T.; Chappel, S.P.; Norcross, J.R.; Abercromby, A.F.J. Computer-Based Virtual Reality Surgical Training in Microgravity (NAG91467). Available online: https://lsda.jsc.nasa.gov/Experiment/exper/1033 (accessed on 19 August 2022).
- NASA Evidence Report. Risk of Injury and Compromised Performance Due to EVA Operation. Human Research Programme. Available online: https://humanresearchroadmap.nasa.gov/Evidence/reports/EVA.pdf (accessed on 19 August 2022).
- Williams, M.A.; McVeigh, J.; Handa, A.I.; Lee, R. Augmented reality in surgical training: A systematic review. Postgrad. Med. J. 2020, 96, 537–542. [Google Scholar] [CrossRef]
- Tai, Y.; Shi, J.; Pan, J.; Hao, A.; Chang, V. Augmented reality-based visual-haptic modeling for thoracoscopic surgery training systems. Virtual Real. Intell. Hardw. 2021, 3, 274–286. [Google Scholar] [CrossRef]
- Goemaere, S.; Van Caelenberga, T.; Beyersa, W.; Binstedb, K.; Vansteenkistea, M. Life on mars from a Self-Determination Theory perspective: How astronauts’ needs for autonomy, competence and relatedness go hand in hand with crew health and mission success—Results from HI-SEAS IV. Acta Astronaut. 2019, 159, 273–285. [Google Scholar] [CrossRef]
- NASA Science Missions/Science Mission Directorate. Available online: https://science.nasa.gov/missions-page?field_division_tid=All&field_phase_tid=29 (accessed on 19 August 2022).
- Sproule, B. A standard of care for long duration space missions: Emergency medicine as an initial model. Houst. J. Health Law Policy 2019, 19, 45–50. [Google Scholar]
- Available online: https://mars.nasa.gov/all-about-mars/night-sky/solar-conjunction/ (accessed on 19 August 2022).
- Types of Orbits. Available online: http://www.esa.int/Our_Activities/Space_Transportation/Types_of_orbits (accessed on 20 March 2023).
- Abadie, L.J.; Cranford, N.; Lloyd, C.W.; Shelhamer, M.J.; Turner, J.L. The Human body in space NASA Human Research Program. Last Updated: 2022. Available online: https://www.nasa.gov/hrp/bodyinspace (accessed on 20 August 2022).
- Antonsen, E. Evidence Report. Risk of Adverse Health Outcomes and Decrements in Performance Due to in Flight Medical Condition. NASA Human Research Program Exploration Medical Capabilities Elements, 2014. Released 8 May 2017. Available online: https://humanresearchroadmap.nasa.gov (accessed on 20 March 2023).
- Sjogren, W.L. Mars: Gravity. In Encyclopedia of Planetary Science. Encyclopedia of Earth Science; Shirley, J.H., Fairbridge, S.W., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- NASA. Last Update 8 May 2019. Available online: https://www.nasa.gov/hrp/5-hazards-of-human-spaceflight (accessed on 17 July 2022).
- Mars, K.; Dunbar, B. NASA Official Last Updated 10 June 2022. Available online: https://www.nasa.gov/gateway (accessed on 20 March 2023).
- Exo-Mars-ESA and Roscosmos to Discover If Life ever Existed on Mars. Available online: https://www.esa.int/Science_Exploration/Space_Science/ExoMars_ESA_and_Roscosmos_set_for_Mars_missions (accessed on 10 June 2023).
- Aglietti, G.S. Current challenges and opportunities for space technology. Front. Space Technol. 2020, 1, 1. [Google Scholar] [CrossRef]
- Afshinnekoo, E.; Scott, R.T.; MacKay, M.J.; Pariset, E.; Cekanaviciute, E.; Barker, R.; Gilroy, S.; Hassane, D.; Smith, S.M.; Zwart, S.R.; et al. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell 2020, 183, 25. [Google Scholar] [CrossRef]
- Martin, A.; Sullivan, P.; Beaudry, C.; Kuyumjian, R.; Comtois, J.M. Space medicine innovation and telehealth concept implementation for medical care during exploration-class missions. Acta Astronaut. 2012, 81, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Bridge, L.; Watkins, S. Impact of Medical Training Level on Medical Autonomy for Long-Duration Space Flight; National Aeronautics and Space Administration: Washington, DC, USA, 2012.
- Summer, R.L.; Johnston, S.; Marshburn, T.H.; Williams, D.R. Emergencies in Space. Ann. Emerg. Med. 2005, 46, 177–184. [Google Scholar] [CrossRef]
- Boley, L.A.; Saile, L.; Kerstman, E.; Garcia, Y.; Myers, J.; Gilkey, K. Integrated Medical Model Medical Conditions List; IMM-GEN-309. Rev1 report to NASA; Wyle Science, Technology and Engineering: El Segundo, CA, USA, 2017. [Google Scholar]
- Dutil-Fafard, L.; Rheaume, C.; Archambult, P.; Lafond, D.; Pollock, N.W. Development of requirements analysis tool for medical autonomy in long duration space exploration missions. Int. Sch. Sci. Res. Innov. 2019, 13, 9. [Google Scholar]
- Schmitt, D.; Elmann-Larsen, B. Bed-Rest Studies for the International Space Station. Available online: https://www.esa.int/esapub/bulletin/bullet108/chapter12_bul108.pdf (accessed on 26 March 2023).
- Georgescu, M.R.; Meslem, A.; Nastase, I.; Bode, F. Personalized ventilation solutions for reducing CO2 levels in the crew quarters of the International Space Station. Build. Environ. 2021, 204, 108150. [Google Scholar] [CrossRef]
- Pantalone, D.; Faini, G.S.; Cialdai, F.; Sereni, E.; Bacci, S.; Bani, D.; Bernini, M.; Pratesi, C.; Stefàno, P.L.; Orzalesi, L.; et al. Robot-assisted surgery in space: Pros and cons. A review from the surgeon’s point of view. Npj Microgravity 2021, 7, 56. [Google Scholar] [CrossRef]
- Harada, K.; Masamune, K.; Sakuma, I.; Yahagi, N.; Dohi, T.; Iseki, H.; Takakura, K. Development of a micro manipulator for minimally invasive neurosurgery. In Proceedings of the Human Friendly Mechatronics Human Friendly Mechatronics Selected Papers of the International Conference on Machine Automation: ICMA 2000, Osaka, Japan, 27–29 September 2000; pp. 75–80. [Google Scholar] [CrossRef]
- Campbell, M.R.; Billica, R.D. Surgical Capabilities. In Principles of Clinical Medicine for Space Flight, 2nd ed.; Barratt, M.R., Pool, S.L., Eds.; Springer Science+Business Media, LLC, Part of Springer Nature: New York, NY, USA, 2019. [Google Scholar]
- Illanes, A.; Schaufler, A.; Sühn, T.; Boese, A.; Croner, R.; Fuebe, M. Surgical audio information as base for haptic feedback in robotic-assisted procedures. Curr. Dir. Biomed. Eng. 2020, 6, 20200036. [Google Scholar] [CrossRef]
- Robonaut 2. Available online: https://www.nasa.gov/mission_pages/station/main/robonaut.html (accessed on 26 March 2023).
- Self-Assembling Swallowable Modular Robots. Available online: https://www.telerobotics.utah.edu/index.php/Research/ModularRobots (accessed on 19 March 2023).
- Haas, E.M.; De Paula, T.R.; Luna-Saracho, R.; Smith, M.S.; LeFave, J.J. Robotic natural-orifice IntraCorporeal anastomosis with Extraction (NICE procedure) for complicated diverticulitis. Surg. Endosc. 2021, 35, 3205–3213. [Google Scholar] [CrossRef]
- NASA Science Share the Science. Available online: https://science.nasa.gov/science-news/science-at-nasa/belleau2 (accessed on 26 March 2023).
- “NaoTrac” the First Autopilot Surgical Robot for Brain Surgery. Available online: https://www.medgadget.com/2019/03/naotrac-the-first-autopilot-surgical-robot-for-brain-surgery.html (accessed on 26 March 2023).
- Available online: https://www.medicaldesignandoutsourcing.com/robot-that-assists-in-brain-surgery-cuts-procedure-time-in-half/ (accessed on 3 April 2023).
- NASA Contributes Research and Technology to the War against Cancer. Available online: https://science.nasa.gov/science-news/science-at-nasa/belleau2 (accessed on 3 April 2023).
- Hu, Y.; Pérez-Mercader, J. Microcapsules with Distinct Dual-Layer Shells and Their Applications for the Encapsulation, Preservation, and Slow Release of Hydrophilic Small Molecules. ACS Appl. Mat Interfaces 2019, 11, 41640–44164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantalone, D. Surgery in the Next Space Missions. Life 2023, 13, 1477. https://doi.org/10.3390/life13071477
Pantalone D. Surgery in the Next Space Missions. Life. 2023; 13(7):1477. https://doi.org/10.3390/life13071477
Chicago/Turabian StylePantalone, Desiree. 2023. "Surgery in the Next Space Missions" Life 13, no. 7: 1477. https://doi.org/10.3390/life13071477
APA StylePantalone, D. (2023). Surgery in the Next Space Missions. Life, 13(7), 1477. https://doi.org/10.3390/life13071477