Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer
Abstract
:1. Introduction
2. Cancer Treatment Vaccines
2.1. Nucleic Acid-Based Vaccines
2.2. Peptide-Based Vaccines
2.3. Viral Vector-Based Vaccines
2.4. Cell-Based Vaccines
2.4.1. Tumor Cell-Based Vaccines
2.4.2. Dendritic Cell-Based Vaccines
Nucleic Acid-Based Vaccines | ||||||
Coding TA Epitope | Vaccine or Plasmid Vector | Adjuvants | Target; Phase | n, Appl. Route | Outcomes | Ref/ Year |
RNA-based | ||||||
Full-length STEAP1 PSA, PSMA, PSCA | CV9103 | / | advanced CRPC; Phase I/IIa 2008-003967-37 | 44, i.d. | The RNA vaccine CV9103 was well tolerated and immunogenic. A total of 26 of 33 evaluable patients treated at the recommended dose developed an immune response to one or more antigens. | [24] /2015 |
Full-length STEAP1 PSA, PSMA, PSCA, PAP and MUC1 | CV9104 | / | advanced CRPC; Phase I/IIb 2011-006314-14 | 134, i.d. | CV9104 did not improve OS compared to placebo. No significant differences in the rPFS endpoints and time to symptom progression compared to placebo. | [25]/ 2017 |
DNA-based | ||||||
PSA | pVAX/PSA | GM-CSF, IL-2 | CRPC; Phase I | 9 | In 25% cases (2), a PSA-specific cellular immune response and a rise in anti-PSA IgG. No AE (WHO grade > 2). | [70]/ 2004 |
CRPC; Phase I | 6 | Induction of PSA-specific cellular immune responses in some cases. | [71]/ 2005 | |||
Full-length PAP | pTVG-HP [MVI-816] | GM-CSF | stage D0 PCa; Phase I/IIa | 22, i.d. | No significant AE. PAP-specific CD4+ and/or CD8+ T cell proliferation (41% of patients); PAP-specific IFN gamma-secreting CD8+ T cells (14%). | [72,73]/2009 2010 |
CSPC; Phase II NCT01341652 | 99, i.d. | Vaccination had detectable effects on micrometastatic bone disease. | [74]/ 2019 | |||
Modified PSA (rhesus PSA) | pVAXrcPSAv531 | / | PCa with BCR; Phase I NCT00859729 | 15, i.d., EP | No systemic toxicity. Specific T cell reactivity PSA was observed in some patients. | [75]/ 2013 |
AR LBD (androgen receptor ligand-binding domain) | pTVG-AR | ±GM-CSF | mCSPC; Phase I multicenter | 40 | Delayed the time to castration resistance; 28% had a PSA progression event. No grade ≥ 3 AE. In total, 47% developed Th1-type immunity to the AR LBD with a significantly prolonged PPFS vs. patients without immunity. | [76]/ 2020 |
Viral Vector-Based Vaccines | ||||||
Coding TA Epitope | Virus Vector | Adjuvants | Target; Phase | n, Appl. Route | Outcomes | Ref/ Year |
PSA | rV-PSA | ±GM-CSF | PCa after radical prostatectomy or radiation therapy; Phase I | 33 | Safe. Specific T cell response to PSA-3. In 42% of cases, stable disease for 6 months, in 27%, for 11–25 months. | [77]/ 2000 |
advanced mPCa; Phase I | 42, d.s., s.c. | No significant treatment-related toxicity; increase in the proportion of PSA-specific T cells after vaccination in some patients. | [78]/ 2002 | |||
PSA | rF-PSA/rV-PSA | / | advanced PCa; Phase II | 64 | Minimal toxicity; increase in PSA-specific T cell responses; free of PSA and clinical progression after 19 months. | [79]/ 2004 |
MUC-1 | VV/MUC-1/IL-2 (vaccinia virus expressing MUC-1 and IL-2) | IL-2 | advanced PCa; Phase I | 16, i.m. | Safe and well tolerated. MHC-independent MUC-1-specific cytotoxic T cell activity; 1 patient had an objective tumor response. | [80]/ 2004 |
5T4 (trophoblast glycoprotein) (TroVax) | Vaccinia Ankara Virus | ±GM-CSF | mCRPC; Phase II | 27, i.m. | Safe and well tolerated. 5T4-specific antibody responses, robust 5T4-specific immune responses correlated with time to progression, no objective clinical responses. | [81]/ 2008 |
PSA | adenovirus/PSA | / | metastatic PCa; Phase I | 32 s.c. | Safe with no serious AE. In total, 34% of patients produced anti-PSA antibodies, 68% produced anti-PSA T cell responses, PSA-DT was increased in 48%. | [82]/ 2009 |
PSA | rV-PSA/rF-PSA | GM-CSF | mCRPC; Phase II | 32 | Enhanced mOS. PSA-specific T cell responses showed a trend (p = 0.055) toward enhanced survival. | [44]/ 2010 |
PSA | PROSTVAC-VF (rV-PSA/rF-PSA) | +GM-CSF + 3 costimulatory molecules | mCRPC; Phase II | 82/125 | Longer mOS by 8.5 months (25.1 vs. 16.6 months for controls) | [42]/ 2010 |
locally recurrent or progressive PCa; Phase I | 21, s.c., i.t. | Safe and feasible. Stable (10) or improved (9) PSA values. Improved serum PSA kinetics and intense post-vaccination inflammatory infiltrates were seen in the majority of patients. | [83]/ 2013 | |||
PSMA | PSMA-VRP (Venezuelan Equine Encephalitis virus) | / | mCRPC; Phase I | 12 | Safe; no toxicities were observed. No PSMA-specific cellular responses—dosing was suboptimal; few patients had a humoral response to PSMA. | [84]/ 2013 |
/ | HVJ-E (inactivated hemagglutinating virus of Japan envelope) | / | CRPC; Phase I/II UMIN000006142 | 6 i.t. and s.c. | PSA response rate was 16.6% (1/6), NK cell activity was elevated, IL-6, IFN-α, IFN-β and IFN-γ levels were not affected. | [85]/ 2017 |
PSA | PROSTVAC-VF | ± GM-CSF | mCRPC; Phase III | 864 | Safe, well tolerated, it had no effect on OS or AWE (alive without events). | [86]/ 2019 |
5T4 (trophoblast glycoprotein) (TroVax) | ChAd (chimpanzee adenovirus) and MVA (Modified Vaccinia Ankara) | early-stage PCa or stable disease; Phase I NCT02390063 | 40, i.m. | Excellent safety profile. 5T4-specific T cell responses detected in the majority of patients. | [87]/ 2020 | |
PSA, brachyury and MUC-1 | adenovirus 5 (Ad5) | / | mCRPC; Phase I NCT03481816 | 18 | Tolerable and safe; no grade >3 treatment-related AE toxicities. In total, 100% of 17 patients mounted T cell response to at least one TAA; 47% of patients mounted immune responses to all three TAAs. | [88]/ 2021 |
Peptide-Based Vaccines | ||||||
TA | Peptide | Stimulatory Adjuvants | Target; Phase | n, Appl. Route | Outcomes | Ref/ Year |
Complex carbohydrate hexasaccharide molecule | globo H +KLH | QS-21 immunological saponin | PCa patients; Phase I | 20 s.c. | High-titer IgM antibodies against globo H; decline of the slope of the log of PSA concentration vs. time. | [89]/ 1999 |
SART1, SART2, SRAT3, p56lck, ART-1, ART-4, CypB | PPV (up to 5 selected peptides) | / | CRPC; Phase I | 10, i.d. | Safe and well tolerated with no major AE. Increased CTL response to both peptides and cancer cells was observed in four (40%) patients. Anti-peptide IgG antibodies were also detected in post-vaccination sera of seven (70%) patients. Decrease in PSA level in some patients. | [90]/ 2003 |
HER-2/neu | E75 | GM-CSF | advanced PCa; Phase I | 17 | Safe with only minor toxicities observed. Effective in eliciting an HER-2/neu-specific immune response. | [91]/ 2005 |
Thomsen–Friedenreich antigen | TF-KLH | QS21 immunological saponin | biochemically relapsed PCa; Phase I | 20 | All patients developed maximum IgM and IgG antibody titers by week 9; change in post-treatment logPSA slopes vs. pretreatment was observed. | [92]/ 2005 |
SART1, SART2, SART3, Lck, ART1, PAP, PSA PSMA, MRP | PPV (up to 4 selected peptides) | / | localized PCa; Phase I | 10 | Increased CTL response and the anti-peptide IgG titers were observed in the post-vaccination samples in 8 of 10. Number of infiltrating memory CD4 T (CD45RO+) cells was significantly larger in the vaccination group vs. control group. CD8(+) T cell infiltration was seen only in the vaccinated group. | [93]/ 2007 |
PSA | PSA peptide | Montanide ISA-51 | recurrent PCa after radical prostatectomy; Phase II pilot, NCT00109811 | 5, s.c. | No serious AE. No significant changes in serum PSA. | [94]/2009 |
PSA, PSCA, PSMA, Survivin, Prostein, TRP-P8 | 14-synthetic-multi-peptide vaccination cocktail | ± (imiquimod, GM-CSF or mucin-1-mRNA/protamine complex) + montanide ISA51 | HSPC; Phase I/II | 19, s.c. | Well tolerated; no patient showed any severe AE. A clinical response was observed in 8 out of 19 patients and PSA-DT was improved in 4 cases. | [95]/ 2009 |
Ii-Key/HER-2/neu | AE37 | GM-CSF | castrate-sensitive and CRPC; Phase I | 32 | Safe. AE37 elicited HER-2/neu-specific cellular immune responses. | [96]/ 2010 |
NY-ESO-1 | NY-ESO-1 peptides | CpG 7909 | advanced PCa; Phase I | 13 | Induced integrated antigen-specific antibody immune responses; T cell responses were induced in 9 patients (69%). | [97]/ 2011 |
SART3, MRP3, ppMAPkkk, HNRPL, EGF-R, PSMA, UBE2V, p56lck, CypB, PAP, SART2, PSA, WHSC2, EZH2, PTHrP | PPV (2-4 selected peptides) | Montanide ISA51V | CRPC; Phase II | 100 | PPV was safe and well tolerated. Peptide-specific IgG and T cell responses strongly correlated with PSADT, and with OS. | [98]/ 2013 |
hTERT | GX301 (4 telomerase peptides) | Montanide ISA-51, Imiquimod | PCa; Phase I/II | 11, i.d. | Safe, well tolerated. With potential immunologic and clinical efficacy, vaccine-specific immunological responses were detected in all patients. | [99]/ 2013 |
NY-ESO-1 | NY-ESO-1 peptides | / | mCRPC; Phase I | 9, s.c. | NY-ESO-1 specific T cell response in 6 P; PSA DT increased from 3.1 to 4.9 months. | [100]/ 2014 |
SART3, Lck, UBE2V, WHSC2, HNRPL, MRP3, PAP, PSMA, PSA, EGF-R, PTH-rP, CypB | KRM-20 (mixture of 20 peptides) | Montanide ISA51V | CRPC; Phase I UMIN000008209 | 17 | Safe; no serious AE. Partial response or no change in PSA observed in 7/15 patients (47%); CTL activity for at least one peptide and IgG level were augmented in most patients. | [101]/ 2015 |
hTERT | UV1 long peptides | + GM-CSF | mPC; Phase I/IIa | 21, i.d. | Moderate toxicity; UV1-specific T cell responses in 18/21 patients (85.7%). | [102]/ 2017 |
CDCA1 (cell division cycle-associated 1) | CDCA1 peptide | Montanide ISA51 | CRPC post-DBC; Phase I NCT01225471 | 12, s.c. | Well tolerated without any serious AE; Peptide-specific CTL responses. | [103]/ 2017 |
RhoC | synthetic long peptide of RhoC | Montanide ISA-51 | PCa with radical prostatectomy; Phase I/II | 22 | Well tolerated; a strong CD4 T cell response. | [104]/ 2020 |
hTERT | GX301 (4 telomerase peptides) | Montanide ISA-51, Imiquimod | mCRPC; Phase II 2014-000095-26; NCT02293707 | 63, i.d. | No major side effects, 54% overall immune responder rate, 95% of patients showed at least one vaccine-specific immune response. | [105]/ 2021 |
Tumor Cell-Based Vaccines | ||||||
Cells | Stimulatory Adjuvants | Target; Phase | n, Appl. Route | Outcomes | Ref/ Year | |
Autologous, irradiated tumor cells engineered to secrete GM-CSF | GM-CSF | PCa; Phase I | 8 | Well tolerated. Induction of anticancer immunity as assessed using DTH skin testing; new antiprostate cancer cell antibodies were detected. | [106]/ 1999 | |
Three tumor cell lines + Mycobacterium vaccae (SRL-172) | CRPC; Phase I/II | 60 | Safe and well tolerated with no major AE. No significant decrease in PSA, an increase in cytokine production, increases in specific antibodies and evidence of T cell proliferation in response to the vaccinations. | [107]/ 2002 | ||
Three allogeneic cell lines + bacille Calmette-Guérin | CRPC; Phase I | 28 i.d. | No significant toxicity. In total, 11/26 patients (42%) showed significant, prolonged decreases in PSA velocity. | [108]/ 2005 | ||
LNCaP and PC-3 irradiated and engineered to secrete GM-CSF (GVAX plat-form) | GM-CSF | PCa with PSA relapse + radical prostatectomy; Phase I/II | 21 | Favorable safety profile. Significant decrease in PSA velocity. | [109]/ 2006 | |
mPCa; Phase I/II | 80, i.d. | Well tolerated, no serious AE. PSA stabilization occurred in 15 (19%) patients, and a >50% decline in PSA was seen in 1 patient. | [48]/ 2008 | |||
Autologous tumor cells, irradiated | Immunomodulated with IFN-α2b and BCG | mPCa; Phase I | 11 | Safe; AE restricted to the inoculation sites. Two patients had a decrease in PSA. | [110]/ 2007 | |
LNCaP irradiated and engineered to express recombinant IL-2 and IFN-gamma | IL-2 and IFN-gamma | CRPC; Phase I | 6 | Safe and feasible. PSA decline of 50% was achieved in two of the six patients. | [111]/ 2007 | |
CRPC; Phase I/II | 30, i.d. | Safe and well tolerated. Significant prolongation of the PSA-DT, 3 patients sustained a >50% decrease in PSA, T cell stimulation in the majority of patients. | [112]/ 2009 | |||
Two allogeneic prostate tumor cell lines irradiated and engineered to express αGal epitopes | HAP (HyperAcute Prostate) | advanced PCa; Phase I | 8 | Minimal toxicity. Humoral immune responses to autoantigens in 25% of P (2/8), suggesting dose-dependent effect. | [113]/ 2013 | |
Dendritic Cell-Based Vaccines | ||||||
TA | Cells | Stimulatory Adjuvants | Target; Phase | n, Appl. Route | Outcomes | Ref/ Year |
Loaded with PSMA peptides: PSM-P1 or PSM-P2 | aDC | CRPC; Phase I, Phase II | 19 and 33, i.v. | No significant toxicity. Increased T cell response to PSMA peptides in HLA-A2-positive patients; 7/19 and 9/33 partial PSA value responders. | [114]/ 1996 [115]/ 1998 | |
hrPSA | aDC | PCa after radical prostatectomy; Phase I | 24, i.v., s.c., i.d. | No serious AE. Transient PSA decrease; disappearance of circulating prostate cells. | [116]/ 2004 | |
Loaded with hTERT I540 peptide | aDC | CRPC; Phase I | 5 | No significant toxicity. hTERT-specific T lymphocytes were induced in 2 patients. | [117]/ 2004 | |
Loaded with allogeneic prostate cancer cell line lysate (LNCaP, DU14, JM-RCC) | aDC | KLH | CRPC; Phase I/II | 11, i.n. or i.d.l | Feasible and not toxic, induction of both humoral and cellular immunity, a reduction in PSA velocity in 1 and an increased PSA-DT in 6 men. | [118]/ 2004 |
Loaded with PAP + GM-CSF (sipuleucel-T) | aDC | mCRPC; Phase III multicenter NCT00065442 | 82 and 341, i.v. | Well tolerated. Beneficial treatment effect: increased specific T cell response. TTP and interim survival were associated with a subset of subjects with Gleason scores ≤ 7; prolonged OS for 4.1 months. | [119]/ 2005 [10]/ 2010 | |
Loaded with a cocktail peptide PSA, PSMA, survivin, prostein, trp-p8 | DCs | CRPC; Phase I | 8 | Safe and feasible; no serious AE. One partial response in PSA (decrease >50%) and three stable PSA values or decelerated PSA increases. Three of four PSA responders also showed antigen-specific CD8+ T cell activation against prostein, survivin and PSMA. | [120]/ 2006 | |
Loaded with PSA peptide (PSA146-154) | aDC | locally advanced or mPCa; Phase Ib | 14, i.v. | DTH-derived T cells exhibited PSA peptide-specific cytolytic activity. | [121]/ 2006 | |
Loaded with peptides derived from PSCA, PAP, PSMA, PSA | aDC | CRPC; Phase I/II | 6, i.d. | Well tolerated. Significant cytotoxic T cell responses against all prostate-specific antigens tested; an increase in PSA-DT. | [122]/ 2006 | |
Loaded with PSCA and PSA peptides | aDC | mCRPC; Phase I/II | 12, s.c. | No relevant toxicities. DTH positivity was associated with significantly superior survival. | [123]/ 2006 | |
Loaded with PSA peptides (PSA-1, PSA-2, PSA-3) | aDC | IFN-gamma | mCRPC; pilot | 12, i.c. | Well tolerated; no serious AE. In total, 2/12 had slight increase in PSA peptide-specific T lymphocytes; 1 partial and 1 mixed responder were identified. | [124]/ 2007 |
Loaded with a peptide cocktail: PSA, PAP, PSMA | aCD1c | KLH | mCRPC; Phase I | 12, i.d. or i.v. | Feasible, safe and well tolerated. | [125]/ 2008 |
Loaded with apoptotic LNCaP tumor | aDC | KLH | CRPC; Phase I | 12, s.c. | Safe and well tolerated. Increase in T cell proliferation responses to prostate tumor cells in vitro, decrease in PSA slope, two-fold increase in PSA-DT. | [126]/ 2010 |
Loaded with prostate cancer cell line lysates (DU145, LNCaP, PC3) | alogeneic DC | CCH, TRIMEL | CRPC; Phase I | 14, s.c. | Safe; no relevant AE. In total, 6/14 had decrease in PSA levels; DTH(+) patients showed a prolonged PSA-DT. | [127]/ 2013 |
Loaded (incubated) with rPSMA, rSurvivin peptides | DC | CRPC; Phase I | 11, s.c. | Cellular immune response, disease stabilization, no adverse events and partial remission. | [128]/ 2015 | |
Tn-MUC1 loaded | aDC | nmCRPC; Phase I/II | 17, i.d., i.n. | Safe, able to induce significant T cell responses and increase in PSADT following vaccination. | [129]/ 2016 | |
Loaded with protein PA001—contains the extracellular domain of hPSMA | aDC | Transduced with Ad5f35-encoding inducible human (ih)-CD40 | mCRPC; Phase I | 18, i.d. | Safe. Anti-tumor activity was observed with PSA declines; objective tumor regressions and robust efficacy of post-trial therapy. | [130]/ 2017 |
Loaded with irradiated prostate cancer cell line LNCaP (DCVAC/PCa) | aDC | Cyclophosphamide, Imiquimod | PCa with BCR; Phase I/II 2009-017259-91 | 27 s.c. | No significant side effects, PSA-DT in all treated patients increased after 12 doses from 5.67 months to 18.85 months, specific PSA-reacting T lymphocytes were increased significantly. | [131]/ 2018 |
Incubated with NY-ESO-1, MAGE-C2 and MUC1 | a-mDC + a-pDC | / | CRPC; Phase IIa NCT02692976 | 21 | Feasible and safe. Induced functional antigen-specific T cells, which correlated with an improved clinical outcome. | [132]/ 2019 |
Electrofused with autologous prostate tumor cells (aHyC) | aDC | Cyclophosphamide, allogeneic buffy coat | CRPC; Phase I | 19, s.c. | Safe, no serious AE and feasible. mOS was 58.8 months. Attenuates an increase in peripheral blood CD56brightCD16− NK cells. A decrease in CD56brightCD16− NK cells correlates with prolonged patient survival. | [11]/ 2021 [12]/ 2022 |
Loaded with mRNA from autologous TC or mRNAs that encoded hTERT and survivin | aDC | / | PCa patients after prostatectomy; Phase I/II | 20 | Safe; no serious AE. In total, 11/20 P were BCR-free over 96 months. | [133]/ 2022 |
Mixed Cancer Treatment Vaccines | ||||||
TA | IT-Treatment Modality | Adjuvants | Target; Phase | N, Appl. Route | Outcomes | Ref/ Year |
PSMA | DNA/Ad expression vector | ±CD86 plasmid, ±GM-CSF | PCa; Phase I/II clinical trial | 26, i.d. | No serious AE. In total, 100% of P inoculated with the viral vector and 50% of P receiving DNA plasmid showed signs of successful immunization. | [134]/ 2000 |
PRAME, PSMA | DNA plasmid + 2 peptides | / | PCa; Phase I | 10, i.n. | Safe, feasible, well tolerated. In total, 4 of 10 P had stable disease (SD) for 6 months or longer, or PSA decline. | [135]/ 2011 |
PAP | sipuleucel-T ± pTVG-HP DNA | ±GM-CSF | mCRPC; Phase I, pilot NCT01706458 | 18, i.v., i.d. | No AE > grade 2 were observed. Th1-biased PAP-specific T cell responses were detected in 11/18; higher titer antibody responses to PAP detectable in booster arm. The mOS was 28 months. | [136]/ 2018 |
hTERT (V934/V935) | Ad6expression vector ± DNA | / | PCa; Phase I, pilot NCT00753415 | 14, EP | Good safety profile, with no severe AE. Significant increase in immunogenicity response against hTERT. | [137]/ 2020 |
Safety of DC-Based Vaccines
3. Adoptive Cell Transfer
4. Limitations of Immunotherapy in Prostate Cancer
4.1. Tumor Microenvironment
4.2. Biomarkers
5. Discussion
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. Eau-eanm-estro-esur-siog guidelines on prostate cancer Part II-2020 update: Treatment of relapsing and metastatic prostate cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013, 39, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Wurz, G.T.; Kao, C.J.; DeGregorio, M.W. Novel cancer antigens for personalized immunotherapies: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2016, 8, 4–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, E.K.; Graff, J.N. Immunotherapy in prostate cancer. Cancers 2020, 12, 1752. [Google Scholar] [CrossRef]
- Janiczek, M.; Szylberg, Ł.; Kasperska, A.; Kowalewski, A.; Parol, M.; Antosik, P.; Radecka, B.; Marszałek, A. Immunotherapy as a promising treatment for prostate cancer: A systematic review. J. Immunol. Res. 2017, 2017, 4861570. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.G.; Lipson, E.J.; Brahmer, J.R. Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 2014, 11, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, double-blind, phase iii trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; van den Eertwegh, A.J.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H.; et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (ca184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, H.H.; Hawlina, S.; Gabrijel, M.; Bobnar, S.T.; Kreft, M.; Lenart, G.; Cukjati, M.; Kopitar, A.N.; Kejžar, N.; Ihan, A.; et al. Survival of castration-resistant prostate cancer patients treated with dendritic-tumor cell hybridomas is negatively correlated with changes in peripheral blood cd56(bright) cd16(-) natural killer cells. Clin. Transl. Med. 2021, 11, e505. [Google Scholar] [CrossRef]
- Hawlina, S.; Chowdhury, H.H.; Smrkolj, T.; Zorec, R. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biol. Direct 2021, 17, 5. [Google Scholar] [CrossRef]
- Powles, T.; Yuen, K.C.; Gillessen, S.; Kadel, E.E., 3rd; Rathkopf, D.; Matsubara, N.; Drake, C.G.; Fizazi, K.; Piulats, J.M.; Wysocki, P.J.; et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: A randomized phase 3 trial. Nat. Med. 2022, 28, 144–153. [Google Scholar] [CrossRef]
- Hansen, A.R.; Massard, C.; Ott, P.A.; Haas, N.B.; Lopez, J.S.; Ejadi, S.; Wallmark, J.M.; Keam, B.; Delord, J.P.; Aggarwal, R.; et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the keynote-028 study. Ann. Oncol. 2018, 29, 1807–1813. [Google Scholar] [CrossRef]
- Tucker, M.D.; Zhu, J.; Marin, D.; Gupta, R.T.; Gupta, S.; Berry, W.R.; Ramalingam, S.; Zhang, T.; Harrison, M.; Wu, Y.; et al. Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer. Cancer Med. 2019, 8, 4644–4655. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Campbell, B.K.; Stylli, S.S.; Corcoran, N.M.; Hovens, C.M. The prostate cancer immune microenvironment, biomarkers and therapeutic intervention. Uro 2022, 2, 74–92. [Google Scholar] [CrossRef]
- Kalina, J.L.; Neilson, D.S.; Comber, A.P.; Rauw, J.M.; Alexander, A.S.; Vergidis, J.; Lum, J.J. Immune modulation by androgen deprivation and radiation therapy: Implications for prostate cancer immunotherapy. Cancers 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Zhang, Y.; Huang, L. Mrna vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Hoover, H.C., Jr.; Surdyke, M.G.; Dangel, R.B.; Peters, L.C.; Hanna, M.G., Jr. Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 1985, 55, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, P.; Traversari, C.; Chomez, P.; Lurquin, C.; De Plaen, E.; Van den Eynde, B.; Knuth, A.; Boon, T. A gene encoding an antigen recognized by cytolytic t lymphocytes on a human melanoma. Science 1991, 254, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-pd-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Vishweshwaraiah, Y.L.; Dokholyan, N.V. mRNA vaccines for cancer immunotherapy. Front. Immunol. 2022, 13, 1029069. [Google Scholar] [CrossRef] [PubMed]
- Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; Vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L.; et al. Self-adjuvanted mrna vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. J. Immunother. Cancer 2015, 3, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenzl, A.; Feyerabend, S.; Syndikus, I.; Sarosiek, T.; Kübler, H.; Heidenreich, A.; Cathomas, R.; Grüllich, C.; Loriot, Y.; Perez Gracia, S.L.; et al. Results of the randomized, placebo-controlled phase I/IIb trial of cv9104, an mrna based cancer immunotherapy, in patients with metastatic castration-resistant prostate cancer (mcrpc). Ann. Oncol. 2017, 408–409. [Google Scholar] [CrossRef]
- Bafaloukos, D.; Gazouli, I.; Koutserimpas, C.; Samonis, G. Evolution and progress of mrna vaccines in the treatment of melanoma: Future prospects. Vaccines 2023, 11, 636. [Google Scholar] [CrossRef]
- Li, L.; Petrovsky, N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev. Vaccines 2016, 15, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Ori, D.; Murase, M.; Kawai, T. Cytosolic nucleic acid sensors and innate immune regulation. Int. Rev. Immunol. 2017, 36, 74–88. [Google Scholar] [CrossRef]
- Tang, C.K.; Pietersz, G.A. Intracellular detection and immune signaling pathways of DNA vaccines. Expert Rev. Vaccines 2009, 8, 1161–1170. [Google Scholar] [CrossRef]
- Gálvez-Cancino, F.; López, E.; Menares, E.; Díaz, X.; Flores, C.; Cáceres, P.; Hidalgo, S.; Chovar, O.; Alcántara-Hernández, M.; Borgna, V.; et al. Vaccination-induced skin-resident memory cd8(+) t cells mediate strong protection against cutaneous melanoma. Oncoimmunology 2018, 7, e1442163. [Google Scholar] [CrossRef] [Green Version]
- Suschak, J.J.; Williams, J.A.; Schmaljohn, C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccines Immunother. 2017, 13, 2837–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, G.; McCaffrey, J.; Ali, A.A.; McCarthy, H.O. DNA vaccination for prostate cancer: Key concepts and considerations. Cancer Nanotechnol. 2015, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Colluru, V.T.; McNeel, D.G. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2016, 7, 67901–67918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; et al. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer 2019, 18, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-based vaccines: Current progress and future challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat. Rev. Clin. Oncol. 2017, 14, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Sasada, T.; Itoh, K. Personalized peptide vaccination: A new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol. Immunother. 2013, 62, 919–929. [Google Scholar] [CrossRef]
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New vaccine technologies to combat outbreak situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [Green Version]
- Bouard, D.; Alazard-Dany, D.; Cosset, F.L. Viral vectors: From virology to transgene expression. Br. J. Pharmacol. 2009, 157, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Madan, R.A.; Arlen, P.M.; Mohebtash, M.; Hodge, J.W.; Gulley, J.L. Prostvac-vf: A vector-based vaccine targeting psa in prostate cancer. Expert Opin. Investig. Drugs 2009, 18, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Arlen, P.M.; Gulley, J.L.; Madan, R.A.; Hodge, J.W.; Schlom, J. Preclinical and clinical studies of recombinant poxvirus vaccines for carcinoma therapy. Crit. Rev. Immunol. 2007, 27, 451–462. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Schuetz, T.J.; Blumenstein, B.A.; Glode, L.M.; Bilhartz, D.L.; Wyand, M.; Manson, K.; Panicali, D.L.; Laus, R.; Schlom, J.; et al. Overall survival analysis of a phase ii randomized controlled trial of a poxviral-based psa-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2010, 28, 1099–1105. [Google Scholar] [CrossRef]
- Muthana, S.M.; Gulley, J.L.; Hodge, J.W.; Schlom, J.; Gildersleeve, J.C. Abo blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget 2015, 6, 32244–32256. [Google Scholar] [CrossRef] [Green Version]
- Gulley, J.L.; Arlen, P.M.; Madan, R.A.; Tsang, K.Y.; Pazdur, M.P.; Skarupa, L.; Jones, J.L.; Poole, D.J.; Higgins, J.P.; Hodge, J.W.; et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based psa vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother. 2010, 59, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Sabado, R.L.; Balan, S.; Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 2017, 27, 74–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, T.L.; Weiner, G.J. Uses of granulocyte-macrophage colony-stimulating factor in vaccine development. Curr. Opin. Hematol. 2000, 7, 168–173. [Google Scholar] [CrossRef]
- Small, E.J.; Sacks, N.; Nemunaitis, J.; Urba, W.J.; Dula, E.; Centeno, A.S.; Nelson, W.G.; Ando, D.; Howard, C.; Borellini, F.; et al. Granulocyte macrophage colony-stimulating factor–secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 3883–3891. [Google Scholar] [CrossRef] [Green Version]
- Higano, C.S.; Corman, J.M.; Smith, D.C.; Centeno, A.S.; Steidle, C.P.; Gittleman, M.; Simons, J.W.; Sacks, N.; Aimi, J.; Small, E.J. Phase 1/2 dose-escalation study of a gm-csf-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 2008, 113, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, I.; Cattarino, S.; Giantulli, S.; Nazzari, C.; Collalti, G.; Sciarra, A. A perspective of immunotherapy for prostate cancer. Cancers 2016, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Reimers, M.A.; Knoche, E.M.; Pachynski, R.K. Immunotherapy and immunotherapy combinations in metastatic castration-resistant prostate cancer. Cancers 2021, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Lopez, C.; Agustí, A.; Vallano, A.; Obach, M. Current landscape of clinical development and approval of advanced therapies. Mol. Therapy. Methods Clin. Dev. 2021, 23, 606–618. [Google Scholar] [CrossRef] [PubMed]
- The Committee for Advanced Therapies (CAT); Schneider, C.K.; Salmikangas, P.; Jilma, B.; Flamion, B.; Todorova, L.R.; Paphitou, A.; Haunerova, I.; Maimets, T.; Trouvin, J.-H.; et al. Challenges with advanced therapy medicinal products and how to meet them. Nat. Rev. Drug Discov. 2010, 9, 195–201. [Google Scholar] [PubMed]
- Koido, S. Dendritic-tumor fusion cell-based cancer vaccines. Int. J. Mol. Sci. 2016, 17, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anguille, S.; Smits, E.L.; Bryant, C.; Van Acker, H.H.; Goossens, H.; Lion, E.; Fromm, P.D.; Hart, D.N.; Van Tendeloo, V.F.; Berneman, Z.N. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol. Rev. 2015, 67, 731–753. [Google Scholar] [CrossRef] [Green Version]
- Anguille, S.; Smits, E.L.; Lion, E.; van Tendeloo, V.F.; Berneman, Z.N. Clinical use of dendritic cells for cancer therapy. Lancet. Oncol. 2014, 15, e257–e267. [Google Scholar] [CrossRef]
- Sutherland, S.I.M.; Ju, X.; Horvath, L.G.; Clark, G.J. Moving on from sipuleucel-t: New dendritic cell vaccine strategies for prostate cancer. Front. Immunol. 2021, 12, 641307. [Google Scholar] [CrossRef]
- Risk, M.; Corman, J.M. The role of immunotherapy in prostate cancer: An overview of current approaches in development. Rev. Urol. 2009, 11, 16–27. [Google Scholar] [PubMed]
- Sipuleucel, T. Sipuleucel-t: Apc 8015, apc-8015, prostate cancer vaccine–dendreon. Drugs RD 2006, 7, 197–201. [Google Scholar]
- Sheikh, N.A.; Petrylak, D.; Kantoff, P.W.; Dela Rosa, C.; Stewart, F.P.; Kuan, L.Y.; Whitmore, J.B.; Trager, J.B.; Poehlein, C.H.; Frohlich, M.W.; et al. Sipuleucel-t immune parameters correlate with survival: An analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol. Immunother. 2013, 62, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J.; et al. Phase i/ii clinical trial of dendritic-cell based immunotherapy (dcvac/pca) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2015, 6, 18192–18205. [Google Scholar] [CrossRef] [Green Version]
- Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; et al. Efficacy and safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: The viable phase 3 randomized clinical trial. JAMA Oncol. 2022, 8, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Gabrijel, M.; Repnik, U.; Kreft, M.; Grilc, S.; Jeras, M.; Zorec, R. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry. Biochem. Biophys. Res. Commun. 2004, 314, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Zorec, R.; Kreft, M.; Gabrijel, M. Method for Determining the Quantity and Quality of Hybridomas; Appl. No. 07803258.8, 29 December 2010; Celica, Biomedical Center: Ljubljana, Slovenia, 2010. [Google Scholar]
- Gabrijel, M.; Bergant, M.; Kreft, M.; Jeras, M.; Zorec, R. Fused late endocytic compartments and immunostimulatory capacity of dendritic-tumor cell hybridomas. J. Membr. Biol. 2009, 229, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gabrijel, M.; Kreft, M.; Zorec, R. Monitoring lysosomal fusion in electrofused hybridoma cells. Biochim. Biophys. Acta 2008, 1778, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, J.; Kufe, D.; Avigan, D. Dendritic cell fusion vaccines for cancer immunotherapy. Expert Opin. Biol. Ther. 2005, 5, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Zheng, R.; Lee, W.T.; Cohen, P.A. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Crit. Rev. Immunol. 2007, 27, 463–483. [Google Scholar] [CrossRef]
- Sabado, R.L.; Bhardwaj, N. Cancer immunotherapy: Dendritic-cell vaccines on the move. Nature 2015, 519, 300–301. [Google Scholar] [CrossRef]
- Santos, P.M.; Butterfield, L.H. Dendritic cell-based cancer vaccines. J. Immunol. 2018, 200, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Pavlenko, M.; Roos, A.K.; Lundqvist, A.; Palmborg, A.; Miller, A.M.; Ozenci, V.; Bergman, B.; Egevad, L.; Hellström, M.; Kiessling, R.; et al. A phase i trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br. J. Cancer 2004, 91, 688–694. [Google Scholar] [CrossRef]
- Miller, A.M.; Ozenci, V.; Kiessling, R.; Pisa, P. Immune monitoring in a phase 1 trial of a psa DNA vaccine in patients with hormone-refractory prostate cancer. J. Immunother. 2005, 28, 389–395. [Google Scholar] [CrossRef]
- McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.P.; Johnson, L.E.; Staab, M.J.; Horvath, D.L.; Straus, J.; Alberti, D.; Marnocha, R.; et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage d0 prostate cancer. J. Clin. Oncol. 2009, 27, 4047–4054. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.T.; Olson, B.M.; Johnson, L.E.; Davies, J.G.; Dunphy, E.J.; McNeel, D.G. DNA vaccine encoding prostatic acid phosphatase (pap) elicits long-term t-cell responses in patients with recurrent prostate cancer. J. Immunother. 2010, 33, 639–647. [Google Scholar] [CrossRef] [Green Version]
- McNeel, D.G.; Eickhoff, J.C.; Johnson, L.E.; Roth, A.R.; Perk, T.G.; Fong, L.; Antonarakis, E.S.; Wargowski, E.; Jeraj, R.; Liu, G. Phase ii trial of a DNA vaccine encoding prostatic acid phosphatase (ptvg-hp [mvi-816]) in patients with progressive, nonmetastatic, castration-sensitive prostate cancer. J. Clin. Oncol. 2019, 37, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, F.; Tötterman, T.; Maltais, A.K.; Pisa, P.; Yachnin, J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013, 31, 3843–3848. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.E.; Eickhoff, J.C.; Ferrari, A.C.; Schweizer, M.T.; Wargowski, E.; Olson, B.M.; McNeel, D.G. Multicenter phase i trial of a DNA vaccine encoding the androgen receptor ligand-binding domain (ptvg-ar, mvi-118) in patients with metastatic prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 5162–5171. [Google Scholar] [CrossRef] [PubMed]
- Eder, J.P.; Kantoff, P.W.; Roper, K.; Xu, G.X.; Bubley, G.J.; Boyden, J.; Gritz, L.; Mazzara, G.; Oh, W.K.; Arlen, P.; et al. A phase i trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 1632–1638. [Google Scholar]
- Gulley, J.; Chen, A.P.; Dahut, W.; Arlen, P.M.; Bastian, A.; Steinberg, S.M.; Tsang, K.; Panicali, D.; Poole, D.; Schlom, J.; et al. Phase i study of a vaccine using recombinant vaccinia virus expressing psa (rv-psa) in patients with metastatic androgen-independent prostate cancer. Prostate 2002, 53, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, H.L.; Wang, W.; Manola, J.; DiPaola, R.S.; Ko, Y.J.; Sweeney, C.; Whiteside, T.L.; Schlom, J.; Wilding, G.; Weiner, L.M. Phase ii randomized study of vaccine treatment of advanced prostate cancer (e7897): A trial of the eastern cooperative oncology group. J. Clin. Oncol. 2004, 22, 2122–2132. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; van Ophoven, A.; Gitlitz, B.J.; Tso, C.L.; Acres, B.; Squiban, P.; Ross, M.E.; Belldegrun, A.S.; Figlin, R.A. Phase i trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding muc-1 and il-2 in muc-1-positive patients with advanced prostate cancer. J. Immunother. 2004, 27, 240–253. [Google Scholar] [CrossRef]
- Amato, R.J.; Drury, N.; Naylor, S.; Jac, J.; Saxena, S.; Cao, A.; Hernandez-McClain, J.; Harrop, R. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5t4 (trovax): A phase 2 trial. J. Immunother. 2008, 31, 577–585. [Google Scholar] [CrossRef]
- Lubaroff, D.M.; Konety, B.R.; Link, B.; Gerstbrein, J.; Madsen, T.; Shannon, M.; Howard, J.; Paisley, J.; Boeglin, D.; Ratliff, T.L.; et al. Phase i clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: Safety and immunologic results. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 7375–7380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulley, J.L.; Heery, C.R.; Madan, R.A.; Walter, B.A.; Merino, M.J.; Dahut, W.L.; Tsang, K.Y.; Schlom, J.; Pinto, P.A. Phase i study of intraprostatic vaccine administration in men with locally recurrent or progressive prostate cancer. Cancer Immunol. Immunother. 2013, 62, 1521–1531. [Google Scholar] [CrossRef]
- Slovin, S.F.; Kehoe, M.; Durso, R.; Fernandez, C.; Olson, W.; Gao, J.P.; Israel, R.; Scher, H.I.; Morris, S. A phase i dose escalation trial of vaccine replicon particles (vrp) expressing prostate-specific membrane antigen (psma) in subjects with prostate cancer. Vaccine 2013, 31, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Nakai, Y.; Kawashima, A.; Ujike, T.; Nagahara, A.; Nakajima, T.; Inoue, T.; Lee, C.M.; Uemura, M.; Miyagawa, Y.; et al. Phase i/ii clinical trial to assess safety and efficacy of intratumoral and subcutaneous injection of hvj-e in castration-resistant prostate cancer patients. Cancer Gene Ther. 2017, 24, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Gulley, J.L.; Borre, M.; Vogelzang, N.J.; Ng, S.; Agarwal, N.; Parker, C.C.; Pook, D.W.; Rathenborg, P.; Flaig, T.W.; Carles, J.; et al. Phase iii trial of prostvac in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2019, 37, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Cappuccini, F.; Bryant, R.; Pollock, E.; Carter, L.; Verrill, C.; Hollidge, J.; Poulton, I.; Baker, M.; Mitton, C.; Baines, A.; et al. Safety and immunogenicity of novel 5t4 viral vectored vaccination regimens in early stage prostate cancer: A phase i clinical trial. J. Immunother. Cancer 2020, 8, e000928. [Google Scholar] [CrossRef]
- Bilusic, M.; McMahon, S.; Madan, R.A.; Karzai, F.; Tsai, Y.T.; Donahue, R.N.; Palena, C.; Jochems, C.; Marté, J.L.; Floudas, C.; et al. Phase i study of a multitargeted recombinant ad5 psa/muc-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mcrpc). J. Immunother. Cancer 2021, 9, e002374. [Google Scholar] [CrossRef]
- Slovin, S.F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W.G.; Fazzari, M.; Dantis, L.; et al. Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo h hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. USA 1999, 96, 5710–5715. [Google Scholar] [CrossRef]
- Noguchi, M.; Kobayashi, K.; Suetsugu, N.; Tomiyasu, K.; Suekane, S.; Yamada, A.; Itoh, K.; Noda, S. Induction of cellular and humoral immune responses to tumor cells and peptides in hla-a24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate 2003, 57, 80–92. [Google Scholar] [CrossRef]
- Hueman, M.T.; Dehqanzada, Z.A.; Novak, T.E.; Gurney, J.M.; Woll, M.M.; Ryan, G.B.; Storrer, C.E.; Fisher, C.; McLeod, D.G.; Ioannides, C.G.; et al. Phase i clinical trial of a her-2/neu peptide (e75) vaccine for the prevention of prostate-specific antigen recurrence in high-risk prostate cancer patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11, 7470–7479. [Google Scholar] [CrossRef] [Green Version]
- Slovin, S.F.; Ragupathi, G.; Musselli, C.; Fernandez, C.; Diani, M.; Verbel, D.; Danishefsky, S.; Livingston, P.; Scher, H.I. Thomsen-friedenreich (tf) antigen as a target for prostate cancer vaccine: Clinical trial results with tf cluster (c)-klh plus qs21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 2005, 54, 694–702. [Google Scholar] [CrossRef]
- Noguchi, M.; Yao, A.; Harada, M.; Nakashima, O.; Komohara, Y.; Yamada, S.; Itoh, K.; Matsuoka, K. Immunological evaluation of neoadjuvant peptide vaccination before radical prostatectomy for patients with localized prostate cancer. Prostate 2007, 67, 933–942. [Google Scholar] [CrossRef]
- Kouiavskaia, D.V.; Berard, C.A.; Datena, E.; Hussain, A.; Dawson, N.; Klyushnenkova, E.N.; Alexander, R.B. Vaccination with agonist peptide psa: 154-163 (155l) derived from prostate specific antigen induced cd8 t-cell response to the native peptide psa: 154-163 but failed to induce the reactivity against tumor targets expressing psa: A phase 2 study in patients with recurrent prostate cancer. J. Immunother. 2009, 32, 655–666. [Google Scholar]
- Feyerabend, S.; Stevanovic, S.; Gouttefangeas, C.; Wernet, D.; Hennenlotter, J.; Bedke, J.; Dietz, K.; Pascolo, S.; Kuczyk, M.; Rammensee, H.G.; et al. Novel multi-peptide vaccination in hla-a2+ hormone sensitive patients with biochemical relapse of prostate cancer. Prostate 2009, 69, 917–927. [Google Scholar] [CrossRef]
- Perez, S.A.; Kallinteris, N.L.; Bisias, S.; Tzonis, P.K.; Georgakopoulou, K.; Varla-Leftherioti, M.; Papamichail, M.; Thanos, A.; von Hofe, E.; Baxevanis, C.N. Results from a phase i clinical study of the novel ii-key/her-2/neu(776-790) hybrid peptide vaccine in patients with prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 3495–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbach, J.; Neumann, A.; Atmaca, A.; Wahle, C.; Brand, K.; von Boehmer, L.; Knuth, A.; Bender, A.; Ritter, G.; Old, L.J.; et al. Efficient in vivo priming by vaccination with recombinant ny-eso-1 protein and cpg in antigen naive prostate cancer patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 861–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi, M.; Moriya, F.; Suekane, S.; Ohnishi, R.; Matsueda, S.; Sasada, T.; Yamada, A.; Itoh, K. A phase ii trial of personalized peptide vaccination in castration-resistant prostate cancer patients: Prolongation of prostate-specific antigen doubling time. BMC Cancer 2013, 13, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenoglio, D.; Traverso, P.; Parodi, A.; Tomasello, L.; Negrini, S.; Kalli, F.; Battaglia, F.; Ferrera, F.; Sciallero, S.; Murdaca, G.; et al. A multi-peptide, dual-adjuvant telomerase vaccine (gx301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol. Immunother. 2013, 62, 1041–1052. [Google Scholar] [CrossRef]
- Sonpavde, G.; Wang, M.; Peterson, L.E.; Wang, H.Y.; Joe, T.; Mims, M.P.; Kadmon, D.; Ittmann, M.M.; Wheeler, T.M.; Gee, A.P.; et al. Hla-restricted ny-eso-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Investig. New Drugs 2014, 32, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, M.; Arai, G.; Matsumoto, K.; Naito, S.; Moriya, F.; Suekane, S.; Komatsu, N.; Matsueda, S.; Sasada, T.; Yamada, A.; et al. Phase i trial of a cancer vaccine consisting of 20 mixed peptides in patients with castration-resistant prostate cancer: Dose-related immune boosting and suppression. Cancer Immunol. Immunother. 2015, 64, 493–505. [Google Scholar] [CrossRef]
- Lilleby, W.; Gaudernack, G.; Brunsvig, P.F.; Vlatkovic, L.; Schulz, M.; Mills, K.; Hole, K.H.; Inderberg, E.M. Phase i/iia clinical trial of a novel htert peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol. Immunother. 2017, 66, 891–901. [Google Scholar] [CrossRef]
- Obara, W.; Sato, F.; Takeda, K.; Kato, R.; Kato, Y.; Kanehira, M.; Takata, R.; Mimata, H.; Sugai, T.; Nakamura, Y.; et al. Phase i clinical trial of cell division associated 1 (cdca1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017, 108, 1452–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuhmacher, J.; Heidu, S.; Balchen, T.; Richardson, J.R.; Schmeltz, C.; Sonne, J.; Schweiker, J.; Rammensee, H.G.; Thor Straten, P.; Røder, M.A.; et al. Vaccination against rhoc induces long-lasting immune responses in patients with prostate cancer: Results from a phase i/ii clinical trial. J. Immunother. Cancer 2020, 8, e001157. [Google Scholar] [CrossRef]
- Filaci, G.; Fenoglio, D.; Nolè, F.; Zanardi, E.; Tomasello, L.; Aglietta, M.; Del Conte, G.; Carles, J.; Morales-Barrera, R.; Guglielmini, P.; et al. Telomerase-based gx301 cancer vaccine in patients with metastatic castration-resistant prostate cancer: A randomized phase ii trial. Cancer Immunol. Immunother. 2021, 70, 3679–3692. [Google Scholar] [CrossRef]
- Simons, J.W.; Mikhak, B.; Chang, J.F.; DeMarzo, A.M.; Carducci, M.A.; Lim, M.; Weber, C.E.; Baccala, A.A.; Goemann, M.A.; Clift, S.M.; et al. Induction of immunity to prostate cancer antigens: Results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 1999, 59, 5160–5168. [Google Scholar]
- Eaton, J.D.; Perry, M.J.; Nicholson, S.; Guckian, M.; Russell, N.; Whelan, M.; Kirby, R.S. Allogeneic whole-cell vaccine: A phase i/ii study in men with hormone-refractory prostate cancer. BJU Int. 2002, 89, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Ball, G.; Quatan, N.; Wushishi, F.; Russell, N.; Whelan, J.; Chakraborty, P.; Leader, D.; Whelan, M.; Pandha, H. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11, 4469–4478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, J.W.; Carducci, M.A.; Mikhak, B.; Lim, M.; Biedrzycki, B.; Borellini, F.; Clift, S.M.; Hege, K.M.; Ando, D.G.; Piantadosi, S.; et al. Phase i/ii trial of an allogeneic cellular immunotherapy in hormone-naïve prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 3394–3401. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Kreutz, F.T.; Horst, J.L.; Baldi, A.C.; Koff, W.J. Phase i study with an autologous tumor cell vaccine for locally advanced or metastatic prostate cancer. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Soc. Can. Des Sci. Pharm. 2007, 10, 144–152. [Google Scholar]
- Brill, T.H.; Kübler, H.R.; von Randenborgh, H.; Fend, F.; Pohla, H.; Breul, J.; Hartung, R.; Paul, R.; Schendel, D.J.; Gansbacher, B. Allogeneic retrovirally transduced, il-2- and ifn-gamma-secreting cancer cell vaccine in patients with hormone refractory prostate cancer—A phase i clinical trial. J. Gene Med. 2007, 9, 547–560. [Google Scholar] [CrossRef]
- Brill, T.H.; Kübler, H.R.; Pohla, H.; Buchner, A.; Fend, F.; Schuster, T.; van Randenborgh, H.; Paul, R.; Kummer, T.; Plank, C.; et al. Therapeutic vaccination with an interleukin-2-interferon-gamma-secreting allogeneic tumor vaccine in patients with progressive castration-resistant prostate cancer: A phase i/ii trial. Hum. Gene Ther. 2009, 20, 1641–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemstreet, G.P., 3rd; Rossi, G.R.; Pisarev, V.M.; Enke, C.A.; Helfner, L.; Hauke, R.J.; Tennant, L.; Ramsey, W.J.; Vahanian, N.N.; Link, C.J. Cellular immunotherapy study of prostate cancer patients and resulting igg responses to peptide epitopes predicted from prostate tumor-associated autoantigens. J. Immunother. 2013, 36, 57–65. [Google Scholar] [CrossRef]
- Murphy, G.; Tjoa, B.; Ragde, H.; Kenny, G.; Boynton, A. Phase i clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with hla-a0201-specific peptides from prostate-specific membrane antigen. Prostate 1996, 29, 371–380. [Google Scholar] [CrossRef]
- Tjoa, B.A.; Simmons, S.J.; Bowes, V.A.; Ragde, H.; Rogers, M.; Elgamal, A.; Kenny, G.M.; Cobb, O.E.; Ireton, R.C.; Troychak, M.J.; et al. Evaluation of phase i/ii clinical trials in prostate cancer with dendritic cells and psma peptides. Prostate 1998, 36, 39–44. [Google Scholar] [CrossRef]
- Barrou, B.; Benoît, G.; Ouldkaci, M.; Cussenot, O.; Salcedo, M.; Agrawal, S.; Massicard, S.; Bercovici, N.; Ericson, M.L.; Thiounn, N. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human psa. Cancer Immunol. Immunother. 2004, 53, 453–460. [Google Scholar] [CrossRef]
- Vonderheide, R.H.; Domchek, S.M.; Schultze, J.L.; George, D.J.; Hoar, K.M.; Chen, D.Y.; Stephans, K.F.; Masutomi, K.; Loda, M.; Xia, Z.; et al. Vaccination of cancer patients against telomerase induces functional antitumor cd8+ t lymphocytes. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 828–839. [Google Scholar] [CrossRef] [Green Version]
- Pandha, H.S.; John, R.J.; Hutchinson, J.; James, N.; Whelan, M.; Corbishley, C.; Dalgleish, A.G. Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: A phase i/ii study. BJU Int. 2004, 94, 412–418. [Google Scholar] [CrossRef]
- Schellhammer, P.F.; Hershberg, R.M. Immunotherapy with autologous antigen presenting cells for the treatment of androgen independent prostate cancer. World J. Urol. 2005, 23, 47–49. [Google Scholar] [CrossRef]
- Fuessel, S.; Meye, A.; Schmitz, M.; Zastrow, S.; Linné, C.; Richter, K.; Löbel, B.; Hakenberg, O.W.; Hoelig, K.; Rieber, E.P.; et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: Results of a phase i clinical trial. Prostate 2006, 66, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Perambakam, S.; Hallmeyer, S.; Reddy, S.; Mahmud, N.; Bressler, L.; DeChristopher, P.; Mahmud, D.; Nunez, R.; Sosman, J.A.; Peace, D.J. Induction of specific t cell immunity in patients with prostate cancer by vaccination with psa146-154 peptide. Cancer Immunol. Immunother. 2006, 55, 1033–1042. [Google Scholar] [CrossRef]
- Waeckerle-Men, Y.; Uetz-von Allmen, E.; Fopp, M.; von Moos, R.; Bohme, C.; Schmid, H.P.; Ackermann, D.; Cerny, T.; Ludewig, B.; Groettrup, M.; et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol. Immunother. 2006, 55, 1524–1533. [Google Scholar] [CrossRef] [Green Version]
- Thomas-Kaskel, A.K.; Zeiser, R.; Jochim, R.; Robbel, C.; Schultze-Seemann, W.; Waller, C.F.; Veelken, H. Vaccination of advanced prostate cancer patients with psca and psa peptide-loaded dendritic cells induces dth responses that correlate with superior overall survival. Int. J. Cancer 2006, 119, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
- Hildenbrand, B.; Sauer, B.; Kalis, O.; Stoll, C.; Freudenberg, M.A.; Niedermann, G.; Giesler, J.M.; Jüttner, E.; Peters, J.H.; Häring, B.; et al. Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous psa-peptide loaded dendritic cells—A pilot study. Prostate 2007, 67, 500–508. [Google Scholar] [CrossRef]
- Prue, R.L.; Vari, F.; Radford, K.J.; Tong, H.; Hardy, M.Y.; D’Rozario, R.; Waterhouse, N.J.; Rossetti, T.; Coleman, R.; Tracey, C.; et al. A phase i clinical trial of cd1c (bdca-1)+ dendritic cells pulsed with hla-a*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J. Immunother. 2015, 38, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.O.; Kaufman, J.; Tian, S.; Suarez-Farinas, M.; Parveen, S.; Blachere, N.E.; Morris, M.J.; Slovin, S.; Scher, H.I.; Albert, M.L.; et al. Harnessing naturally occurring tumor immunity: A clinical vaccine trial in prostate cancer. PLoS ONE 2010, 5, e12367. [Google Scholar] [CrossRef] [PubMed]
- Reyes, D.; Salazar, L.; Espinoza, E.; Pereda, C.; Castellón, E.; Valdevenito, R.; Huidobro, C.; Inés Becker, M.; Lladser, A.; López, M.N.; et al. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. Br. J. Cancer 2013, 109, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Xi, H.B.; Wang, G.X.; Fu, B.; Liu, W.P.; Li, Y. Survivin and psma loaded dendritic cell vaccine for the treatment of prostate cancer. Biol. Pharm. Bull. 2015, 38, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Scheid, E.; Major, P.; Bergeron, A.; Finn, O.J.; Salter, R.D.; Eady, R.; Yassine-Diab, B.; Favre, D.; Peretz, Y.; Landry, C.; et al. Tn-muc1 dc vaccination of rhesus macaques and a phase i/ii trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol. Res. 2016, 4, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Sonpavde, G.; McMannis, J.D.; Bai, Y.; Seethammagari, M.R.; Bull, J.M.C.; Hawkins, V.; Dancsak, T.K.; Lapteva, N.; Levitt, J.M.; Moseley, A.; et al. Phase i trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible cd40 for advanced prostate cancer. Cancer Immunol. Immunother. 2017, 66, 1345–1357. [Google Scholar] [CrossRef]
- Fucikova, J.; Podrazil, M.; Jarolim, L.; Bilkova, P.; Hensler, M.; Becht, E.; Gasova, Z.; Klouckova, J.; Kayserova, J.; Horvath, R.; et al. Phase i/ii trial of dendritic cell-based active cellular immunotherapy with dcvac/pca in patients with rising psa after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol. Immunother. 2018, 67, 89–100. [Google Scholar] [CrossRef]
- Westdorp, H.; Creemers, J.H.A.; van Oort, I.M.; Schreibelt, G.; Gorris, M.A.J.; Mehra, N.; Simons, M.; de Goede, A.L.; van Rossum, M.M.; Croockewit, A.J.; et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 2019, 7, 302. [Google Scholar] [CrossRef]
- Tryggestad, A.M.A.; Axcrona, K.; Axcrona, U.; Bigalke, I.; Brennhovd, B.; Inderberg, E.M.; Hønnåshagen, T.K.; Skoge, L.J.; Solum, G.; Saebøe-Larssen, S.; et al. Long-term first-in-man phase i/ii study of an adjuvant dendritic cell vaccine in patients with high-risk prostate cancer after radical prostatectomy. Prostate 2022, 82, 245–253. [Google Scholar] [CrossRef]
- Mincheff, M.; Tchakarov, S.; Zoubak, S.; Loukinov, D.; Botev, C.; Altankova, I.; Georgiev, G.; Petrov, S.; Meryman, H.T. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: A phase i/ii clinical trial. Eur. Urol. 2000, 38, 208–217. [Google Scholar] [CrossRef]
- Weber, J.S.; Vogelzang, N.J.; Ernstoff, M.S.; Goodman, O.B.; Cranmer, L.D.; Marshall, J.L.; Miles, S.; Rosario, D.; Diamond, D.C.; Qiu, Z.; et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J. Immunother. 2011, 34, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Wargowski, E.; Johnson, L.E.; Eickhoff, J.C.; Delmastro, L.; Staab, M.J.; Liu, G.; McNeel, D.G. Prime-boost vaccination targeting prostatic acid phosphatase (pap) in patients with metastatic castration-resistant prostate cancer (mcrpc) using sipuleucel-t and a DNA vaccine. J. Immunother. Cancer 2018, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurisicchio, L.; Fridman, A.; Mauro, D.; Sheloditna, R.; Chiappori, A.; Bagchi, A.; Ciliberto, G. Safety, tolerability and immunogenicity of v934/v935 htert vaccination in cancer patients with selected solid tumors: A phase i study. J. Transl. Med. 2020, 18, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis. 2021, 24, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Vara Perez, M.; Schaaf, M.; Agostinis, P.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology 2017, 6, e1328341. [Google Scholar] [CrossRef]
- Draube, A.; Klein-Gonzalez, N.; Mattheus, S.; Brillant, C.; Hellmich, M.; Engert, A.; von Bergwelt-Baildon, M. Dendritic cell based tumor vaccination in prostate and renal cell cancer: A systematic review and meta-analysis. PLoS ONE 2011, 6, e18801. [Google Scholar] [CrossRef] [Green Version]
- Amos, S.M.; Duong, C.P.; Westwood, J.A.; Ritchie, D.S.; Junghans, R.P.; Darcy, P.K.; Kershaw, M.H. Autoimmunity associated with immunotherapy of cancer. Blood 2011, 118, 499–509. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Leonhartsberger, N.; Ramoner, R.; Falkensammer, C.; Rahm, A.; Gander, H.; Höltl, L.; Thurnher, M. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol. Immunother. 2012, 61, 1407–1413. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Wang, S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev. Vaccines 2015, 14, 1509–1523. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Hao, H.; Yang, G.; Zhang, Y.; Fu, Y. Immunotherapy with car-modified t cells: Toxicities and overcoming strategies. J. Immunol. Res. 2018, 2018, 2386187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.P.; Agostinis, P.; et al. Classification of current anticancer immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef] [Green Version]
- Pietrobon, V.; Todd, L.A.; Goswami, A.; Stefanson, O.; Yang, Z.; Marincola, F. Improving car t-cell persistence. Int. J. Mol. Sci. 2021, 22, 10828. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR-T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Perera, M.P.J.; Thomas, P.B.; Risbridger, G.P.; Taylor, R.; Azad, A.; Hofman, M.S.; Williams, E.D.; Vela, I. Chimeric antigen receptor t-cell therapy in metastatic castrate-resistant prostate cancer. Cancers 2022, 14, 503. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef]
- Ammirante, M.; Shalapour, S.; Kang, Y.; Jamieson, C.A.M.; Karin, M. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing cxcl13 expression in tumor myofibroblasts. Proc. Natl. Acad. Sci. 2014, 111, 14776–14781. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R.; Cunningham, H.T.; Meny, G.M.; Nadaf, S.; Kavanaugh, D.; Carbone, D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 1996, 2, 1096–1103. [Google Scholar] [CrossRef]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. Vegf-a modulates expression of inhibitory checkpoints on cd8+ t cells in tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef]
- Drake, C.G. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 2010, 10, 580–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stultz, J.; Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 697–717. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.; Song, L.; Wang, B.Y.; Rezazadeh Kalebasty, A.; Uchio, E.; Zi, X. Prostate cancer immunotherapy: A review of recent advancements with novel treatment methods and efficacy. Am. J. Clin. Exp. Urol. 2022, 10, 210–233. [Google Scholar]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Chen, H.; Luo, W.; Zhang, H.; Li, G.; Zeng, F.; Deng, F. The landscape of immune cells infiltrating in prostate cancer. Front. Oncol. 2020, 10, 517637. [Google Scholar] [CrossRef]
- Ji, Z.; Zhao, W.; Lin, H.-K.; Zhou, X. Systematically understanding the immunity leading to crpc progression. PLoS Comput. Biol. 2019, 15, e1007344. [Google Scholar] [CrossRef]
- De Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Madan, R.A.; Gulley, J.L.; Fojo, T.; Dahut, W.L. Therapeutic cancer vaccines in prostate cancer: The paradox of improved survival without changes in time to progression. Oncologist 2010, 15, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Prasad, V.; Berger, V.W. Hard-wired bias: How even double-blind, randomized controlled trials can be skewed from the start. Mayo Clin. Proc. 2015, 90, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D. Advances in the understanding of cancer immunotherapy. BJU Int. 2015, 116, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Sumanasuriya, S.; Omlin, A.; Armstrong, A.; Attard, G.; Chi, K.N.; Bevan, C.L.; Shibakawa, A.; MJ, I.J.; De Laere, B.; Lolkema, M.; et al. Consensus statement on circulating biomarkers for advanced prostate cancer. Eur. Urol. Oncol. 2018, 1, 151–159. [Google Scholar] [CrossRef]
- Tian, S.; Lei, Z.; Gong, Z.; Sun, Z.; Xu, D.; Piao, M. Clinical implication of prognostic and predictive biomarkers for castration-resistant prostate cancer: A systematic review. Cancer Cell Int. 2020, 20, 409. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. Ar-v7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Nakazawa, M.; Nadal, R.; Paller, C.J.; Denmeade, S.R.; Carducci, M.A.; et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol. 2015, 1, 582–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.M.; Cieślik, M.; Lonigro, R.J.; Vats, P.; Reimers, M.A.; Cao, X.; Ning, Y.; Wang, L.; Kunju, L.P.; de Sarkar, N.; et al. Inactivation of cdk12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 2018, 173, 1770–1782.e1714. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.C.; Morrissey, C.; Kumar, A.; Zhang, X.; Smith, C.; Coleman, I.; Salipante, S.J.; Milbank, J.; Yu, M.; Grady, W.M.; et al. Complex msh2 and msh6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat. Commun. 2014, 5, 4988. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, Q.; Wang, Y.-N.; Jin, Y.; He, M.-M.; Liu, Z.-X.; Xu, R.-H. Evaluation of pole and pold1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol. 2019, 5, 1504–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonarakis, E.S. Cyclin-dependent kinase 12, immunity, and prostate cancer. N. Engl. J. Med. 2018, 379, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Armenia, J.; Gopalan, A.; Brennan, R.; Walsh, M.; Barron, D.; Danila, D.; Rathkopf, D.; Morris, M.; Slovin, S.; et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EAU-Guidelines-Office. Guidelines on Prostate Cancer Edn. In Proceedings of the EAU Annual Congress, Milan, Italy, 19–23 March 2021; European Association of Urology: Arnhem, The Netherland, 2021. [Google Scholar]
- Sharma, M.; Yang, Z.; Miyamoto, H. Immunohistochemistry of immune checkpoint markers pd-1 and pd-l1 in prostate cancer. Medicine 2019, 98, e17257. [Google Scholar] [CrossRef] [PubMed]
- Gevensleben, H.; Dietrich, D.; Golletz, C.; Steiner, S.; Jung, M.; Thiesler, T.; Majores, M.; Stein, J.; Uhl, B.; Müller, S.; et al. The immune checkpoint regulator pd-l1 is highly expressed in aggressive primary prostate cancer. Clin. Cancer Res. 2016, 22, 1969–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massari, F.; Ciccarese, C.; Caliò, A.; Munari, E.; Cima, L.; Porcaro, A.B.; Novella, G.; Artibani, W.; Sava, T.; Eccher, A.; et al. Magnitude of pd-1, pd-l1 and t lymphocyte expression on tissue from castration-resistant prostate adenocarcinoma: An exploratory analysis. Target. Oncol. 2016, 11, 345–351. [Google Scholar] [CrossRef]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; Rathkopf, D.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019, 5, 471–478. [Google Scholar] [CrossRef]
- Lang, S.H.; Swift, S.L.; White, H.; Misso, K.; Kleijnen, J.; Quek, R.G.W. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int. J. Oncol. 2019, 55, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Nakashima, A.; Myojo-Higuma, S.; Shiozaki, A. The balance between cytotoxic nk cells and regulatory nk cells in human pregnancy. J. Reprod. Immunol. 2008, 77, 14–22. [Google Scholar]
- Bielekova, B.; Catalfamo, M.; Reichert-Scrivner, S.; Packer, A.; Cerna, M.; Waldmann, T.A.; McFarland, H.; Henkart, P.A.; Martin, R. Regulatory cd56(bright) natural killer cells mediate immunomodulatory effects of il-2ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2006, 103, 5941–5946. [Google Scholar] [CrossRef]
- Holtan, S.G.; Creedon, D.J.; Thompson, M.A.; Nevala, W.K.; Markovic, S.N. Expansion of cd16-negative natural killer cells in the peripheral blood of patients with metastatic melanoma. Clin. Dev. Immunol. 2011, 2011, 316314. [Google Scholar] [CrossRef] [PubMed]
- Mamessier, E.; Pradel, L.C.; Thibult, M.L.; Drevet, C.; Zouine, A.; Jacquemier, J.; Houvenaeghel, G.; Bertucci, F.; Birnbaum, D.; Olive, D. Peripheral blood nk cells from breast cancer patients are tumor-induced composite subsets. J. Immunol. 2013, 190, 2424–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulff, S.; Pries, R.; Borngen, K.; Trenkle, T.; Wollenberg, B. Decreased levels of circulating regulatory nk cells in patients with head and neck cancer throughout all tumor stages. Anticancer. Res. 2009, 29, 3053–3057. [Google Scholar] [PubMed]
- Koo, K.C.; Shim, D.H.; Yang, C.M.; Lee, S.B.; Kim, S.M.; Shin, T.Y.; Kim, K.H.; Yoon, H.G.; Rha, K.H.; Lee, J.M.; et al. Reduction of the cd16(-)cd56bright nk cell subset precedes nk cell dysfunction in prostate cancer. PLoS ONE 2013, 8, e78049. [Google Scholar] [CrossRef] [Green Version]
- Ruppender, N.S.; Morrissey, C.; Lange, P.H.; Vessella, R.L. Dormancy in solid tumors: Implications for prostate cancer. Cancer Metastasis Rev. 2013, 32, 501–509. [Google Scholar] [CrossRef]
- Westdorp, H.; Sköld, A.E.; Snijer, B.A.; Franik, S.; Mulder, S.F.; Major, P.P.; Foley, R.; Gerritsen, W.R.; de Vries, I.J. Immunotherapy for prostate cancer: Lessons from responses to tumor-associated antigens. Front. Immunol. 2014, 5, 191. [Google Scholar] [CrossRef] [Green Version]
- Comber, J.D.; Philip, R. Mhc class i antigen presentation and implications for developing a new generation of therapeutic vaccines. Ther. Adv. Vaccines 2014, 2, 77–89. [Google Scholar] [CrossRef]
- Khalili, S.; Rahbar, M.R.; Dezfulian, M.H.; Jahangiri, A. In silico analyses of wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J. Theor. Biol. 2015, 379, 66–78. [Google Scholar] [CrossRef]
- Yu, Z.; Theoret, M.R.; Touloukian, C.E.; Surman, D.R.; Garman, S.C.; Feigenbaum, L.; Baxter, T.K.; Baker, B.M.; Restifo, N.P. Poor immunogenicity of a self/tumor antigen derives from peptide-mhc-i instability and is independent of tolerance. J. Clin. Investig. 2004, 114, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Engels, B.; Engelhard, V.H.; Sidney, J.; Sette, A.; Binder, D.C.; Liu, R.B.; Kranz, D.M.; Meredith, S.C.; Rowley, D.A.; Schreiber, H. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 2013, 23, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Geary, S.M.; Salem, A.K. Prostate cancer vaccines: Update on clinical development. Oncoimmunology 2013, 2, e24523. [Google Scholar] [CrossRef] [Green Version]
- Burch, P.A.; Breen, J.K.; Buckner, J.C.; Gastineau, D.A.; Kaur, J.A.; Laus, R.L.; Padley, D.J.; Peshwa, M.V.; Pitot, H.C.; Richardson, R.L.; et al. Priming tissue-specific cellular immunity in a phase i trial of autologous dendritic cells for prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 2175–2182. [Google Scholar]
- Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-t. J. Natl. Cancer Inst. 2020, 112, 562–573. [Google Scholar] [CrossRef]
- Ghiringhelli, F.; Menard, C.; Puig, P.E.; Ladoire, S.; Roux, S.; Martin, F.; Solary, E.; Le Cesne, A.; Zitvogel, L.; Chauffert, B. Metronomic cyclophosphamide regimen selectively depletes cd4+cd25+ regulatory t cells and restores t and nk effector functions in end stage cancer patients. Cancer Immunol. Immunother. 2007, 56, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Sistigu, A.; Viaud, S.; Chaput, N.; Bracci, L.; Proietti, E.; Zitvogel, L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin. Immunopathol. 2011, 33, 369–383. [Google Scholar] [CrossRef]
- Fea, E.; Vanella, P.; Miraglio, E.; Cauchi, C.; Colantonio, I.; Denaro, N.; Di Costanzo, G.; Garrone, O.; Granetto, C.; Occelli, M.; et al. Metronomic oral cyclophosphamide (ctx) in patients (pts) with heavily pretreated metastatic castration-resistant prostate cancer (mcrpc). Ann. Oncol. 2016, 27, iv38. [Google Scholar] [CrossRef]
- Roychoudhuri, R.; Eil, R.L.; Restifo, N.P. The interplay of effector and regulatory t cells in cancer. Curr. Opin. Immunol. 2015, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Zschaler, J.; Schlorke, D.; Arnhold, J. Differences in innate immune response between man and mouse. Crit. Rev. Immunol. 2014, 34, 433–454. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Jin, C.-H.; Tan, S.; Liu, W.; Yang, Y.-G. Human immune system mice with autologous tumor for modeling cancer immunotherapies. Front. Immunol. 2020, 11, 591669. [Google Scholar] [CrossRef]
- Škrbinc, B.O.T.; Kovač, A. Šola Raka Prostate; Sekcija Za Internistično Onkologijo SZD, Onkološki Inštitut: Ljubljana, Slovenia, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawlina, S.; Zorec, R.; Chowdhury, H.H. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life 2023, 13, 1498. https://doi.org/10.3390/life13071498
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life. 2023; 13(7):1498. https://doi.org/10.3390/life13071498
Chicago/Turabian StyleHawlina, Simon, Robert Zorec, and Helena H. Chowdhury. 2023. "Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer" Life 13, no. 7: 1498. https://doi.org/10.3390/life13071498
APA StyleHawlina, S., Zorec, R., & Chowdhury, H. H. (2023). Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life, 13(7), 1498. https://doi.org/10.3390/life13071498