Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights
Abstract
:1. Introduction
2. Material and Method
2.1. Study Subjects
2.2. Targeted Ion Torrent Next-Generation Sequencing (NGS)
2.3. Analysis of NGS Data
2.4. Validation of Variants and Segregation Analyses
2.5. Functional Analysis of LDLR Variant on RNA Secondary Structure
3. Results
3.1. Clinical Characteristics of the FH Family
3.2. Variants Identification in the FH Family
3.3. Variants Segregation Analysis
3.4. Functional Significance of LDLR Pathogenic Variant on RNA Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alnouri, F.; Al-Allaf, F.A.; Athar, M.; Abduljaleel, Z.; Alabdullah, M.; Alammari, D.; Alanazi, M.; Alkaf, F.; Allehyani, A.; Alotaiby, M.A.; et al. Xanthomas Can Be Misdiagnosed and Mistreated in Homozygous Familial Hypercholesterolemia Patients: A Call for Increased Awareness among Dermatologists and Health Care Practitioners. Glob. Heart 2020, 15, 19. [Google Scholar] [CrossRef]
- Alallaf, F.; Nazar, F.A.H.; Alnefaie, M.; Almaymuni, A.; Rashidi, O.M.; Alhabib, K.; Alnouri, F.; Alama, M.-N.; Athar, M.; Awan, Z. The Spectrum of Familial Hypercholesterolemia (FH) in Saudi Arabia: Prime Time for Patient FH Registry. Open Cardiovasc. Med. J. 2017, 11, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnouri, F.; Athar, M.; Al-Allaf, F.A.; Abduljaleel, Z.; Taher, M.M.; Bouazzaoui, A.; Al Ammari, D.; Karrar, H.; Albabtain, M. Novel combined variants of LDLR and LDLRAP1 genes causing severe familial hypercholesterolemia. Atherosclerosis 2018, 277, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Elnaem, M.H.; Elrggal, M.E.; Syed, N.; Naqvi, A.A.; Hadi, M.A. Knowledge and Perceptions towards Cardiovascular Disease Prevention among Patients with Type 2 Diabetes Mellitus: A Review of Current Assessments and Recommendations. Curr. Diabetes Rev. 2021, 17, 503–511. [Google Scholar] [CrossRef]
- Odah, M.; Alfakieh, H.; Almathami, A.; Almuashi, I.; Awad, M.; Ewis, A. Public Awareness of Coronary Artery Disease and its Risk Factors among Al-Qunfudah Governorate Population. J. Umm Al-Qura Univ. Med. Sci. 2022, 8, 34–38. [Google Scholar] [CrossRef]
- Al-Rasadi, K.; Alhabib, K.; Al-Allaf, F.; Al-Waili, K.; Al-Zakwani, I.; Alsarraf, A.; Almahmeed, W.; Alsayed, N.; Alghamdi, M.; Batais, M.A.; et al. The Gulf Familial Hypercholesterolemia Registry (Gulf FH): Design, Rationale and Preliminary Results. Curr. Vasc. Pharmacol. 2020, 18, 57–64. [Google Scholar] [CrossRef]
- Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ 1991, 303, 893–896. [CrossRef] [Green Version]
- Williams, R.R.; Hunt, S.C.; Schumacher, M.; Hegele, R.A.; Leppert, M.F.; Ludwig, E.H.; Hopkins, P.N. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 1993, 72, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Al-Allaf, F.A.; Athar, M.; Abduljaleel, Z.; Taher, M.M.; Khan, W.; Ba-Hammam, F.A.; Abalkhail, H.; Alashwal, A. Next generation sequencing to identify novel genetic variants causative of autosomal dominant familial hypercholesterolemia associated with increased risk of coronary heart disease. Gene 2015, 565, 76–84. [Google Scholar] [CrossRef]
- Kolansky, D.M.; Cuchel, M.; Clark, B.J.; Paridon, S.; McCrindle, B.W.; Wiegers, S.E.; Araujo, L.; Vohra, Y.; Defesche, J.C.; Wilson, J.M.; et al. Longitudinal evaluation and assessment of cardiovascular disease in patients with homozygous familial hypercholesterolemia. Am. J. Cardiol. 2008, 102, 1438–1443. [Google Scholar] [CrossRef]
- Alonso, R.; Mata, N.; Castillo, S.; Fuentes, F.; Saenz, P.; Muñiz, O.; Galiana, J.; Figueras, R.; Diaz, J.; Gomez-Enterría, P.; et al. Cardiovascular disease in familial hypercholesterolaemia: Influence of low-density lipoprotein receptor mutation type and classic risk factors. Atherosclerosis 2008, 200, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.C.M.; Aalst-Cohen, E.S.; Tanck, M.W.; Trip, M.D.; Lansberg, P.J.; Liem, A.H.; van Lennep, H.W.O.R.; Sijbrands, E.J.G.; Kastelein, J.J.P. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: Data in 2400 patients. J. Intern. Med. 2004, 256, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Abifadel, M.; Varret, M.; Rabès, J.-P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J. Hypercholesterolemia NLAEPoF. Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5 (Suppl. S3), S9–S17. [Google Scholar] [CrossRef]
- Chora, J.R.; Iacocca, M.A.; Tichý, L.; Wand, H.; Kurtz, C.L.; Zimmermann, H.; Leon, A.; Williams, M.; Humphries, S.E.; Hooper, A.J.; et al. The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification. Genet. Med. 2022, 24, 293–306. [Google Scholar] [CrossRef]
- Garcia, C.K.; Wilund, K.; Arca, M.; Zuliani, G.; Fellin, R.; Maioli, M.; Calandra, S.; Bertolini, S.; Cossu, F.; Grishin, N.; et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292, 1394–1398. [Google Scholar] [CrossRef] [Green Version]
- Athar, M.; Al-Allaf, F.A.; Alnouri, F.; Taher, M.M.; Bouazzaoui, A.; Bogari, N.M.; Mohammed, W.M.; Faidah, H.; Abduljaleel, Z. Whole Exome Sequencing Reveals Multiple Mutations in Uncommon Genes of Familial Hypercholesterolaemia. J. Cardiovasc. Dis. Res. 2019, 10, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Vrablik, M.; Tichý, L.; Freiberger, T.; Blaha, V.; Satny, M.; Hubacek, J.A. Genetics of Familial Hypercholesterolemia: New Insights. Front. Genet. 2020, 11, 574474. [Google Scholar] [CrossRef]
- Representatives of the Global Familial Hypercholesterolemia Community; Wilemon, K.A.; Patel, J.; Aguilar-Salinas, C.; Ahmed, C.D.; Alkhnifsawi, M.; Almahmeed, W.; Alonso, R.; Al-Rasadi, K.; Badimon, L.; et al. Reducing the Clinical and Public Health Burden of Familial Hypercholesterolemia: A Global Call to Action. JAMA Cardiol. 2020, 5, 217–229. [Google Scholar] [CrossRef]
- Santos, R.D.; Stein, E.A.; Hovingh, G.K.; Blom, D.J.; Soran, H.; Watts, G.F.; López, J.A.G.; Bray, S.; Kurtz, C.E.; Hamer, A.W.; et al. Long-Term Evolocumab in Patients with Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2020, 75, 565–574. [Google Scholar] [CrossRef]
- Akyea, R.K.; Kai, J.; Qureshi, N.; Iyen, B.; Weng, S.F. Sub-optimal cholesterol response to initiation of statins and future risk of cardiovascular disease. Heart 2019, 105, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Trompet, S.; Postmus, I.; Slagboom, P.E.; Heijmans, B.T.; Smit, R.A.J.; Maier, A.B.; Buckley, B.M.; Sattar, N.; Stott, D.J.; Ford, I.; et al. Non-response to (statin) therapy: The importance of distinguishing non-responders from non-adherers in pharmacogenetic studies. Eur. J. Clin. Pharmacol. 2016, 72, 431–437. [Google Scholar] [CrossRef] [Green Version]
- de Isla, L.P.; Alonso, R.; Watts, G.F.; Mata, N.; Cerezo, A.S.; Muñiz, O.; Fuentes, F.; Diaz-Diaz, J.L.; Zambón, D.; Rubio-Marin, P.; et al. Attainment of LDL-Cholesterol Treatment Goals in Patients with Familial Hypercholesterolemia: 5-Year SAFEHEART Registry Follow-Up. J. Am. Coll. Cardiol. 2016, 67, 1278–1285. [Google Scholar] [CrossRef]
- Kim, H.; Lee, C.J.; Pak, H.; Kim, D.-I.; Rhee, M.-Y.; Lee, B.K.; Ahn, Y.; Cho, B.-R.; Woo, J.-T.; Hur, S.-H.; et al. GENetic characteristics and REsponse to lipid-lowering therapy in familial hypercholesterolemia: GENRE-FH study. Sci. Rep. 2020, 10, 19336. [Google Scholar] [CrossRef]
- Al-Allaf, F.A.; Alashwal, A.; Abduljaleel, Z.; Taher, M.M.; Siddiqui, S.S.; Bouazzaoui, A.; Abalkhail, H.; Aun, R.; Al-Allaf, A.F.; AbuMansour, I.; et al. Identification of a recurrent frameshift mutation at the LDLR exon 14 (c.2027delG, p.(G676Afs*33)) causing familial hypercholesterolemia in Saudi Arab homozygous children. Genomics 2016, 107, 24–32. [Google Scholar] [CrossRef]
- Al-Allaf, F.A.; Athar, M.; Abduljaleel, Z.; Bouazzaoui, A.; Taher, M.M.; Own, R.; Al-Allaf, A.F.; AbuMansour, I.; Azhar, Z.; Ba-Hammam, F.A.; et al. Identification of a novel nonsense variant c.1332dup, p.(D445*) in the LDLR gene that causes familial hypercholesterolemia. Hum. Genome Var. 2014, 1, 14021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Allaf, F.A.; Alashwal, A.; Abduljaleel, Z.; Taher, M.M.; Bouazzaoui, A.; Abalkhail, H.; Al-Allaf, A.F.; Athar, M. Compound heterozygous LDLR variant in severely affected familial hypercholesterolemia patient. Acta Biochim. Pol. 2017, 64, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Morad, F.A.; Rashidi, O.M.; Sadath, S.S.; Al-Allaf, F.A.; Athar, M.; Alama, M.N.; Edris, S.E.; Bondagji, N.S.; Shaik, N.A.; Banaganapalli, B.; et al. In Silico Approach to Investigate the Structural and Functional Attributes of Familial Hypercholesterolemia Variants Reported in the Saudi Population. J. Comput. Biol. 2018, 25, 170–181. [Google Scholar] [CrossRef]
- Alnouri, F.; Al-Allaf, F.A.; Athar, M.; Al-Rasadi, K.; Alammari, D.; Alanazi, M.; Abduljaleel, Z.; Awan, Z.; Bouazzaoui, A.; Dairi, G.; et al. Identification of Novel and Known LDLR Variants Triggering Severe Familial Hypercholesterolemia in Saudi Families. Curr. Vasc. Pharmacol. 2022, 20, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Awan, Z.; Batran, A.; Al-Allaf, F.A.; Alharbi, R.S.; Hejazy, G.A.; Jamalail, B.; AL Mansouri, M.; Bima, A.I.; Almukadi, H.; Kutbi, H.I.; et al. Identification and functional characterization of 2 Rare LDLR stop gain variants (p.C231* and p.R744*) in Saudi familial hypercholesterolemia patients. Panminerva Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Ghita, I.S.; Albagenny, A.A.; Abduljaleel, Z.; Shadab, G.; Elsendiony, A.; Halawani, S.H.; Alkazmi, M.M.; Alquthami, K.; Alkhuzae, M.M.; et al. Targeted next-generation sequencing reveals novel and known variants of thrombophilia associated genes in Saudi patients with venous thromboembolism. Clin. Chim. Acta 2021, 519, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Edrees, B.M.; Athar, M.; Al-Allaf, F.A.; Taher, M.M.; Khan, W.; Bouazzaoui, A.; Al-Harbi, N.; Safar, R.; Al-Edressi, H.; Alansary, K.; et al. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease. Gene 2016, 591, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Awan, Z.A.; Rashidi, O.M.; Al-Shehri, B.A.; Jamil, K.; Elango, R.; Al-Aama, J.Y.; Hegele, R.A.; Banaganapalli, B.; Shaik, N.A. Saudi Familial Hypercholesterolemia Patients with Rare. Front. Med. 2021, 8, 694668. [Google Scholar] [CrossRef] [PubMed]
- Chora, J.R.; Medeiros, A.M.; Alves, A.C.; Bourbon, M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: Application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet. Med. 2018, 20, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holla, L.; Kulseth, M.A.; Berge, K.E.; Leren, T.P.; Ranheim, T. Nonsense-mediated decay of human LDL receptor mRNA. Scand. J. Clin. Lab. Investig. 2009, 69, 409–417. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Schwartz, A.L.; Bu, G. Degradation of the LDL receptor class 2 mutants is mediated by a proteasome-dependent pathway. J. Lipid Res. 2004, 45, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, T.; Maquat, L.E. Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 2016, 129, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Galicia-Garcia, U.; Benito-Vicente, A.; Uribe, K.B.; Jebari, S.; Larrea-Sebal, A.; Alonso-Estrada, R.; Aguilo-Arce, J.; Ostolaza, H.; Palacios, L.; Martin, C. Mutation type classification and pathogenicity assignment of sixteen missense variants located in the EGF-precursor homology domain of the LDLR. Sci. Rep. 2020, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Batais, M.A.; Almigbal, T.H.; Bin Abdulhak, A.A.; Altaradi, H.B.; AlHabib, K.F. Assessment of physicians’ awareness and knowledge of familial hypercholesterolemia in Saudi Arabia: Is there a gap? PLoS ONE 2017, 12, e0183494. [Google Scholar] [CrossRef] [Green Version]
- Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; et al. Familial hypercholesterolaemia in children and adolescents: Gaining decades of life by optimizing detection and treatment. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Graham, I.; Tokgozoglu, L.; Catapano, A.L. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1141–1156. [Google Scholar] [CrossRef]
- Santos, P.C.J.L.; Morgan, A.C.; Jannes, C.E.; Turolla, L.; Krieger, J.; Santos, R.D.; Pereira, A.C. Presence and type of low density lipoprotein receptor (LDLR) mutation influences the lipid profile and response to lipid-lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia. Atherosclerosis 2014, 233, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Hindi, N.N.; Alenbawi, J.; Nemer, G. Pharmacogenomics Variability of Lipid-Lowering Therapies in Familial Hypercholesterolemia. J. Pers. Med. 2021, 11, 877. [Google Scholar] [CrossRef]
- Heath, K.E.; Gudnason, V.; Humphries, S.E.; Seed, M. The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia. Atherosclerosis 1999, 143, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Chaves, F.J.; Real, J.T.; García-García, A.B.; Civera, M.; Armengod, M.E.; Ascaso, J.F.; Carmena, R. Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: Influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J. Clin. Endocrinol. Metab. 2001, 86, 4926–4932. [Google Scholar] [CrossRef]
- Vohl, M.-C.; Szots, F.; Lelièvre, M.; Lupien, P.-J.; Bergeron, J.; Gagné, C.; Couture, P. Influence of LDL receptor gene mutation and apo E polymorphism on lipoprotein response to simvastatin treatment among adolescents with heterozygous familial hypercholesterolemia. Atherosclerosis 2002, 160, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Mata, N.; Alonso, R.; Badimón, L.; Padró, T.; Fuentes, F.; Muñiz, O.; Perez-Jiménez, F.; López-Miranda, J.; Díaz, J.L.; Vidal, J.I.; et al. Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART). Lipids Health Dis. 2011, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.A.; Honarpour, N.; Wasserman, S.M.; Xu, F.; Scott, R.; Raal, F.J. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 2013, 128, 2113–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; Stein, E.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Thedrez, A.; Blom, D.J.; Ramin-Mangata, S.; Blanchard, V.; Croyal, M.; Chemello, K.; Nativel, B.; Pichelin, M.; Cariou, B.; Bourane, S.; et al. Homozygous Familial Hypercholesterolemia Patients with Identical Mutations Variably Express the LDLR (Low-Density Lipoprotein Receptor): Implications for the Efficacy of Evolocumab. Arter. Thromb. Vasc. Biol. 2018, 38, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Blom, D.J.; Harada-Shiba, M.; Rubba, P.; Gaudet, D.; Kastelein, J.J.; Charng, M.-J.; Pordy, R.; Donahue, S.; Ali, S.; Dong, Y.; et al. Efficacy and Safety of Alirocumab in Adults with Homozygous Familial Hypercholesterolemia: The ODYSSEY HoFH Trial. J. Am. Coll. Cardiol. 2020, 76, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Mahzari, M.; Zarif, H. Homozygous Familial Hypercholesterolemia (HoFH) in Saudi Arabia and Two Cases of Lomitapide Use in a Real-World Setting. Adv. Ther. 2021, 38, 2159–2169. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Taranto, M.D.; Giacobbe, C.; Fortunato, G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur. J. Med. Genet. 2020, 63, 103831. [Google Scholar] [CrossRef]
- Galema-Boers, A.M.; Lenzen, M.J.; Sijbrands, E.; van Lennep, J.E.R. Proprotein convertase subtilisin/kexin 9 inhibition in patients with familial hypercholesterolemia: Initial clinical experience. J. Clin. Lipidol. 2017, 11, 674–681. [Google Scholar] [CrossRef]
- Iannuzzo, G.; Buonaiuto, A.; Calcaterra, I.; Gentile, M.; Forte, F.; Tripaldella, M.; Di Taranto, M.D.; Giacobbe, C.; Fortunato, G.; Rubba, P.O.; et al. Association between causative mutations and response to PCSK9 inhibitor therapy in subjects with familial hypercholesterolemia: A single center real-world study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 684–691. [Google Scholar] [CrossRef]
- Reeskamp, L.F.; Tromp, T.R.; Defesche, J.C.; Grefhorst, A.; Stroes, E.S.G.; Hovingh, G.K.; Zuurbier, L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur. J. Prev. Cardiol. 2021, 28, 875–883. [Google Scholar] [CrossRef] [PubMed]
Family Members | Mother (I-2) | Maternal Aunty (I-3) | Brother (II-1) | Sister (II-2) | Sister (II-3) | Sister (II-6) | Daughter (III-1) |
---|---|---|---|---|---|---|---|
Sex | Female | Female | Male | Female | Female | Female | Female |
Age (Years) | 71 | 68 | 46 | 44 | 39 | 31 | 12 |
Total Cholesterol (mmol/L) | 6.4 | 14.06 | 7.8 | 5.67 | 4.34 | 6.95 | 8.9 |
LDL-C (mmol/L) | 4.39 | 4.4 | 2.54 | 4.02 | 2.9 | 5.63 | 8.1 |
HDL-C (mmol/L) | 0.93 | 0.72 | 1 | 1.14 | 1.65 | 1.2 | 1.4 |
Triglycerides (mmol/L) | 2.37 | 11.51 | 9.29 | 2.51 | 1.08 | 0.88 | 1.6 |
History | MI, angiography and bypass surgery | Open heart surgery | MI, and PCI | - | - | - | - |
Treatments | Rosuvastatin Omega-3 | Rosuvastatin Fenofibrate | Rosuvastatin Ezetimibe | - | - | - | Simvastatin Omega-3 |
Family History of CAD | Positive | Positive | Positive | Positive | Positive | Positive | Positive |
LDLR variant | p.(Asp224Alafs*43) | p.(Asp224Alafs*43) | - | - | - | p.(Asp224Alafs*43) | p.(Asp224Alafs*43) |
APOB variant | p.(Ser3279Gly) | - | - | p.(Ser3279Gly) | p.(Ser3279Gly) | - | - |
Gene | Genetic Variant | dbsnp | Exon | Status | Pathogenicity Analysis | ||||
---|---|---|---|---|---|---|---|---|---|
Functional Domain | SIFT | PolyPhen-2 | Allele Frequency (ExAC) | ACMG Classification | |||||
LDLR | c.666_670dup, p.(Asp224Alafs*43) | Frameshift | 4 | Novel | Ligand-binding | N/A | N/A | - | Pathogenic |
APOB | c.9835A > G, p.(Ser3279Gly) | Missense | 26 | rs12720854 | LDLR binding | Damaging | Probably Damaging | 0.0044 | Variant of uncertain significance |
Significant LDLR Variant | Patients | Population | Sample Size | Treatment and Daily Dose | Clinical Outcomes | References |
---|---|---|---|---|---|---|
Null and defective | Het-FH | British | 109 | Simvastatin | Patients with null variants have less LDL-C reduction than those with defective variants. | Heath et al., 1999 [45] |
Null and defective | FH | Spanish | 55 | Simvastatin 20 mg | Patients with defective rather than null variants are more likely to have low HDL-C and poor statin response. | Chaves et al., 2001 [46] |
Null and defective | Het-FH | Canadian | 63 | Atorvastatin 20 mg | LDL-C reduction is higher in patients with null than defective variants. | Vohl et al., 2002 [47] |
Null and defective | Het-FH | Spanish | 811 | Simvastatin or atorvastatin 80 mg ± bile acid sequestrant | Patients with null rather than defective variants have a higher risk of CVD and TC. | Alonso et al., 2008 [11] |
Null and defective | FH | Spanish | 387 | Maximum statin doses # + ezetimibe 10 mg | Patients with null rather than defective variants have a poor LLT response and a higher risk of CVD. | Mata et al., 2011 [48] |
Defective and negative | Hom-FH | South African | 8 | Evolocumab 140–420 mg every 2–4 weeks for 3 months | Evolocumab decreases LDL-C in LDLR-deficient patients but not in negative cases. | Stein et al., 2013 [49] |
Null and defective | Het-FH | Brazilian | 156 | Atorvastatin 10, 20 or 40 mg | Patients with a defective variant have a more significant reduction in LDL-C than those with a null variant. | Santos et al., 2014 [35] |
Defective and negative | Hom-FH | Multiple countries | 50 | Evolocumab 420 mg every 4 weeks for 3 months | The response to evolocumab is LDLR-genotype dependent, with increased sensitivity in LDLR-defective individuals. | Raal et al., 2015 [50] |
Null and defective | FH | Spanish | 4132 | Maximum statin doses # + ezetimibe 10 mg | Null variants had a greater incidence of CVD and a poorer LLT response than defective variants. | Perez de Isla et al., 2016 [23] |
Defective and negative | Hom-FH | South African | 22 | Mivastatin and evolocumab | Defective LDLR variants are responsive to evolocumab, whereas negative LDLR variants are not. | Thedrez et al., 2018 [51] |
Null variant in both alleles | Hom-FH | Multiple countries | 69 | Atorvastatin 80 mg, ezetimibe 10 mg, lomitapide, and alirocumab 150 mg/2 weeks for 12 weeks | Lipid profile management is improved with alirocumab. | Blom et al., 2020 [52] |
p.(D445*) | Hom-FH | Saudi | 2 | Ezetimibe, Simvastain | Statin resistant and managed with LDL-apheresis. | Al-Allaf et al., 2014 [26] |
Stop Gain Variants (p.C231* and p.R744*) | Het-FH (2 families) | Saudi | 3 | Atorvastatin 40 mg | The high cholesterol profile was managed appropriately after increasing the Atorvastatin dosage to 40 mg daily. | Awan et al., 2022 [30] |
p. (Gly676Alafs*33) | FH (2 families) | Saudi | 12 | Statin + ezetimibe + evolocumab | Variability in clinical manifestation and resistance to multiple treatment regimens depend on variant zygosity. Patients were managed with LDL-apheresis. | Awan et al., 2021 [34] |
p. (Gly676Alafs*33) | Hom-FH | Saudi | 2 | Rosuvastatin 40 mg, ezetimibe 10 mg, evolocumab 420 mg/month, and lomitapide 5–40 mg | Lomitapide has been shown to significantly lower cholesterol and CVD events. | Mahzari et al., 2021 [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athar, M.; Toonsi, M.; Abduljaleel, Z.; Bouazzaoui, A.; Bogari, N.M.; Dannoun, A.; Al-Allaf, F.A. Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life 2023, 13, 1542. https://doi.org/10.3390/life13071542
Athar M, Toonsi M, Abduljaleel Z, Bouazzaoui A, Bogari NM, Dannoun A, Al-Allaf FA. Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life. 2023; 13(7):1542. https://doi.org/10.3390/life13071542
Chicago/Turabian StyleAthar, Mohammad, Mawaddah Toonsi, Zainularifeen Abduljaleel, Abdellatif Bouazzaoui, Neda M. Bogari, Anas Dannoun, and Faisal A. Al-Allaf. 2023. "Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights" Life 13, no. 7: 1542. https://doi.org/10.3390/life13071542
APA StyleAthar, M., Toonsi, M., Abduljaleel, Z., Bouazzaoui, A., Bogari, N. M., Dannoun, A., & Al-Allaf, F. A. (2023). Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life, 13(7), 1542. https://doi.org/10.3390/life13071542