Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy
Abstract
:1. Introduction
2. Evidence of HMGB1 Involvement in OSCC Pathogenesis
3. Molecular Mechanisms of HMGB1 Implication in OSCC Pathology
3.1. RAGE Independent Mechanisms
3.2. RAGE Mediated Mechanisms
4. Targeting Potential of HMGB1 in OSCC
Drugs | Molecule/Target | Action | Reference |
---|---|---|---|
NecroX-7 | HMGB1 | Decrease in the severity and incidence of ulceration in OM | [26] |
JQ1 | HMGB1 | HMGB1 release | [42] |
3-MA/YC-1 | PI3K/HIF-1α/ BNIP3/Beclin1 | Attenuation of autophagy | [29] |
HMGB1 antibody | HMGB1 | Macrophage recruitment | [45] |
Etodolac | COX-2 | Inhibition of HMGB1 through downregulation of RAGE | [47,48,49] |
Evodiamine | HMGB1, RAGE | Tumor growth suppression | [31] |
Nifedipine | RAGE-HMGB1 interaction | Reduction in cancer cell migration | [51] |
Papaverine | RAGE-HMGB1 interaction | Inhibition of cancer cell proliferation | [55] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, X.; Coordes, A.; Kaufmann, A.M.; Albers, A.E. Expression of aldehyde dehydrogenase family 1 member A1 and high mobility group box 1 in oropharyngeal squamous cell carcinoma in association with survival time. Oncol. Lett. 2016, 12, 3429–3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauceri, R.; Bazzano, M.; Coppini, M.; Tozzo, P.; Panzarella, V.; Campisi, G. Diagnostic delay of oral squamous cell carcinoma and the fear of diagnosis: A scoping review. Front. Psychol. 2022, 13, 1009080. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Shang, Z. Burden of oral cancer in Asia from 1990 to 2019: Estimates from the Global Burden of Disease 2019 study. PLoS ONE 2022, 17, e0265950. [Google Scholar] [CrossRef] [PubMed]
- Morse, D.E.; Kerr, A.R. Disparities in oral and pharyngeal cancer incidence, mortality and survival among black and white Americans. J. Am. Dent. Assoc. 2006, 137, 203–212, Erratum in J. Am. Dent. Assoc. 2006, 137, 447. [Google Scholar] [CrossRef] [Green Version]
- Emfietzoglou, R.; Pachymanolis, E.; Piperi, C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr. Med. Chem. 2021, 28, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chakraborty, R.; Ranganathan, S. Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 1562. [Google Scholar] [CrossRef]
- He, S.J.; Cheng, J.; Feng, X.; Yu, Y.; Tian, L.; Huang, Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 2017, 8, 64534–64550. [Google Scholar] [CrossRef] [Green Version]
- Chikhirzhina, E.; Starkova, T.; Beljajev, A.; Polyanichko, A.M.; Tomilin, A.N. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int. J. Mol. Sci. 2020, 21, 7948. [Google Scholar] [CrossRef]
- Supic, G.; Kozomara, R.; Zeljic, K.; Stanimirovic, D.; Magic, M.; Surbatovic, M.; Jovic, N.; Magic, Z. HMGB1 genetic polymorphisms in oral squamous cell carcinoma and oral lichen planus patients. Oral. Dis. 2015, 21, 536–543. [Google Scholar] [CrossRef]
- Sasahira, T.; Kirita, T.; Oue, N.; Bhawal, U.K.; Yamamoto, K.; Fujii, K.; Ohmori, H.; Luo, Y.; Yasui, W.; Bosserhoff, A.K.; et al. High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci. 2008, 99, 1806–1812. [Google Scholar] [CrossRef]
- Mohajertehran, F.; Ayatollahi, H.; Khazaeni, K.; Shakeri, M.T.; Mohtasham, N. Overexpression of High-Mobility Motor Box 1 in the Blood and Tissues of Patients with Head and Neck Squamous Cell Carcinoma. Iran. J. Otorhinolaryngol. 2018, 30, 261–271. [Google Scholar] [PubMed]
- Hanakawa, H.; Orita, Y.; Sato, Y.; Takeuchi, M.; Takao, S.; Ohno, K.; Kohno, T.; Iwaki, N.; Marunaka, H.; Tamamura, R.; et al. Does HMGB1 predict occult neck lymph node metastasis in early tongue carcinoma? A case-control study of 26 patients. J. Laryngol. Otol. 2014, 128, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, D.; Roviello, G.N.; Montesarchio, D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol. Ther. 2014, 141, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, X.; Antoine, D.; Xiao, X.; Wang, H.; Andersson, U.; Billiar, T.R.; Tracey, K.J.; Lu, B. Regulation of Posttranslational Modifications of HMGB1 During Immune Responses. Antioxid. Redox Signal. 2016, 24, 620–634. [Google Scholar] [CrossRef]
- Richard, S.A.; Jiang, Y.; Xiang, L.H.; Zhou, S.; Wang, J.; Su, Z.; Xu, H. Post-translational modifications of high mobility group box 1 and cancer. Am. J. Transl. Res. 2017, 9, 5181–5196. [Google Scholar]
- Paudel, Y.N.; Angelopoulou, E.; Piperi, C.; Balasubramaniam, V.R.M.T.; Othman, I.; Shaikh, M.F. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur. J. Pharmacol. 2019, 858, 172487. [Google Scholar] [CrossRef]
- Ellerman, J.E.; Brown, C.K.; de Vera, M.; Zeh, H.J.; Billiar, T.; Rubartelli, A.; Lotze, M.T. Masquerader: High mobility group box-1 and cancer. Clin. Cancer Res. 2007, 13, 2836–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelopoulou, E.; Piperi, C.; Adamopoulos, C.; Papavassiliou, A.G. Pivotal role of high-mobility group box 1 (HMGB1) signaling pathways in glioma development and progression. J. Mol. Med. 2016, 94, 867–874. [Google Scholar] [CrossRef]
- Gebhardt, C.; Riehl, A.; Durchdewald, M.; Németh, J.; Fürstenberger, G.; Müller-Decker, K.; Enk, A.; Arnold, B.; Bierhaus, A.; Nawroth, P.P.; et al. RAGE signaling sustains inflammation and promotes tumor development. J. Exp. Med. 2008, 205, 275–285. [Google Scholar] [CrossRef]
- Lin, C.W.; Chou, Y.E.; Yeh, C.M.; Yang, S.F.; Chuang, C.Y.; Liu, Y.F. A functional variant at the miRNA binding site in HMGB1 gene is associated with risk of oral squamous cell carcinoma. Oncotarget 2017, 8, 34630–34642. [Google Scholar] [CrossRef]
- Sasahira, T.; Kirita, T.; Bhawal, U.K.; Yamamoto, K.; Ohmori, H.; Fujii, K.; Kuniyasu, H. Receptor for advanced glycation endproducts (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology 2007, 51, 166–17252. [Google Scholar] [CrossRef]
- Andisheh-Tadbir, A.; Dehghani, Z.; Khademi, B.; Malekzadeh, M.; Mardani, M. Evaluating high-mobility group box 1 protein serum levels amongst Iranian patients with oral squamous cell carcinoma. J. Oral Maxillofac. Surg. Med. Pathol. 2020, 32, 347–350. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhang, Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin. Cancer Biol. 2019, 56, 37–46. [Google Scholar] [CrossRef]
- Yi, C.; Zhang, X.; Li, H.; Chen, G.; Zeng, B.; Li, Y.; Wang, C.; He, Y.; Chen, X.; Huang, Z.; et al. EPHB4 Regulates the Proliferation and Metastasis of Oral Squamous Cell Carcinoma through the HMGB1/NF-κB Signalling Pathway. J. Cancer 2021, 12, 5999–6011. [Google Scholar] [CrossRef]
- Wen, J.; Yin, P.; Su, Y.; Gao, F.; Wu, Y.; Zhang, W.; Chi, P.; Chen, J.; Zhang, X. Knockdown of HMGB1 inhibits the crosstalk between oral squamous cell carcinoma cells and tumor-associated macrophages. Int. Immunopharmacol. 2023, 509, 91–95. [Google Scholar] [CrossRef]
- Im, K.I.; Nam, Y.S.; Kim, N.; Song, Y.; Lee, E.S.; Lim, J.Y.; Jeon, Y.W.; Cho, S.G. Regulation of HMGB1 release protects chemoradiotherapy-associated mucositis. Mucosal. Immunol. 2019, 12, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.A.; Brandau, S.; Lotfi, R.; Mattheis, S.; Gu, X.; Lang, S.; Bergmann, C. HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol. 2012, 48, 409–416. [Google Scholar] [CrossRef]
- Gou, Q.; Zheng, L.L.; Huang, H. Unravelling the roles of Autophagy in OSCC: A renewed perspective from mechanisms to potential applications. Front. Pharmacol. 2022, 13, 994643. [Google Scholar] [CrossRef]
- Shi, F.; Luo, D.; Zhou, X.; Sun, Q.; Shen, P.; Wang, S. Combined effects of hyperthermia and chemotherapy on the regulated autophagy of oral squamous cell carcinoma cells under a hypoxic microenvironment. Cell Death Discov. 2021, 7, 227. [Google Scholar] [CrossRef]
- Yatime, L.; Andersen, G.R. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J. 2013, 280, 6556–6568. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Lou, Y.; Sun, M. The anti-tumor effects of evodiamine on oral squamous cell carcinoma (OSCC) through regulating advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) pathway. Bioengineered 2021, 12, 5985–5995. [Google Scholar] [CrossRef]
- Nakamura, T.; Okui, T.; Hasegawa, K.; Ryumon, S.; Ibaragi, S.; Ono, K.; Kunisada, Y.; Obata, K.; Masui, M.; Shimo, T.; et al. High mobility group box1 induces bone pain associated with bone invasion in a mouse model of advanced head and neck cancer. Oncol. Rep. 2020, 44, 2547–2558. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Okui, T.; Yoneda, T.; Ryumon, S.; Nakamura, T.; Kawai, H.; Kunisada, Y.; Ibaragi, S.; Masui, M.; Ono, K.; et al. High-mobility group box 1 induces bone destruction associated with advanced oral squamous cancer via RAGE and TLR4. Biochem. Biophys. Res. Commun. 2020, 531, 422–430. [Google Scholar] [CrossRef]
- Rishabh, K.; Khadilkar, S.; Kumar, A.; Kalra, I.; Kumar, A.P.; Kunnumakkara, A.B. MicroRNAs as Modulators of Oral Tumorigenesis—A Focused Review. Int. J. Mol. Sci. 2021, 22, 2561. [Google Scholar] [CrossRef]
- Wang, T.; Gan, X. Emerging roles of HMGB1-related lncRNA: From molecular biology to clinical application. Am. J. Physiol. Cell Physiol. 2022, 323, C1149–C1160. [Google Scholar] [CrossRef]
- Ren, J.; Liang, Q. HMGB1 promotes the proliferation and invasion of oral squamous cell carcinoma via activating epithelial-mesenchymal transformation. Biocell 2019, 43, 199–206. [Google Scholar] [CrossRef]
- Sasahira, T.; Kirita, T.; Bhawal, U.K.; Ikeda, M.; Nagasawa, A.; Yamamoto, K.; Kuniyasu, H. The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch. 2007, 450, 287–295. [Google Scholar] [CrossRef]
- Hubert, P.; Roncarati, P.; Demoulin, S.; Pilard, C.; Ancion, M.; Reynders, C.; Lerho, T.; Bruyere, D.; Lebeau, A.; Radermecker, C.; et al. Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J. Immunother. Cancer 2021, 9, e001966. [Google Scholar] [CrossRef]
- Paudel, Y.N.; Angelopoulou, E.; Semple, B.; Piperi, C.; Othman, I.; Shaikh, M.F. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders. ACS Chem. Neurosci. 2020, 11, 485–500. [Google Scholar] [CrossRef]
- Choi, Y.I.; Ahn, S.; Kim, H.Y.; Jung, N.J.; Lee, J.J.; Park, S.B. A novel orally available anti-cancer drug candidate, SB17170, represses myeloid-derived suppressor cells by targeting HMGB1. Cancer Res. 2022, 82 (Suppl. 12), 5599. [Google Scholar] [CrossRef]
- Hao, S.; Jin, Y.; Yu, Y.; Wang, J.; Zou, J.; Wang, Y. Identification of potential molecular mechanisms and candidate drugs for radiotherapy- and chemotherapy-induced mucositis. Support Care Cancer 2023, 31, 223. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, L.; Tong, D.; Yang, L.; Zhu, H.; Li, Q.; Zhang, F. BET bromodomain inhibitor JQ1 promotes immunogenic cell death in tongue squamous cell carcinoma. Int. Immunopharmacol. 2019, 76, 105921. [Google Scholar] [CrossRef] [PubMed]
- Min, H.J.; Suh, K.D.; Lee, Y.H.; Kim, K.S.; Mun, S.K.; Lee, S.Y. Cytoplasmic HMGB1 and HMGB1-Beclin1 complex are increased in radioresistant oral squamous cell carcinoma. Br. J. Oral Maxillofac. Surg. 2019, 57, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.J.; Hsieh, Y.H.; Lin, C.W.; Chen, M.K.; Yang, S.F.; Chiou, H.L. Transcriptional regulation of Mcl-1 plays an important role of cellular protective effector of vincristine-triggered autophagy in oral cancer cells. Expert Opin. Ther. Targets 2015, 19, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Ai, D.; Dou, Y.; Nan, Z.; Wang, K.; Wang, H.; Zhang, L.; Dong, Z.; Sun, J.; Ma, C.; Tan, W.; et al. CD68+ Macrophage Infiltration Associates With Poor Outcome of HPV Negative Oral Squamous Carcinoma Patients Receiving Radiation: Poly(I:C) Enhances Radiosensitivity of CAL-27 Cells but Promotes Macrophage Recruitment Through HMGB1. Front. Oncol. 2021, 11, 740622. [Google Scholar] [CrossRef]
- Tanaka, N.; Yonekura, H.; Yamagishi, S.; Fujimori, H.; Yamamoto, Y.; Yamamoto, H. Thereceptorforadvancedglycationendproductsisinducedbytheglycationproductsthemselvesand tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J. Biol. Chem. 2000, 275, 25781–25790. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285, 248–251. [Google Scholar] [CrossRef]
- Czura, C.J.; Wang, H.; Tracey, K.J. Dual roles for HMGB1: DNA binding and cytokine. J. Endotoxin. Res. 2001, 7, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Thornalley, P.J. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol. Biol. 1998, 44, 1013–1023. [Google Scholar]
- Yamamoto, K.; Kitayama, W.; Denda, A.; Sasahira, T.; Kuniyasu, H.; Kirita, T. Expression of receptor for advanced glycation end products during rat tongue carcinogenesis by 4-nitroquinoline1-oxide and effect of a selective cyclooxygenase-2 inhibitor, etodolac. Pathobiology 2006, 73, 317–324. [Google Scholar] [CrossRef]
- Choi, J.; Lee, M.K.; Oh, K.H.; Kim, Y.S.; Choi, H.Y.; Baek, S.K.; Jung, K.Y.; Woo, J.S.; Lee, S.H.; Kwon, S.Y. Interaction effect between the receptor for advanced glycation end products (RAGE) and high-mobility group box-1 (HMGB-1) for the migration of a squamous cell carcinoma cell line. Tumori J. 2011, 97, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Hussein, M.A.; Pierce, S.; Martens, C.; Shahagadkar, P.; Munirathinam, G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol. Res. 2022, 178, 106138. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.A.; Joubert, A.M.; Visagie, M.H. The Biological Relevance of Papaverine in Cancer Cells. Cells 2022, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Tamada, K.; Nakajima, S.; Ogawa, N.; Inada, M.; Shibasaki, H.; Sato, A.; Takasawa, R.; Yoshimorim, A.; Suzuki, Y.; Watanabe, N.; et al. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses. Biochem. Biophys. Res. Commun. 2019, 511, 665–670. [Google Scholar] [CrossRef]
- Abe, H.; Okazawa, M.; Oyama, T.; Yamazaki, H.; Yoshimori, A.; Kamiya, T.; Tsukimoto, M.; Takao, K.; Sugita, Y.; Sakagami, H.; et al. A Unique Anti-Cancer 3-Styrylchromone Suppresses Inflammatory Response via HMGB1-RAGE Signaling. Medicines 2021, 8, 17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plemmenos, G.; Tzimogianni, V.; Fili, C.; Piperi, C. Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy. Life 2023, 13, 1577. https://doi.org/10.3390/life13071577
Plemmenos G, Tzimogianni V, Fili C, Piperi C. Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy. Life. 2023; 13(7):1577. https://doi.org/10.3390/life13071577
Chicago/Turabian StylePlemmenos, Grigorios, Valentini Tzimogianni, Christina Fili, and Christina Piperi. 2023. "Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy" Life 13, no. 7: 1577. https://doi.org/10.3390/life13071577