Lung Transplantation in a New Era in the Field of Cystic Fibrosis
Abstract
:1. Background
2. Pre-Transplant
2.1. Lung Transplantation Referral Criteria in CF
2.2. Lung Allocation
3. Post-Transplant
4. CF Pathogens
4.1. Pseudomonas aeruginosa
4.2. Burkholderia cepacia Complex
4.3. Mycobacterium abscessus
4.4. Aspergillus
4.5. COVID-19
5. Noninfectious Complications
6. Prognosis
7. The Changing Landscape of Lung Transplantation in CF
8. HEMT Impact on Transplantation Landscape
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic fibrosis: A worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef] [PubMed]
- Saint-Criq, V.; Gray, M.A. Role of CFTR in epithelial physiology. Cell. Mol. Life Sci. 2017, 74, 93–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, K.; Nakamura, H.; Trapnell, B.C.; Chu, C.-S.; Dakemans, W.; Pavirani, A.; Lecocq, J.-P.; Crystal, R.G. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res. 1991, 19, 5417–5423. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Gu, H.; Qiu, Y.; Guo, Y.; Korteweg, C.; Huang, J.; Gu, J. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Ganglia of Human Gastrointestinal Tract. Sci. Rep. 2016, 6, 30926. [Google Scholar] [CrossRef]
- Collawn, J.F.; Matalon, S. CFTR and lung homeostasis. Am. J. Physiol. Cell. Mol. Physiol. 2014, 307, L917–L923. [Google Scholar] [CrossRef]
- De Boeck, K.; Amaral, M.D. Progress in therapies for cystic fibrosis. Lancet Respir. Med. 2016, 4, 662–674. [Google Scholar] [CrossRef]
- Cystic Fibrosis Foundation Patient Registry 2021 Annual Data Report. Bethesda, Maryland. Available online: https://www.cff.org/sites/default/files/2021-11/Patient-Registry-Annual-Data-Report.pdf (accessed on 1 June 2023).
- Wang, J.; Cohen, R.I. Cystic Fibrosis Therapy: From Chest Physiotherapy to Agents Targeting Specific Mutations. Eur. J. Respir. Med. 2020, 2, 122–131. [Google Scholar] [CrossRef]
- Hamosh, A.; FitzSimmons, S.C.; Macek, M.; Knowles, M.R.; Rosenstein, B.J.; Cutting, G.R. Comparison of the clinical manifestations of cystic fibrosis in black and white patients. J. Pediatr. 1998, 132, 255–259. [Google Scholar] [CrossRef]
- About Cystic Fibrosis|Cystic Fibrosis Foundation. Available online: https://www.cff.org/intro-cf/about-cystic-fibrosis (accessed on 9 March 2023).
- Belkin, R.A.; Henig, N.R.; Singer, L.G.; Chaparro, C.; Rubenstein, R.C.; Xie, S.X.; Yee, J.Y.; Kotloff, R.M.; Lipson, D.A.; Bunin, G.R. Risk Factors for Death of Patients with Cystic Fibrosis Awaiting Lung Transplantation. Am. J. Respir. Crit. Care Med. 2006, 173, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, C.; Cantin, A.M. Cystic Fibrosis: Pathophysiology of Lung Disease. Semin. Respir. Crit. Care Med. 2019, 40, 715–726. [Google Scholar] [CrossRef]
- Castellani, C.; Duff, A.J.; Bell, S.C.; Heijerman, H.G.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Understanding Changes in Life Expectancy|Cystic Fibrosis Foundation. Available online: https://www.cff.org/managing-cf/understanding-changes-life-expectancy (accessed on 9 March 2023).
- Griscom, N.T. Lung transplantation. JAMA 1963, 186, 1088. [Google Scholar] [CrossRef]
- Chambers, D.C.; Perch, M.; Zuckermann, A.; Cherikh, W.S.; Harhay, M.O.; Hayes, D.; Hsich, E.; Khush, K.K.; Potena, L.; Sadavarte, A.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-eighth adult lung transplantation report—2021; Focus on recipient characteristics. J. Heart Lung Transplant. 2021, 40, 1060–1072. [Google Scholar] [CrossRef]
- Leard, L.E.; Holm, A.M.; Valapour, M.; Glanville, A.R.; Attawar, S.; Aversa, M.; Campos, S.V.; Christon, L.M.; Cypel, M.; Dellgren, G.; et al. Consensus document for the selection of lung transplant candidates: An update from the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2021, 40, 1349–1379. [Google Scholar] [CrossRef]
- Ramos, K.J.; Smith, P.J.; McKone, E.F.; Pilewski, J.M.; Lucy, A.; Hempstead, S.E.; Tallarico, E.; Faro, A.; Rosenbluth, D.B.; Gray, A.L.; et al. Lung transplant referral for individuals with cystic fibrosis: Cystic Fibrosis Foundation consensus guidelines. J. Cyst. Fibros. 2019, 18, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Celli, B.R.; Cote, C.G.; Marin, J.M.; Casanova, C.; Montes de Oca, M.; Mendez, R.A.; Plata, V.P.; Cabral, H.J. The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Kapnadak, S.G.; Dimango, E.; Hadjiliadis, D.; Hempstead, S.E.; Tallarico, E.; Pilewski, J.M.; Faro, A.; Albright, J.; Benden, C.; Blair, S.; et al. Cystic Fibrosis Foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. J. Cyst. Fibros. 2020, 19, 344–354. [Google Scholar] [CrossRef] [Green Version]
- De Meester, J.; Smits, J.M.; Persijn, G.G.; Haverich, A. Listing for lung transplantation: Life expectancy and transplant effect, stratified by type of end-stage lung disease, the Eurotransplant experience. J. Heart Lung Transplant. 2001, 20, 518–524. [Google Scholar] [CrossRef]
- Davis, S.Q.; Garrity, E.R. Organ Allocation in Lung Transplant. Chest 2007, 132, 1646–1651. [Google Scholar] [CrossRef]
- Egan, T.M.; Edwards, L.B. Effect of the lung allocation score on lung transplantation in the United States. J. Heart Lung Transplant. 2016, 35, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Brahmbhatt, J.M.; Wai, T.H.; Goss, C.H.; Lease, E.D.; Merlo, C.A.; Kapnadak, S.G.; Ramos, K.J. The lung allocation score and other available models lack predictive accuracy for post-lung transplant survival. J. Heart Lung Transplant. 2022, 41, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Ramos, K.J.; Quon, B.S.; Heltshe, S.L.; Mayer-Hamblett, N.; Lease, E.D.; Aitken, M.L.; Weiss, N.S.; Goss, C.H. Heterogeneity in Survival in Adult Patients with Cystic Fibrosis With FEV1 < 30% of Predicted in the United States. Chest 2017, 151, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Keshavamurthy, S.; Rodgers-Fischl, P. Donation after circulatory death (DCD)—Lung procurement. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Inci, I. Donors after cardiocirculatory death and lung transplantation. J. Thorac. Dis. 2017, 9, 2660–2669. [Google Scholar] [CrossRef] [Green Version]
- Lehman, R.; Uccellini, K.; Lease, E.; Daly, R.; Chan, K. Increasing Use of EVLP in the United States: Data from the OPTN/UNOS. J. Heart Lung Transplant. 2019, 38, S55. [Google Scholar] [CrossRef]
- Nolley, E.P.; Pilewski, J.M. Call for Changes in Lung Allocation to Reduce Transplant Wait-List Mortality for Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 956–957. [Google Scholar] [CrossRef]
- Lehr, C.J.; Skeans, M.; Dasenbrook, E.; Fink, A.; Fernandez, G.; Faro, A.; Valapour, M. Effect of Including Important Clinical Variables on Accuracy of the Lung Allocation Score for Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2019, 200, 1013–1021. [Google Scholar] [CrossRef]
- Lung Allocation Based on the Composite Allocation Score (CAS): Questions and Answers for Patients and Caregivers—OPTN. Available online: https://optn.transplant.hrsa.gov/patients/by-organ/lung/lung-allocation-based-on-the-composite-allocation-score-cas-questions-and-answers-for-patients-and-caregivers/ (accessed on 17 April 2023).
- Valapour, M.; Lehr, C.J.; Wey, A.; Skeans, M.A.; Miller, J.; Lease, E.D. Expected effect of the lung Composite Allocation Score system on US lung transplantation. Am. J. Transplant. 2022, 22, 2971–2980. [Google Scholar] [CrossRef]
- McKone, E.; Ramos, K.J.; Chaparro, C.; Blatter, J.; Hachem, R.; Anstead, M.; Vlahos, F.; Thaxton, A.; Hempstead, S.; Daniels, T.; et al. Position paper: Models of post-transplant care for individuals with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 374–380. [Google Scholar] [CrossRef]
- Shah, P.; Lowery, E.; Chaparro, C.; Visner, G.; Hempstead, S.E.; Abraham, J.; Bhakta, Z.; Carroll, M.; Christon, L.; Danziger-Isakov, L.; et al. Cystic fibrosis foundation consensus statements for the care of cystic fibrosis lung transplant recipients. J. Heart Lung Transplant. 2021, 40, 539–556. [Google Scholar] [CrossRef]
- Kotloff, R.M.; Zuckerman, J.B. Lung Transplantation for Cystic Fibrosis. Chest 1996, 109, 787–798. [Google Scholar] [CrossRef]
- Gregson, A.L. Infectious Triggers of Chronic Lung Allograft Dysfunction. Curr. Infect. Dis. Rep. 2016, 18, 21. [Google Scholar] [CrossRef]
- Verleden, S.E.; Vos, R.; Vanaudenaerde, B.M.; Verleden, G.M. Chronic lung allograft dysfunction phenotypes and treatment. J. Thorac. Dis. 2017, 9, 2650–2659. [Google Scholar] [CrossRef] [Green Version]
- Soetanto, V.; Grewal, U.S.; Mehta, A.C.; Shah, P.; Varma, M.; Garg, D.; Majumdar, T.; Dangayach, N.S.; Grewal, H.S. Early postoperative complications in lung transplant recipients. Indian J. Thorac. Cardiovasc. Surg. 2022, 38, 260–270. [Google Scholar] [CrossRef]
- Govan, J.R.; Deretic, V. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 1996, 60, 539–574. [Google Scholar] [CrossRef]
- Dales, L.; Ferris, W.; Vandemheen, K.; Aaron, S.D. Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from patients with pulmonary exacerbations of cystic fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1275–1279. [Google Scholar] [CrossRef]
- Hadjiliadis, D.; Steele, M.P.; Chaparro, C.; Singer, L.G.; Waddell, T.K.; Hutcheon, M.A.; Davis, R.D.; Tullis, D.E.; Palmer, S.M.; Keshavjee, S. Survival of Lung Transplant Patients with Cystic Fibrosis Harboring Panresistant Bacteria Other Than Burkholderia cepacia, Compared with Patients Harboring Sensitive Bacteria. J. Heart Lung Transplant. 2007, 26, 834–838. [Google Scholar] [CrossRef]
- Sousa, A.M.; Pereira, M.O. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review. Pathogens 2014, 3, 680–703. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, J.; Mattner, F.; Weissbrodt, H.; Dierich, M.; Fuehner, T.; Strueber, M.; Simon, A.; Welte, T. Impact of graft colonization with gram-negative bacteria after lung transplantation on the development of bronchiolitis obliterans syndrome in recipients with cystic fibrosis. Respir. Med. 2009, 103, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Takata, H.; Tomiyama, H.; Fujiwara, M.; Kobayashi, N.; Takiguchi, M. Cutting Edge: Expression of Chemokine Receptor CXCR1 on Human Effector CD8+ T Cells. J. Immunol. 2004, 173, 2231–2235. [Google Scholar] [CrossRef] [Green Version]
- Dobbin, C.; Maley, M.; Harkness, J.; Benn, R.; Malouf, M.; Glanville, A.; Bye, P. The impact of pan-resistant bacterial pathogens on survival after lung transplantation in cystic fibrosis: Results from a single large referral centre. J. Hosp. Infect. 2004, 56, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somayaji, R.; Yau, Y.C.W.; Tullis, E.; LiPuma, J.J.; Ratjen, F.; Waters, V. Clinical Outcomes Associated with Burkholderia cepacia Complex Infection in Patients with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2020, 17, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- De Soyza, A.; Meachery, G.; Hester, K.L.; Nicholson, A.; Parry, G.; Tocewicz, K.; Pillay, T.; Clark, S.; Lordan, J.L.; Schueler, S.; et al. Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: A single-center experience. J. Heart Lung Transplant. 2010, 29, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.; Maurer, J.; Gutierrez, C.; Krajden, M.; Chan, C.; Winton, T.; Keshavjee, S.; Scavuzzo, M.; Tullis, E.; Hutcheon, M.; et al. Infection with Burkholderia cepacia in Cystic Fibrosis: Outcome following lung transplantation. Am. J. Respir. Crit. Care Med. 2001, 163, 43–48. [Google Scholar] [CrossRef]
- France, M.W.; Dodd, M.E.; Govan, J.R.; Doherty, C.J.; Webb, A.; Jones, A.M. The changing epidemiology of Burkholderia species infection at an adult cystic fibrosis centre. J. Cyst. Fibros. 2008, 7, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Lord, R.; Jones, A.M.; Horsley, A. Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. Cochrane Database Syst. Rev. 2020, 4, CD009529. [Google Scholar] [CrossRef]
- Nontuberculous Mycobacteria (NTM)|Cystic Fibrosis Foundation. Available online: https://www.cff.org/managing-cf/nontuberculous-mycobacteria-ntm (accessed on 21 April 2023).
- Chalermskulrat, W. Non-tuberculous mycobacteria in end stage cystic fibrosis: Implications for lung transplantation. Thorax 2006, 61, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Raats, D.; Lorent, N.; Saegeman, V.; Vos, R.; van Ingen, J.; Verleden, G.; Van Raemdonck, D.; Dupont, L. Successful lung transplantation for chronic Mycobacterium abscessus infection in advanced cystic fibrosis, a case series. Transpl. Infect. Dis. 2019, 21, e13046. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline: Executive Summary. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Liu, J.C.; Modha, D.E.; Gaillard, E.A. What is the clinical significance of filamentous fungi positive sputum cultures in patients with cystic fibrosis? J. Cyst. Fibros. 2013, 12, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Helmi, M.; Love, R.B.; Welter, D.; Cornwell, R.D.; Meyer, K.C. Aspergillus Infection in Lung Transplant Recipients with Cystic Fibrosis: Risk factors and outcomes comparison to other types of transplant recipients. Chest 2003, 123, 800–808. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.-W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus Amphotericin B for Primary Therapy of Invasive Aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Weigt, S.S.; Elashoff, R.M.; Huang, C.; Ardehali, A.; Gregson, A.L.; Kubak, B.; Fishbein, M.C.; Saggar, R.; Keane, M.P.; Lynch, J.P., III; et al. Aspergillus Colonization of the Lung Allograft Is a Risk Factor for Bronchiolitis Obliterans Syndrome. Am. J. Transplant. 2009, 9, 1903–1911. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Burgel, P.-R.; Gartner, S.; van Koningsbruggen-Rietschel, S.; Naehrlich, L.; Sermet-Gaudelus, I.; Southern, K.W. Impact of COVID-19 on people with cystic fibrosis. Lancet Respir. Med. 2020, 8, e35–e36. [Google Scholar] [CrossRef]
- Mathew, H.R.; Choi, M.Y.; Parkins, M.D.; Fritzler, M.J. Systematic review: Cystic fibrosis in the SARS-CoV-2/COVID-19 pandemic. BMC Pulm. Med. 2021, 21, 173. [Google Scholar] [CrossRef]
- Hofer, M.; Schmid, C.; Benden, C.; Speich, R.; Inci, I.; Weder, W.; Boehler, A. Diabetes mellitus and survival in cystic fibrosis patients after lung transplantation. J. Cyst. Fibros. 2012, 11, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Spira, A.; Gutierrez, C.; Chaparro, C.; Hutcheon, M.A.; Chan, C.K. Osteoporosis and Lung Transplantation: A prospective study. Chest 2000, 117, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Gilljam, M.; Chaparro, C.; Tullis, E.; Chan, C.; Keshavjee, S.; Hutcheon, M. GI Complications After Lung Transplantation in Patients with Cystic Fibrosis. Chest 2003, 123, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Madill, J.; Gutierrez, C.; Grossman, J.; Allard, J.; Chan, C.; Hutcheon, M.; Keshavjee, S.H. Nutritional assessment of the lung transplant patient: Body mass index as a predictor of 90–day mortality following transplantation. J. Heart Lung Transplant. 2001, 20, 288–296. [Google Scholar] [CrossRef]
- Houwen, R.H.; van der Doef, H.P.; Sermet, I.; Munck, A.; Hauser, B.; Walkowiak, J.; Robberecht, E.; Colombo, C.; Sinaasappel, M.; Wilschanski, M.; et al. Defining DIOS and Constipation in Cystic Fibrosis with a Multicentre Study on the Incidence, Characteristics, and Treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, J.R.; Ansari, N.; Glanville, A.R.; Meagher, A.P.; Lord, R.V.N. Distal Intestinal Obstruction Syndrome (DIOS) in Patients with Cystic Fibrosis After Lung Transplantation. J. Gastrointest. Surg. 2009, 13, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Dray, X.; Bienvenu, T.; Desmazes—Dufeu, N.; Dusser, D.; Marteau, P.; Hubert, D. Distal intestinal obstruction syndrome in adults with cystic fibrosis. Clin. Gastroenterol. Hepatol. 2004, 2, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; Gilchrist, F.J.; Carroll, W. Interventions for preventing distal intestinal obstruction syndrome (DIOS) in cystic fibrosis. Cochrane Database Syst. Rev. 2018, 6, CD012619. [Google Scholar] [CrossRef] [PubMed]
- Sayah, D.M.; Belperio, J.A.; Weigt, S.S.; Lynch, J. Lung Transplantation for Cystic Fibrosis: Results, Indications, Complications, and Controversies. Semin. Respir. Crit. Care Med. 2015, 36, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Ramos, K.J.; Somayaji, R.; Lease, E.D.; Goss, C.H.; Aitken, M.L. Cystic fibrosis physicians’ perspectives on the timing of referral for lung transplant evaluation: A survey of physicians in the United States. BMC Pulm. Med. 2017, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Koutsokera, A.; Varughese, R.A.; Sykes, J.; Orchanian-Cheff, A.; Shah, P.S.; Chaparro, C.; Tullis, E.; Singer, L.; Stephenson, A.L. Pre-transplant factors associated with mortality after lung transplantation in cystic fibrosis: A systematic review and meta-analysis. J. Cyst. Fibros. 2019, 18, 407–415. [Google Scholar] [CrossRef]
- Upala, S.; Panichsillapakit, T.; Wijarnpreecha, K.; Jaruvongvanich, V.; Sanguankeo, A. Underweight and obesity increase the risk of mortality after lung transplantation: A systematic review and meta-analysis. Transpl. Int. 2016, 29, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M.R.; Pilewski, J.M. Lung Transplantation for Cystic Fibrosis. Clin. Chest Med. 2016, 37, 127–138. [Google Scholar] [CrossRef]
- Ramos, K.J.; Kapnadak, S.G.; Bradford, M.C.; Somayaji, R.; Morrell, E.D.; Pilewski, J.M.; Lease, E.D.; Mulligan, M.S.; Aitken, M.L.; Gries, C.J.; et al. Underweight Patients with Cystic Fibrosis Have Acceptable Survival Following Lung Transplantation. Chest 2020, 157, 898–906. [Google Scholar] [CrossRef]
- Kelm, D.J.; Bonnes, S.L.; Jensen, M.D.; Eiken, P.W.; Hathcock, M.A.; Kremers, W.K.; Kennedy, C.C. Pre-transplant wasting (as measured by muscle index) is a novel prognostic indicator in lung transplantation: A united network for organ sharing registry study. Clin. Transplant. 2016, 30, 247–255. [Google Scholar] [CrossRef]
- Rozenberg, D.; Mathur, S.; Herridge, M.; Goldstein, R.; Schmidt, H.; Chowdhury, N.A.; Mendes, P.; Singer, L.G. Thoracic muscle cross-sectional area is associated with hospital length of stay post lung transplantation: A retrospective cohort study. Transpl. Int. 2017, 30, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Jennerich, A.L.; Downey, L.; Goss, C.H.; Kapnadak, S.G.; Pryor, J.B.; Ramos, K.J. Computed tomography body composition and clinical outcomes following lung transplantation in cystic fibrosis. BMC Pulm. Med. 2023, 23, 105. [Google Scholar] [CrossRef]
- Thabut, G.; Mal, H. Outcomes after lung transplantation. J. Thorac. Dis. 2017, 9, 2684–2691. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.G.; Hyzny, E.J.; Ryan, J.P.; Morrell, M.R.; Pilewski, J.; Sanchez, P.G. Outcomes following lung re-transplantation in patients with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 482–488. [Google Scholar] [CrossRef]
- Iguidbashian, J.; Cotton, J.; King, R.W.; Carroll, A.M.; Gergen, A.K.; Meguid, R.A.; Fullerton, D.A.; Suarez-Pierre, A. Survival following lung transplantation: A population-based nested case-control study. J. Card. Surg. 2022, 37, 1153–1160. [Google Scholar] [CrossRef]
- Hayanga, A.J.; Du, A.L.; Joubert, K.; Tuft, M.; Baird, R.; Pilewski, J.; Morrell, M.; D’Cunha, J.; Shigemura, N. Mechanical Ventilation and Extracorporeal Membrane Oxygenation as a Bridging Strategy to Lung Transplantation: Significant Gains in Survival. Am. J. Transplant. 2018, 18, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Halloran, K.; Aversa, M.; Tinckam, K.; Martinu, T.; Binnie, M.; Chaparro, C.; Chow, C.-W.; Waddell, T.; McRae, K.; Pierre, A.; et al. Comprehensive outcomes after lung retransplantation: A single-center review. Clin. Transplant. 2018, 32, e13281. [Google Scholar] [CrossRef]
- Hall, D.J.; Belli, E.V.; Gregg, J.A.; Salgado, J.C.; Baz, M.A.; Staples, E.D.; Beaver, T.M.; Machuca, T.N. Two Decades of Lung Retransplantation: A Single-Center Experience. Ann. Thorac. Surg. 2017, 103, 1076–1083. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Kaleekal, T.S.; Graviss, E.A.; Nguyen, D.T.; Sinha, N.; Goodarzi, A.; Agboli, I.; Suarez, E.E.; Loebe, M.; Scheinin, S.A.; et al. Retransplantation Outcomes at a Large Lung Transplantation Program. Transplant. Direct 2018, 4, e404. [Google Scholar] [CrossRef]
- Iacono, A.T.; Johnson, B.A.; Grgurich, W.F.; Youssef, J.G.; Corcoran, T.E.; Seiler, D.A.; Dauber, J.H.; Smaldone, G.C.; Zeevi, A.; Yousem, S.A.; et al. A Randomized Trial of Inhaled Cyclosporine in Lung-Transplant Recipients. N. Engl. J. Med. 2006, 354, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacono, A.; Wijesinha, M.; Rajagopal, K.; Murdock, N.; Timofte, I.; Griffith, B.; Terrin, M. A randomised single-centre trial of inhaled liposomal cyclosporine for bronchiolitis obliterans syndrome post-lung transplantation. ERJ Open Res. 2019, 5, 00167. [Google Scholar] [CrossRef] [PubMed]
- Efficacy + Safety of Liposome Cyclosporine A to Treat Bronchiolitis Obliterans Post Single Lung Transplant (BOSTON-1)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03657342?term=inhaled+cyclosporine&cond=chronic+lung+transplant+rejection&draw=2&rank=1 (accessed on 29 May 2023).
- Efficacy + Safety of Liposome Cyclosporine A to Treat Bronchiolitis Obliterans Post Single Lung Transplant (BOSTON-2)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03656926?term=inhaled+cyclosporine&cond=chronic+lung+transplant+rejection&draw=2&rank=2 (accessed on 29 May 2023).
- Benden, C.; Goldfarb, S.B.; Stehlik, J. An aging population of patients with cystic fibrosis undergoes lung transplantation: An analysis of the ISHLT Thoracic Transplant Registry. J. Heart Lung Transplant. 2019, 38, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Clausen, E.S.; Hadjiliadis, D. Age at Lung Transplant Impacts Post-Transplant Survival in Cystic Fibrosis; Why? Ann. Am. Thorac. Soc. 2021, 18, 28–29. [Google Scholar] [CrossRef]
- Accurso, F.J.; Rowe, S.M.; Clancy, J.; Boyle, M.P.; Dunitz, J.M.; Durie, P.R.; Sagel, S.D.; Hornick, D.B.; Konstan, M.W.; Donaldson, S.H.; et al. Effect of VX-770 in Persons with Cystic Fibrosis and the G551D-CFTR Mutation. N. Engl. J. Med. 2010, 363, 1991–2003. [Google Scholar] [CrossRef] [Green Version]
- Fidler, M.C.; Beusmans, J.; Panorchan, P.; Van Goor, F. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor. J. Cyst. Fibros. 2017, 16, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Ramos, K.J.; Pilewski, J.M.; Taylor-Cousar, J.L. Challenges in the use of highly effective modulator treatment for cystic fibrosis. J. Cyst. Fibros. 2021, 20, 381–387. [Google Scholar] [CrossRef]
- Benninger, L.A.; Trillo, C.; Lascano, J. CFTR modulator use in post lung transplant recipients. J. Heart Lung Transplant. 2021, 40, 1498–1501. [Google Scholar] [CrossRef]
- Smith, M.; Ryan, K.J.; Gutierrez, H.; Sanchez, L.H.G.; Anderson, J.N.; Acosta, E.P.; Benner, K.W.; Guimbellot, J.S. Ivacaftor-elexacaftor-tezacaftor and tacrolimus combination in cystic fibrosis. J. Cyst. Fibros. 2022, 21, e8–e10. [Google Scholar] [CrossRef]
- Andersen, D.H. Cystic fibrosis of the pancreas and its relation to celiac disease. Am. J. Dis. Child. 1938, 56, 344. [Google Scholar] [CrossRef]
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef]
- Scott, J.; Hutter, J.; Stewart, S.; Higenbottam, T.; Hodson, M.; Penketh, A.; Wallwork, J. Heart-lung transplantation for cystic fibrosis. Lancet 1988, 332, 192–194. [Google Scholar] [CrossRef]
General Indications | -Advanced lung disease that is refractory to medical therapy -Greater than 50% mortality from lung disease without transplantation over the next two years -Greater than 80% five-year survival post-transplantation |
Absolute Contraindications | -Clinical shock, disseminated infection, or HIV infection with a detectable viral load -Malignancy with high risk of recurrence or cancer-related death -Lack of interest in transplantation, evidence of persistent non-adherence to treatment -Non-pulmonary organ dysfunction -GFR less than 40 -Stroke or acute coronary syndrome within the past thirty days -Acute liver failure or cirrhosis with synthetic dysfunction -Hematologic disorders not amenable to treatment -Active substance use or dependence |
Relative Contraindications | -Age greater than 70 years -Severe coronary artery disease or cerebrovascular disease -BMI greater than 35 or less than 16 kg/m2 -Severe esophageal dysmotility, chest wall deformity, or previous thoracic surgery expected to cause difficulty with post-transplant healing -Infection or colonization with highly resistant or virulent organism -Detectable hepatitis B or C viral load -Limited functional status or neurocognitive condition that may interfere with adherence to regimen after transplantation |
CF-Specific Referral Criteria | -FEV1 < 50% predicted with a greater than 20% relative decline in FEV1 within one year -FEV1 < 40% predicted accompanied by: -More than two exacerbations per year requiring antibiotics -Massive hemoptysis of more than 240 mL that necessitates ICU admission or bronchial artery embolization -BMI less than 18 -FeV1 < 30% predicted -Six-minute walk test result < 400 m -Advanced CF lung disease: -Hypoxia (PaO2 < 55 mmHg) at rest or with exertion -Hypercapnia (PaCO2 > 50 mmHg) -Previous exacerbation requiring positive pressure ventilation -Pulmonary artery systolic pressure > 50 mmHg |
Category | Recommendation | % Vote |
---|---|---|
General Care | CF Lung Transplant Recipients should follow up with a multidisciplinary CF care team within 6–12 months of transplant to resume extra-pulmonary CF care. Communication between the transplant and CF care teams is essential for coordination of care | 100% |
General Care | CF and Transplant programs should operationalize infection prevention and control policies across all services as indicated by the CF Foundation’s Infection Prevention and Control Guidelines | 95% |
Infectious disease | Non–invasive CF-specific bacterial, fungal, and AFB respiratory cultures should be obtained by the transplant or CF center every 3 months in actively waitlisted transplant candidates, and clinicians should review prior pathogen history to guide the peri-operative antibiotic regimen | 100% |
Infectious disease | An intraoperative CF bacterial, fungal and AFB culture of the native lung should be obtained at the time of lung transplantation | 100% |
Infectious disease | In CF Lung Transplant Recipients with multidrug resistant pathogens, susceptibility-driven antimicrobials should be administered when the recipient has a susceptible antibiotic choice with acceptable toxicity. In the absence of a susceptibility-driven perioperative choice, previously effective regimens should be considered | 100% |
Infectious disease | For CF Lung Transplant Recipients, there are insufficient evidence to recommend for or against routine intraoperative pleural and tracheal irrigation with antimicrobial agents to decrease infections after transplant | 100% |
Infectious disease | Perioperative and/or early posttransplant inhaled antibiotics for bacterial pathogens isolated prior to transplant should be considered as a complement to systemic antimicrobials in CF Lung Transplant Recipients | 100% |
Infectious disease | There is insufficient evidence to recommend for or against the use of inhaled antibiotics for prevention of recolonization or chronic lung allograft dysfunction (CLAD) | 100% |
Infectious disease | There is insufficient evidence to recommend for or against the routine collection of sputum for bacterial, fungal or AFB cultures in asymptomatic CF Lung Transplant Recipients | 95% |
Sinus Disease | In individuals with CF and asymptomatic chronic rhinosinusitis (CRS), the CF Foundation recommends against pre-transplant prophylactic sinus surgery for the prevention of lung graft colonization. | 100% |
Sinus Disease | CF Lung Transplant Recipients should be screened for symptoms of CRS at least annually | 100% |
Sinus Disease | CF Lung Transplant Recipients with moderate or severe symptomatic CRS should be seen in consultation with an otolaryngologist experienced in CF for consideration of optimal topical therapies and endoscopic sinus surgery | 100% |
Nutrition and GI Complications | CF Lung Transplant Recipients should receive ongoing consultation with a dietitian with CF expertise in order to obtain individualized nutritional therapy to achieve an established BMI or weight-for-length goal | 100% |
Nutrition and GI Complications | In CF Lung Transplant Recipients, vitamin D supplementation should be continued, but a combination of vitamin A,D,E,K supplements should be discontinued after lung transplantation; fat soluble vitamin levels should be measured by 3 months after transplant, and levels should be repleted and followed individually as needed | 100% |
Nutrition and GI Complications | Symptoms should be assessed daily in hospitalized patients, particularly within the immediate post-operative period and with any opiate medication administration, for early signs of obstipation and obstruction that might herald emergence of distal intestinal obstruction syndrome (DIOS) | 100% |
Nutrition and GI Complications | In CF Lung Transplant Recipients who develop DIOS, early enteral lavage should be considered. Refractory DIOS should be managed in coordination with experts in CF gastrointestinal complications to reduce risk for prolonged obstruction and potential need for operative management | 100% |
Nutrition and GI Complications | For CF Lung Transplant Recipients who experience new or worsening symptoms of gastrointestinal dysmotility, a gastroenterologist and a dietitian with CF expertise should be consulted to guide the approach to symptom control and potential interventions | 100% |
Nutrition and GI Complications | CF Lung Transplant Recipients should undergo liver enzyme monitoring for CF Liver Disease (CFLD) at least annually, and when levels are elevated, patients should receive non-invasive imaging techniques for initial evaluation | |
Diabetes and Bone Health | CF Lung Transplant Recipients who do not have Cystic Fibrosis-Related Diabetes (CFRD) should be screened with an oral glucose tolerance test (OGTT) at 3–6 months after transplant and then annually–following the recommended screening guidelines for CFRD | 95% |
Diabetes and Bone Health | CF Lung Transplant Recipients who have CFRD should be treated with insulin and should undergo intensive self-blood glucose monitoring (SBGM) and individualized close clinical follow-up in addition to lifestyle modifications. Furthermore, an endocrinologist with expertise in CF and transplant associated DM should be consulted when possible | |
Diabetes and Bone Health | For CF Lung Transplant Recipients, bone density should be assessed with dual energy X-ray absorptiometry (DEXA) at 6–12 months after transplant | 100% |
Mental Health and Family Planning | CF Lung Transplant Recipients should have mental health screening and consultation for depression, anxiety, and post-traumatic stress disorder (PTSD) within 6 months of transplant and then should resume annual screening per the International Committee on Mental Health (ICMH) Depression and Anxiety Guidelines | 100% |
Mental Health and Family Planning | Caregivers of CF Lung Transplant Recipients should be screened for depression, anxiety, and PTSD within 6 months of transplant and should be referred for further assessment if necessary | 90% |
Mental Health and Family Planning | Females with CF who are post-lung transplant and are considering pregnancy should assess carefully their individual risks through shared decision making with maternal fetal medicine and transplant providers | 100% |
Mental Health and Family Planning | Females with CF who are post-lung transplant should avoid pregnancy for at least the first 2 years after transplantation because of the increased risk of acute rejection, accelerated chronic rejection, and death | 100% |
Pharmacology and Therapeutics | There is insufficient evidence to recommend for or against the use of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators for CF Lung Transplant Recipients | 100% |
Pharmacology and Therapeutics | There is insufficient evidence to recommend for or against the use of induction immunosuppression for CF Lung Transplant Recipients | 100% |
Pharmacology and Therapeutics | CF Lung Transplant Recipients should have close monitoring of calcineurin inhibitor drug levels because of altered pharmacokinetics | 100% |
Pharmacology and Therapeutics | Reduced renal function is common in CF Lung Transplant Recipients, and serum creatinine is often a poor surrogate for renal function. Therefore, medications should be dosed carefully according to the estimated glomerular filtration rate (GFR) of the patient, and when available, therapeutic drug monitoring should be implemented | 100% |
Pharmacology and Therapeutics | There is insufficient evidence to recommend for or against the routine use of airway clearance, dornase alfa, or hypertonic saline among CF Lung Transplant Recipients | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Smith, A.T.; Korotun, M.; Iacono, A.; Wang, J. Lung Transplantation in a New Era in the Field of Cystic Fibrosis. Life 2023, 13, 1600. https://doi.org/10.3390/life13071600
Huang W, Smith AT, Korotun M, Iacono A, Wang J. Lung Transplantation in a New Era in the Field of Cystic Fibrosis. Life. 2023; 13(7):1600. https://doi.org/10.3390/life13071600
Chicago/Turabian StyleHuang, Wei, Alexander T. Smith, Maksim Korotun, Aldo Iacono, and Janice Wang. 2023. "Lung Transplantation in a New Era in the Field of Cystic Fibrosis" Life 13, no. 7: 1600. https://doi.org/10.3390/life13071600