Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Essential Oil Extraction
2.2. GC-MS Characterization
2.3. Insect Rearing
2.4. Insecticidal Activity of EO
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Essential Oils (EO)
3.2. Insecticidal Activity of EO
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorensen, J.T. Aphids. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 27–31. [Google Scholar]
- Nalam, V.; Louis, J.; Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 2019, 279, 96–107. [Google Scholar] [CrossRef]
- Sun, M.; Voorrips, R.E.; Steenhis-Broers, G.; Van’t Westende, W.; Vosman, B. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol. 2018, 18, 138. [Google Scholar] [CrossRef] [Green Version]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, E. Aphids as transport devices for plant viruses. Comptes Rendus Biol. 2010, 333, 524–538. [Google Scholar] [CrossRef]
- Dedryver, C.A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Casida, J.E.; Quistad, G.B. Golden Age of insecticide research. Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2013, 70, 2–5. [Google Scholar] [CrossRef]
- Amorós-Jiménez, R.; Pineda, A.; Fereres, A.; Marcos-García, M.Á. Prey availability and abiotic requirements of immature stages of the aphid predator Sphaerophoria rueppellii. Biol. Control 2012, 63, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Pekas, A.; De Craecker, I.; Boonen, S.; Wäckers, F.L.; Moerkens, R. One stone; two birds: Concurrent pest control and pollination services provided by aphidophagous hoverflies. Biol. Control 2020, 149, 104328. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; de Sousa, D.P., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar]
- Arigó, A.; Rigano, F.; Micalizi, G.; Dugo, P.; Mondello, L. Oxygen heterocyclic compound screening in Citrus essential oils by linear retention index approach applied to liquid chromatography coupled to photodiode array detector. Flav. Frag. J. 2019, 34, 349–364. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Renault-Roger, C. Essential oils in insect control. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 4087–4107. [Google Scholar]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K.K. Phytochemical biopesticides: Some recent developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Isman, M.B. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica 1997, 25, 339–344. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Mekapogu, A.R. Finney’s Probit Analysis Spreadsheet Calculator (Version 2021). Available online: https://probitanalysis.wordpress.com/ (accessed on 24 May 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 27 March 2023).
- Vouillamoz, J.F.; Christ, B. Thymus vulgaris L.: Thyme. In Medicinal Aromatic and Stimulant Plants; Novak, J., Blüthner, W.D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 547–557. [Google Scholar]
- Jordán, M.J.; Martínez, R.M.; Goodner, K.L.; Baldwin, E.; Sotomayor, J.A. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oil composition. Ind. Crop Prod. 2006, 24, 253–263. [Google Scholar] [CrossRef]
- Hudaib, M.; Aburjai, T. Volatile components of Thymus vulgaris L. from wild-growing and cultivated plants in Jordan. Flav. Frag. J. 2007, 22, 322–327. [Google Scholar] [CrossRef]
- Labiad, M.H.; Belmaghraoui, W.; Ghanimi, A.; El-Guezzane, C.; Chahboun, N.; Harhar, H.; Egea-Gilabert, C.; Zarrouk, A.; Tabyaoui, M. Biological properties and chemical profiling of essential oils of Thymus (vulgaris, algeriensis and broussonettii) grown in Morocco. Chem. Data Coll. 2022, 37, 100797. [Google Scholar] [CrossRef]
- Werdin González, J.O.; Gutiérrez, M.M.; Murray, A.P.; Ferrero, A.A. Composition and biological activity of essential oils from Labiatae against Nezara viridula (Hemiptera: Pentatomidae) soybean pest. Pest Manag. Sci. 2011, 67, 948–955. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, Y.J.; Lee, C.H.; Chung, N.; Lee, H.S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Shukla, R.; Singh, L.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against postharvest fungal infestation of food commodities. Innov. Food Sci. Emerg. Technol. 2008, 9, 575–580. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Petrakis, E.A.; Arvaniti, K.A.; Kimbaris, A.C.; Polissiou, M.G.; Perdikis, D.C. Comparative bioactivity of essential oils from two Mentha pulegium (Lamiaceae) chemotypes against Aphis gossypii, Aphis spiraecola, Tetranychus urticae and the generalist predator Nesidiocoris tenuis. Phytoparasitica 2019, 47, 683–692. [Google Scholar] [CrossRef]
- Koorki, Z.; Shahidi-Noghabi, S.; Smagghe, G.; Mahdian, K. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against Aphis gossypii Glover (Hemiptera: Aphididae) under controlled laboratory conditions. Int. J. Trop. Insect Sci. 2022, 42, 2827–2833. [Google Scholar] [CrossRef]
- Lesnik, S.; Furlan, V.; Bren, U. Rosemary (Rosmarinus officinalis L.) extraction techniques, analytical methods and health-promoting biological effects. Phytochem. Rev. 2021, 20, 1273–1328. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanchez-Silva, A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Melero-Bravo, E.; Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Fernández-Sestelo, M.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Variability of essential oil in cultivated populations of Rosmarinus officinalis L. in Spain. Euphytica 2022, 218, 65. [Google Scholar] [CrossRef]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-kaf, A.G.; Setzer, W.N. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, R.; Provenzano, M.E.; Rossini, F. Effect of mulch on initial coverage of four groundcover species for low input landscaping in a Mediterranean climate. Urban For. Urban Green. 2016, 19, 176–183. [Google Scholar] [CrossRef]
- Serralutzu, F.; Stangoni, A.P.; Amadou, B.; Tijan, D.; Re, G.A.; Marceddu, S.; Dore, A.; Bullitta, S. Essential oil composition and yield of Rosmarinus officinalis L. natural population with an extended flowering season in a coastal Mediterranean environment and perspectives for exploitations. Genet. Resour. Crop Evol. 2020, 67, 1777–1793. [Google Scholar] [CrossRef]
- Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J.M. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flav. Frag. J. 2003, 18, 481–484. [Google Scholar] [CrossRef]
- Ahmed, Q.; Agarwal, M.; Al-Obaidi, R.; Wang, P.; Ren, Y. Evaluation of aphicidal effect of essential oils and their synergistic effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae). Molecules 2021, 26, 3055. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef]
- Laborda, R.; Manzano, I.; Gamón, M.; Gavidia, I.; Pérez-Bermúdez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2013, 48, 106–110. [Google Scholar] [CrossRef]
- Ainane, A.; Khammour, F.; Charaf, S.; Elabboubi, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today. Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavanda genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; El Menyiy, N.; El Moudden, H.; Harhar, H.; El Idrissi, Z.L.; Khouchlaa, A.; Jouadi, I.; El Baaboua, A.; Taha, D.; et al. Traditional use, phytochemistry, toxicology, and pharmacological properties of Lavandula dentata L.: A comprehensive review. S. Afr. J. Bot. 2023, 154, 67–87. [Google Scholar] [CrossRef]
- Wagner, L.S.; Sequin, C.J.; Foti, N.; Campos-Soldini, M.P. Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatal. Agric. Biotechnol. 2021, 35, 102092. [Google Scholar] [CrossRef]
- Imen, D.; Soumaya, H.-H.; Imed, C.; Jouda, M.B.J.; Ahmed, L.; Rym, C. Essential oil from flowering tops of Lavandula dentata (L): Chemical composition, antimicrobial, antioxidant and insecticidal activities. J. Essent. Oil Bear. Plants 2021, 24, 632–647. [Google Scholar] [CrossRef]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
Compound Family | T. vulgaris | R. officinalis var. ‘Prostratus’ | L. dentata |
---|---|---|---|
Monoterpenoids | 81.20 ± 0.23 | 91.98 ± 0.23 | 69.74 ± 0.50 |
Sesquiterpenoids | 12.85 ± 0.21 | 1.93 ± 0.03 | 8.05 ± 0.33 |
Acetophenones | 0.06 ± 0.002 | ||
Alcohols | 0.02 ± 0.03 | ||
Aldehydes | 0.23 ± 0.03 | 0.08 ± 0.09 | |
Anisols | 0.05 ± 0.00003 | 0.01 ± 0.0001 | |
Aromatic hydrocarbons | 0.01 ± 0.0005 | 0.03 ± 0.04 | |
Benzoic acid esters | 0.06 ± 0.04 | ||
Benzoyl derivatives | 0.01 ± 0.0004 | 0.03 ± 0.002 | |
Branched unsaturated hydrocarbons | 0.13 ± 0.18 | 0.04 ± 0.03 | 0.02 ± 0.02 |
Cetones | 0.34 ± 0.02 | ||
Cycloalkenes | 0.02 ± 0.03 | ||
Cyclodienes | 0.12 ± 0.17 | ||
Dimethoxybenzenes | 1.00 ± 0.01 | 0.11 ± 0.001 | 0.10 ± 0.02 |
Diterpenoids | 0.07 ± 0.02 | 0.40 ± 0.01 | |
Enones | 0.06 ± 0.002 | ||
Esters | 0.23 ± 0.001 | 0.01 ± 0.02 | 0.35 ± 0.03 |
Fatty alcohols | 0.03 ± 0.0004 | 0.02 ± 0.0002 | |
Fatty esters | 0.09 ± 0.001 | 0.02 ± 0.01 | 0.40 ± 0.01 |
Jasmonate esters | 0.02 ± 0.0004 | ||
Medium-chain aldehydes | 0.07 ± 0.0004 | 0.05 ± 0.001 | 0.01 ± 0.01 |
Naphthalene | 0.05 ± 0.07 | ||
Octadecanoids | 0.32 ± 0.002 | ||
Phenols | 0.13 ± 0.001 | ||
Phenylacetaldehydes | 0.06 ± 0.0001 | 0.20 ± 0.003 | |
Phenylpropanoids | 0.18 ± 0.003 | 0.02 ± 0.001 | |
Polycyclic hydrocarbons | 0.04 ± 0.06 | ||
Tertiary alcohols | 0.14 ± 0.20 | ||
Unclassified | 3.97 ± 0.16 | 4.97 ± 0.36 | 19.8 ± 0.22 |
Total identified (%) | 96.03 ± 0.16 | 95.03 ± 0.36 | 80.20 ± 0.23 |
Yield (mL EO 100 g dw−1) | 1.86 ± 0.51 | 0.65 ± 0.17 | 2.10 ± 0.75 |
Compound | R.I. a | Relative Abundance (%) |
---|---|---|
Thymus vulgaris | ||
1,8-Cineole | 1035 | 18.11 ± 0.46 |
Camphor | 1148 | 11.18 ± 0.05 |
endo-Borneol | 1168 | 10.32 ± 0.02 |
Camphene | 953 | 5.81 ± 0.04 |
Linalool | 1102 | 5.46 ± 0.04 |
α-Terpineol | 1194 | 4.54 ± 0.03 |
α-Pinene | 940 | 3.74 ± 0.04 |
o-Cymene | 1027 | 3.55 ± 0.04 |
4-Terpineol | 1179 | 2.73 ± 0.01 |
β-Pinene | 982 | 2.66 ± 0.03 |
Rosmarinus officinalis var. ‘prostratus’ | ||
α-Pinene | 940 | 18.72 ± 0.15 |
Verbenone | 1216 | 13.42 ± 0.03 |
1,8-Cineole | 1035 | 10.32 ± 0.002 |
Camphor | 1148 | 7.14 ± 0.03 |
Bornyl acetate | 1286 | 5.17 ± 0.01 |
Limonene | 1031 | 4.83 ± 0.05 |
Camphene | 953 | 4.41 ± 0.04 |
β-Myrcene | 992 | 3.47 ± 0.05 |
Linalool | 1102 | 3.02 ± 0.01 |
α-Terpineol | 1194 | 3.01 ± 0.02 |
Lavandula dentata | ||
1,8-Cineole | 1035 | 34.65 ± 0.95 |
Camphor | 1148 | 7.58 ± 0.07 |
β-Pinene | 982 | 6.39 ± 0.09 |
Myrtenal | 1197 | 3.16 ± 0.01 |
α-Pinene | 940 | 2.56 ± 0.03 |
α-Terpineol | 1194 | 1.91 ± 0.01 |
Linalool | 1102 | 1.86 ± 0.002 |
β-Eudesmol | 1651 | 1.76 ± 0.03 |
p-Thymol | 1303 | 1.50 ± 0.02 |
Pinocarvone | 1164 | 1.43 ± 0.001 |
Essential Oil | Dose (μL/mL) | Mortality (%) Mean ± SD * | LD50 (μL/mL) (95% CI) + |
---|---|---|---|
Thymus vulgaris | 4 | 34.3 ± 23.3 a | 6.47 (4.01–10.42) |
10 | 54.3 ± 22.9 a | ||
15 | 78.0 ± 24.6 b | ||
Rosmarinus officinalis var. ‘prostratus’ | 4 | 38.6 ± 21.7 a | 9.94 (2.85–34.60) |
10 | 41.7 ± 25.3 a | ||
15 | 56.7 ± 25.6 b | ||
Lavandula dentata | 4 | 46.9 ± 25.4 a | - |
10 | 53.7 ± 24.8 b | ||
15 | 31.2 ± 21.6 c | ||
Control | 14.2 ± 11.4 |
Essential Oil Binary Mixture 1 | Mortality (%) Mean ± SD * |
---|---|
T. vulgaris + R. officinalis var. ‘prostratus’ | 41.2 ± 21.4 a |
R. officinalis var. ‘prostratus’ + L. dentata | 62.7 ± 28.5 b |
T. vulgaris + L. dentata | 61.5 ± 26.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas, J.L.; Sagarduy-Cabrera, A.; López Santos-Olmo, M.; Marcos-García, M.Á. Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides. Life 2023, 13, 1621. https://doi.org/10.3390/life13081621
Casas JL, Sagarduy-Cabrera A, López Santos-Olmo M, Marcos-García MÁ. Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides. Life. 2023; 13(8):1621. https://doi.org/10.3390/life13081621
Chicago/Turabian StyleCasas, José Luis, Aitor Sagarduy-Cabrera, María López Santos-Olmo, and Mª Ángeles Marcos-García. 2023. "Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides" Life 13, no. 8: 1621. https://doi.org/10.3390/life13081621
APA StyleCasas, J. L., Sagarduy-Cabrera, A., López Santos-Olmo, M., & Marcos-García, M. Á. (2023). Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides. Life, 13(8), 1621. https://doi.org/10.3390/life13081621