Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream (Sparus aurata) and Whiting Fish (Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of LAB Strains
2.2. Antibacterial Activity Testing
2.3. Nature of Inhibition Substances
2.4. Resistance to Temperature Effect
2.5. PCR Detection of Bacteriocin Genes
2.6. Antimicrobial Susceptibility Testing
2.7. Gelatinase Production
2.8. DNase Production
2.9. Hemolytic Activity
2.10. Genetic Screening for Virulence Potential and Detection of Genes Encoding Antimicrobial Resistance
2.11. Assessment of the Probiotic Potential of Safety Isolates
2.11.1. Growth at Different pH Values
2.11.2. Gastric and Bile Tolerance
2.11.3. Hydrophobicity
2.11.4. Coexistence of Isolates
3. Results and Discussion
3.1. Selection and Identification of Bacteriocinogenic LAB Isolates
3.2. Properties of Antibacterial Substances and Molecular Identification of Bacteriocins
3.3. Safety Assessments and Probiotic Properties of Bacteriogenic LAB Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeVuyst, L.; Leroy, F. Bacteriocins from Lactic Acid Bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 2007, 13, 194–199. [Google Scholar]
- Henning, C.; Vijayakumar, P.; Adhikari, R.; Jagannathan, B.; Gautam, D.; Muriana, P.M. Isolation and taxonomic identity of bacteriocin-producing Lactic Acid Bacteria from Retail foods and animal sources. Microorganisms 2015, 3, 80–93. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- van Zyl, W.F.; Deane, S.M.; Dicks, L.M.T. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020, 12, 1831339. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Contente, D.; Igrejas, G.; Câmara, S.P.A.; Dapkevicius, M.L.E.; Poeta, P. Role of exposure to Lactic Acid Bacteria from foods of animal origin in human health. Foods 2021, 10, 2092. [Google Scholar] [CrossRef]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Salek Farrokhi, A.; Darabi, N. Probiotics importance and their immunomodulatory properties. J. Cell. Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef]
- Govindaraj, K.; Samayanpaulraj, V.; Narayanadoss, V.; Uthandakalaipandian, R. Isolation of Lactic Acid Bacteria from intestine of freshwater fishes and elucidation of probiotic potential for aquaculture application. Probiotics Antimicrob. Proteins 2021, 13, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.R.; Moravej, H.; Tabandeh, F.; Zaghari, M.; Shivazad, M. Screening of lactic acid bacteria toward their selection as a source of chicken probiotic. Poult. Sci. 2009, 88, 1586–1593. [Google Scholar] [CrossRef]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Castellano, P.; Ibarreche, M.P.; Massani, M.B.; Fontana, C.; Vignolo, G.M. Strategies for pathogen biocontrol using Lactic Acid Bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 2017, 5, 38. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Popović, N.; Tolinački, M.; Golić, N. Enterococci from raw-milk cheeses: Current knowledge on safety, technological, and probiotic concerns. Foods 2021, 10, 2753. [Google Scholar] [CrossRef]
- Deng, Z.; Hou, K.; Zhao, J.; Wang, H. The probiotic properties of Lactic Acid Bacteria and their applications in animal husbandry. Curr. Microbiol. 2021, 79, 22. [Google Scholar] [CrossRef]
- FAO. Fisheries and Aquaculture Departement Fishery and Aquaculture Country Profiles. Algeria. Country Profile Fact Sheets. 2019. Available online: http://www.fao.org/fishery/ (accessed on 10 April 2022).
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2897–2912. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2016 (SOFIA): Contributing to Food Security and Nutrition for All; Food and Agriculture Organization: Rome, Italy, 2016; Volume 465, p. 200. [Google Scholar]
- Hai, N.V. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef]
- Vijayan, K.K.; Kumar, S.; Alavandi, S.V. Emerging pathogens in brackish aquaculture and challenges in aquatic health management. In Proceedings of the International Symposium on Aquatic Animal Health and Epidemiology for Sustainable Asian Aquaculture, Lucknow, India, 20–21 April 2017; ICAR-National Bureau of Fish Genetic Resources: Lucknow, India, 2017; pp. 140–144. [Google Scholar]
- Austin, B.; Austin, D.A. Miscellaneous pathogens. In Bacterial Fish Pathogens; Springer: Berlin/Heidelberg, Germany, 2012; pp. 413–441. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Al-Harbi, A.H.; Austin, B. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 2014, 431, 1–11. [Google Scholar] [CrossRef]
- Hossain, M.I.; Sadekuzzaman, M.; Ha, S.D. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res. Int. 2017, 100 Pt 1, 63–73. [Google Scholar] [CrossRef]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic Acid Bacteria in finfish: An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef] [PubMed]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Jaouani, I.; Abbassi, M.S.; Alessandria, V.; Bouraoui, J.; Ben Salem, R.; Kilani, H.; Mansouri, R.; Messadi, L.; Cocolin, L. High inhibition of Paenibacillus larvae and Listeria monocytogenes by Enterococcus isolated from different sources in Tunisia and identification of their bacteriocin genes. Lett. Appl. Microbiol. 2014, 59, 17–25. [Google Scholar] [CrossRef]
- Khemiri, M.; Abbassi, M.S.; Couto, N.; Mansouri, R.; Hammami, S.; Pomba, C. Genetic characterisation of Staphylococcus aureus isolated from milk and nasal samples of healthy cows in Tunisia: First report of ST97-t267-agrI-SCCmecV MRSA of bovine origin in Tunisia. J. Glob. Antimicrob. Resist. 2018, 14, 161–165. [Google Scholar] [CrossRef]
- Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Boudabbous, A.; Stal, L.J.; Cretoiu, M.S.; El Bour, M. Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Front. Microbiol. 2016, 7, 1072. [Google Scholar] [CrossRef] [PubMed]
- Lengliz, S.; Abbassi, M.S.; Rehaiem, A.; Ben Chehida, N.; Najar, T. Characterization of bacteriocinogenic Enterococcus isolates from wild and laboratory rabbits for the selection of autochthonous probiotic strains in Tunisia. J. Appl. Microbiol. 2021, 131, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, C.; Essanaa, J.; Sansonno, L.; Crotti, E.; Abdi, K.; Barbouche, N.; Balloi, A.; Gonella, E.; Alma, A.; Daffonchio, D.; et al. Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods. Biomed. Res. Int. 2013, 2013, 479893. [Google Scholar] [CrossRef] [PubMed]
- Dal Bello, B.; Rantsiou, K.; Bellio, A.; Zeppa, G.; Ambrosoli, R.; Civera, T.; Cocolin, L. Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations. LWT–Food Sci. Technol. 2010, 43, 1151–1159. [Google Scholar] [CrossRef]
- CLSI Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI supplement M100-S27; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- Cariolato, D.; Andrighetto, C.; Lombardi, A. Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 2008, 19, 886–892. [Google Scholar] [CrossRef]
- Strzelecki, J.; Hryniewicz, W.; Sadowy, E. Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Pol. J. Microbiol. 2011, 60, 287–292. [Google Scholar] [CrossRef]
- Jaouani, I.; Abbassi, M.S.; Ribeiro, S.C.; Khemiri, M.; Mansouri, R.; Messadi, L.; Silva, C.C. Safety and technological properties of bacteriocinogenic enterococci isolates from Tunisia. J. Appl. Microbiol. 2015, 119, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Da, R.; Tuo, X.; Cheng, Y.; Wei, J.; Jiang, K.; Lv, J.; Adediji, O.M.; Han, B. Probiotic and safety properties screening of Enterococcus faecalis from healthy Chinese infants. Probiotics Antimicrob. Proteins 2020, 12, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Abbassi, M.S.; Achour, W.; Ben Hassen, A. High-level gentamicin-resistant Enterococcus faecium strains isolated from bone marrow transplant patients: Accumulation of antibiotic resistance genes, large plasmids and clonal strain dissemination. Int. J. Antimicrob. Agents 2007, 29, 658–664. [Google Scholar] [CrossRef]
- Abbassi, M.S.; Znazen, A.; Mahjoubi, F.; Hammami, A.; Ben Hassen, A. Emergence of vancomycin-resistant Enterococcus faecium in Sfax: Clinical features and molecular typing. Med. Mal. Infect. 2007, 37, 240–241. [Google Scholar] [CrossRef]
- Raddaoui, A.; Tanfous, F.B.; Chebbi, Y.; Achour, W.; Baaboura, R.; Ben hassen, A. High prevalence of multidrug-resistant international clones among macrolide-resistant Streptococcus pneumoniae isolates in immunocompromised patients in Tunisia. Int. J. Antimicrob. Agents 2018, 52, 893–897. [Google Scholar] [CrossRef]
- Lengliz, S.; Cheriet, S.; Raddaoui, A.; Klibi, N.; Ben Chehida, N.; Najar, T.; Abbassi, M.S. Species distribution and genes encoding antimicrobial resistance in Enterococcus spp. isolates from rabbits residing in diverse ecosystems: A new reservoir of linezolid and vancomycin resistance. J. Appl. Microbiol. 2022, 132, 2760–2772. [Google Scholar] [CrossRef]
- Ben Said, L.; Klibi, N.; Dziri, R.; Borgo, F.; Boudabous, A.; Ben Slama, K.; Torres, C. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J. Sci. Food Agric. 2016, 96, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, L.; Jouini, A.; Fliss, I.; Torres, C.; Klibi, N. Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. Acta Vet. Hung. 2019, 67, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Elghaieb, H.; Freitas, A.R.; Abbassi, M.S.; Novais, C.; Zouari, M.; Hassen, A.; Peixe, L. Dispersal of linezolid-resistant enterococci carrying poxtA or optrA in retail meat and food-producing animals from Tunisia. J. Antimicrob. Chemother. 2019, 74, 2865–2869. [Google Scholar] [CrossRef] [PubMed]
- Elghaieb, H.; Tedim, A.P.; Abbassi, M.S.; Novais, C.; Duarte, B.; Hassen, A.; Peixe, L.; Freitas, A.R. From farm to fork: Identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat. J. Antimicrob. Chemother. 2020, 75, 30–35. [Google Scholar] [CrossRef]
- Khemiri, M.; Akrout Alhusain, A.; Abbassi, M.S.; El Ghaieb, H.; Santos Costa, S.; Belas, A.; Pomba, C.; Hammami, S. Clonal spread of methicillin-resistant Staphylococcus aureus-t6065-CC5-SCCmecV-agrII in a Libyan hospital. J. Glob. Antimicrob. Resist. 2017, 10, 101–105. [Google Scholar] [CrossRef]
- Argyri, A.A.; Nisiotou, A.A.; Mallouchos, A.; Panagou, E.Z.; Tassou, C.C. Performance of two potential probiotic Lactobacillus strains from the olive microbiota as starters in the fermentation of heat shocked green olives. Int. J. Food Microbiol. 2014, 171, 68–76. [Google Scholar] [CrossRef]
- Leyva-Madrigal, K.Y.; Luna-González, A.; Escobedo-Bonilla, C.M.; Fierro-Coronado, J.A.; Maldonado-Mendoza, I.E. Screening for potential probiotic bacteria to reduce prevalence of WSSV and IHHNV in whiteleg shrimp (Litopenaeus vennamei) under experimental conditions. Aquaculture 2011, 322–323, 16–22. [Google Scholar] [CrossRef]
- Sharma, K.K.; Soni, S.S.; Meharchandani, S. Congo red dye agar test as an indicator test for detection of invasive bovine Escherichia coli. Vet. Arh. 2006, 76, 363–366. [Google Scholar]
- Guo, X.H.; Kim, J.M.; Nam, H.M.; Park, S.Y.; Kim, J.M. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 2010, 16, 321–326. [Google Scholar] [CrossRef]
- Chahad, O.B.; El Bour, M.; Calo-Mata, P.; Boudabous, A.; Barros-Velàzquez, J. Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Res. Microbiol. 2012, 163, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.; Muñoz-Atienza, E.; Nahuelquín, Y.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe 2015, 32, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.J.G.; Grassotti, T.T.; Frazzon, A.P.G. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. Braz. J. Biol. 2021, 81, 954–961. [Google Scholar] [CrossRef]
- Iorizzo, M.; Albanese, G.; Testa, B.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; D’andrea, M.; Iaffaldano, N.; Coppola, R. Presence of Lactic Acid Bacteria in the intestinal tract of the Mediterranean trout (Salmo macrostigma) in its natural environment. Life 2021, 11, 667. [Google Scholar] [CrossRef]
- Alemayehu, D.; Hannon, J.A.; McAuliffe, O.; Ross, R.P. Characterization of plant-derived lactococci on the basis of their volatile compounds profile when grown in milk. Int. J. Food Microbiol. 2014, 172, 57–61. [Google Scholar] [CrossRef]
- Didinen, B.I.; Onuk, E.E.; Metin, S.; Cayli, O. Identification and characterization of lactic acid bacteriaisolated from rainbow trout (Oncorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquacult. Nutr. 2018, 24, 400–407. [Google Scholar] [CrossRef]
- Zhong, C.; Zhou, Y.; Zhao, J.; Fu, J.; Jiang, T.; Liu, B.; Chen, F.; Cao, G. High throughput sequencing reveals the abundance and diversity of antibiotic-resistant bacteria in aquaculture wastewaters, Shandong, China. 3 Biotech. 2021, 11, 104. [Google Scholar] [CrossRef]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of enterococci. Microbiol. Spectr. 2019, 7, 7–14. [Google Scholar] [CrossRef]
- Kusuda, R.; Kawai, K.; Salati, F.; Banner, C.R.; Fryer, J.L. Enterococcus seriolicida sp. nov., a fish pathogen. Int. J. Syst. Bacteriol. 1991, 41, 406–409. [Google Scholar] [CrossRef]
- Eldar, A.; Ghittino, C.; Asanta, L.; Bozzetta, E.; Goria, M.; Prearo, M.; Bercovier, H. Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr. Microbiol. 1996, 32, 85–88. [Google Scholar]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernández, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic amines degradation by Lactobacillus plantarum: Toward a potential application in wine. Front. Microbiol. 2012, 3, 122. [Google Scholar] [CrossRef] [PubMed]
- Stiles, M.E.; Holzapfel, W. Lactic acid bacteria of foods and their current taxonomy. Internat. J. Food Microbiol. 1997, 36, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Oberg, T.S.; McMahon, D.J.; Culumber, M.D.; McAuliffe, O.; Oberg, C.J. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J. Dairy Sci. 2022, 105, 2750–2770. [Google Scholar] [CrossRef]
- Hwanhlem, N.; Salaipeth, L.; Charoensook, R.; Kanjan, P.; Maneerat, S. Lactic Acid Bacteria from gamecock and goat originating from Phitsanulok, Thailand: Isolation, identification, technological properties and probiotic potential. J. Microbiol. Biotechnol. 2022, 32, 355–364. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes—how this pathogen survives in food-production environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, e04634. [Google Scholar]
- Jami, M.; Ghanbar, M.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Listeria monocytogenes in aquatic food products-A review. Comp. Rev. Food Sci. Food Saf. 2014, 13, 798–813. [Google Scholar] [CrossRef]
- Skowron, K.; Wiktorczyk, N.; Grudlewska, K.; Walecka-Zacharska, E.; Paluszak, Z.; Kruszewski, S.; Gospodarek-Komkowska, E. Phenotypic and genotypic evaluation of Listeria monocytogenes strains isolated from fish and fish processing plants. Ann. Microbiol. 2019, 69, 469–482. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Salman, A.E.B.; Lafi, S.Q. Prevalence of Staphylococcus aureus in imported fish and correlations between antibiotic resistance and enterotoxigenicity. J. Food Prot. 2015, 78, 1999–2005. [Google Scholar] [CrossRef]
- Rukkawattanakul, T.; Sookrung, N.; Seesuay, W.; Onlamoon, N.; Diraphat, P.; Chaicumpa, W.; Indrawattana, N. Human scFvs that counteract bioactivities of Staphylococcus aureus TSST-1. Toxins 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Grutsch, A.A.; Nimmer, P.S.; Pittsley, R.H.; Kornilow, K.G.; McKillip, J.L. Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry. Fine Focus. 2018, 4, 203–222. [Google Scholar] [CrossRef]
- Huzmi, H.; Ina-Salwany, M.Y.; Natrah, F.M.I.; Syukri, F.; Karim, M. Strategies of controlling vibriosis in fish. Asian J. Appl. Sci. 2019, 7, 513–521. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Morandi, S.; Cremonesi, P.; Smaoui, S.; Hani, K.; Ghrairi, T. Safety, potential biotechnological and probiotic properties of bacteriocinogenic Enterococcus lactis strains isolated from raw shrimps. Microb. Pathog. 2018, 117, 109–117. [Google Scholar] [CrossRef]
- Pereira, W.A.; Piazentin, A.C.M.; de Oliveira, R.C.; Mendonça, C.M.N.; Tabata, Y.A.; Mendes, M.A.; Fock, R.A.; Makiyama, E.N.; Corrêa, B.; Vallejo, M.; et al. Bacteriocinogenic probiotic bacteria isolated from an aquatic environment inhibit the growth of food and fish pathogens. Sci. Rep. 2022, 12, 5530. [Google Scholar] [CrossRef]
- Ebeling, J.; Knispel, H.; Hertlein, G.; Fünfhaus, A.; Genersch, E. Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Appl. Microbiol. Biotechnol. 2016, 100, 7387–7395. [Google Scholar] [CrossRef]
- Kuzyšinová, K.; Mudroňová, D.; Toporčák, J.; Molnár, L.; Javorský, P. The use of probiotics, essential oils and fatty acids in the control of American foulbrood and other bee diseases. J. Apic. Res. 2016, 55, 386–395. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Xie, Q.; Zhang, Y.; Hu, J.; Li, P. Purification and characterization of Plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Front. Microbiol. 2018, 9, 2276. [Google Scholar] [CrossRef]
- Avcı, M.; Özden Tuncer, B. Safety evaluation of enterocin producer Enterococcus sp. strains isolated from traditional Turkish cheeses. Pol. J. Microbiol. 2017, 66, 223–233. [Google Scholar] [CrossRef]
- Araújo, C.; Muñoz-Atienza, E.; Hernández, P.E.; Herranz, C.; Cintas, L.M.; Igrejas, G.; Poeta, P. Evaluation of Enterococcus spp. from rainbow trout (Oncorhynchus mykiss, Walbaum), feed, and rearing environment against fish pathogens. Foodborne Pathog. Dis. 2015, 12, 311–322. [Google Scholar] [CrossRef]
- Eveno, M.; Salouhi, A.; Belguesmia, Y.; Bazinet, L.; Gancel, F.; Fliss, I.; Drider, D. Biodiversity and phylogenetic relationships of novel bacteriocinogenic strains isolated from animal’s droppings at the zoological garden of Lille, France. Probiotics Antimicrob. Proteins 2021, 13, 218–228. [Google Scholar] [CrossRef]
- Younas, S.; Mazhar, B.; Liaqat, I.; Ali, S.; Tahir, H.M.; Ali, N.M. Bacteriocin production by Lactobacilli and their role as antibacterial tool against common pathogens. J. Oleo Sci. 2022, 71, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Atienza, E.; Gómez-Sala, B.; Araújo, C.; Campanero, C.; del Campo, R.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA J. 2012, 10, 2682. [Google Scholar] [CrossRef]
- Câmara, S.P.A.; Dapkevicius, A.; Silva, C.C.G.; Malcata, F.X.; Dapkevicius, M.L.N.E. Artisanal Pico cheese as reservoir of Enterococcus species possessing virulence and antibiotic resistance properties: Implications for food safety. Food Biotechnol. 2020, 34, 25–41. [Google Scholar] [CrossRef]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria: A review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Khalil, E.S.; Abd Manap, M.Y.; Mustafa, S.; Alhelli, A.M.; Shokryazdan, P. Probiotic properties of exopolysaccharide-producing Lactobacillus strains isolated from Tempoyak. Molecules 2018, 23, 398. [Google Scholar] [CrossRef]
Isolates | Origin | Spectrum of Inhibition * | ent Genes | Virulence Genes | Resistance Profile/ Resistance Gene | DNase/Gelatinase/ Hemolyze | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B.s | B.c | L.m | S.a | E.f | P.l | E.c | P.a | V.a | ||||||
L. lactis subp. Lactis S40 | S. aurata | - | - | + | + | - | ++ | - | - | - | entP, entB | - | - | -/-/- |
E. faecium S38 | S. aurata | - | - | + | + | - | ++ | - | - | - | - | - | - | -/-/- |
E. durans S3 | M. merlangus | - | - | + | + | - | + | - | - | + | entP, entB, ent1071A/B | hyl | E/ermA | -/-/- |
E. faecium S10 | S. aurata | + | - | ++ | + | ++ | ++ | - | - | ++ | entAS48, ent1071A/B, entB, entL50A/B | - | - | -/-/- |
E. durans S52 | S. aurata | - | - | + | + | - | + | - | - | - | entP | - | - | -/-/- |
E. faecium S2 | S. aurata | - | - | + | + | + | + | - | - | - | entP, entL50A/B | - | Lin/- | -/-/- |
E. faecium S9 | M. merlangus | - | - | + | + | - | - | - | - | - | ent1071A/B | - | Tet/ tetL + tetK | -/-/- |
E. faecalis S44 | S. aurata | - | - | - | + | - | + | - | - | + | entAS48 | - | Tet, E/ tetL + tetK, ermA | -/-/+ (α) |
E. faecium S48 | S. aurata | - | + | + | + | + | + | - | - | - | entP | hyl | - | |
E. durans S50 | S. aurata | - | - | + | + | + | + | - | - | - | entAS48, ent1071A/B | - | - | -/-/- |
E. faecium S6 | M. merlangus | - | - | + | ++ | + | - | - | - | ++ | entB, ent1071A/B, entL50A/B | - | - | -/-/- |
E. durans S32 | M. merlangus | - | + | ++ | ++ | + | + | - | - | - | ent1071A/B | - | - | -/-/- |
E. durans S43 | S. aurata | - | + | ++ | ++ | ++ | ++ | - | - | - | entP | - | - | -/-/- |
E. faecium S36 | S. aurata | - | + | ++ | + | + | ++ | - | - | - | entP | - | - | -/-/- |
E. durans S45 | S. aurata | - | + | + | ++ | + | ++ | - | - | - | entP | - | - | -/-/- |
E. durans S34 | M. merlangus | - | - | + | + | + | - | - | - | - | - | - | Tet/ tetL + tetK | -/-/+ (α) |
E. faecium S12 | M. merlangus | - | + | + | + | + | + | - | - | - | entP | - | - | -/-/- |
L. lactis subp. Lactis S46 | S. aurata | - | + | + | ++ | + | + | - | - | - | - | - | - | -/-/- |
E. faecium S53 | S. aurata | - | + | + | ++ | + | + | - | - | - | entP | - | - | -/-/- |
E. faecalis S51 | S. aurata | - | - | ++ | ++ | ++ | ++ | - | - | + | entP, entAS48 | - | E/msrA | -/+/- |
E. durans S18 | M. merlangus | - | - | + | + | ++ | ++ | - | - | + | entP, ent1071A/B | - | E/ermA | -/-/- |
E. durans S20 | M. merlangus | + | - | + | + | - | ++ | - | - | - | - | - | Tet/ tetL + tetK | -/-/- |
E. faecium S37 | S. aurata | - | - | + | + | - | + | - | - | - | entP | - | - | -/-/- |
E. faecium S49 | S. aurata | - | - | ++ | + | ++ | + | - | - | - | entP | - | E/mef(A/E) | -/-/- |
E. durans S25 | M. merlangus | - | - | + | + | - | - | - | - | - | - | hyl | Tet/tetL + tetK | -/-/+ (α) |
E. durans S35 | S. aurata | - | - | ++ | ++ | - | ++ | - | - | entP, entX | - | - | -/-/+ (α) | |
S. durans S46 | S. aurata | - | - | + | + | - | - | - | - | - | - | - | - | -/-/- |
E. faecium S24 | M. merlangus | - | - | + | + | - | + | - | - | - | entP | - | Cip, E/-, tetL + tetK, ermA | -/+/- |
E. durans S23 | M. merlangus | - | - | + | + | - | + | - | - | - | entP | - | - | -/-/- |
E. durans S41 | S. aurata | - | - | ++ | + | - | + | - | - | - | entP | - | - | -/-/+ (α) |
E. faecium S21 | M. merlangus | - | - | + | + | - | + | - | - | - | entP, ent1071A/B | - | - | -/-/- |
E. durans S4 | M. merlangus | + | - | ++ | - | - | ++ | - | - | ++ | entP, entB, ent1071A/B, entL50A/B | - | - | -/-/- |
E. faecium S7 | S. aurata | + | - | ++ | - | - | ++ | - | - | ++ | entB, ent1071A/B, entL50A/B | - | - | -/-/- |
E. durans S5 | S. aurata | ++ | - | + | - | - | ++ | - | - | - | - | - | - | -/-/- |
E. faecium S33 | M. merlangus | - | + | + | + | - | + | - | - | - | - | - | - | -/-/- |
E. durans S27 | M. merlangus | ++ | - | ++ | - | - | ++ | - | - | - | entB, entL50A/B | - | - | -/-/- |
E. durans S28 | M. merlangus | + | + | ++ | - | - | ++ | - | - | - | - | - | Tet/tetL + tetK | -/-/+ (α) |
L. plantarum S22 | M. merlangus | - | - | ++ | - | - | + | - | - | - | - | - | - | -/-/- |
E. durans S31 | M. merlangus | ++ | - | ++ | + | - | ++ | - | - | - | entP, entB, entL50A/B | hyl | - | -/+/- |
E. faecalis S29 | M. merlangus | - | - | - | ++ | - | - | - | - | - | entAS48, ent1071A/B | - | Tet, E, St, Gen/tetL + tetK, ermA + msrA, -, aac(6′)-aph(2′’) | -/-/+ (α) |
E. faecalis S8 | M. merlangus | - | - | - | + | - | + | - | - | - | - | - | Tet/tetL + tetK | -/-/+ (α) |
L. lactis subp. Lactis S26 | M. merlangus | - | - | + | + | - | + | - | - | - | - | - | - | -/-/- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheriet, S.; Lengliz, S.; Romdhani, A.; Hynds, P.; Abbassi, M.S.; Ghrairi, T. Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream (Sparus aurata) and Whiting Fish (Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life 2023, 13, 1833. https://doi.org/10.3390/life13091833
Cheriet S, Lengliz S, Romdhani A, Hynds P, Abbassi MS, Ghrairi T. Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream (Sparus aurata) and Whiting Fish (Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life. 2023; 13(9):1833. https://doi.org/10.3390/life13091833
Chicago/Turabian StyleCheriet, Sarah, Sana Lengliz, Amel Romdhani, Paul Hynds, Mohamed Salah Abbassi, and Taoufik Ghrairi. 2023. "Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream (Sparus aurata) and Whiting Fish (Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation" Life 13, no. 9: 1833. https://doi.org/10.3390/life13091833
APA StyleCheriet, S., Lengliz, S., Romdhani, A., Hynds, P., Abbassi, M. S., & Ghrairi, T. (2023). Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream (Sparus aurata) and Whiting Fish (Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life, 13(9), 1833. https://doi.org/10.3390/life13091833