Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Stress and Acquisition Protocols
2.3. Automated Quantification
2.4. Visual Interpretation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 20 October 2022).
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [PubMed]
- Kincl, V.; Drozdová, A.; Vašina, J.; Panovský, R.; Kamínek, M. Cadmium–zinc–telluride SPECT scanners—New perspectives in nuclear cardiology. Cor Et Vasa 2015, 57, e214–e218. [Google Scholar] [CrossRef]
- Driessen, R.S.; Raijmakers, P.G.; Danad, I.; Stuijfzand, W.J.; Schumacher, S.P.; Leipsic, J.A.; Min, J.K.; Knuuti, J.; Lammertsma, A.A.; van Rossum, A.C.; et al. Automated SPECT analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Shcherbinin, S.; Celler, A. A multi-center phantom study comparing image resolution from three state-of-the-art SPECT-CT systems. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2009, 16, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Farrell, C.M.; Pinson, J.A.; Dennett, A.M. CT Attenuation correction and its impact on image quality of myocardial perfusion imaging in coronary artery disease: A systematic review. Asia Ocean. J. Nucl. Med. Biol. 2021, 9, 31–38. [Google Scholar]
- Werner, R.A.; Thackeray, J.T.; Diekmann, J.; Weiberg, D.; Bauersachs, J.; Bengel, F.M. The Changing Face of Nuclear Cardiology: Guiding Cardiovascular Care Toward Molecular Medicine. J. Nucl. Med. 2020, 61, 951–961. [Google Scholar] [CrossRef]
- Mititelu, R.; Stanciu, S.; Mazilu, C.; Mititelu, T.; Mititelu, L.; Gherman, A. Common artefacts in myocardial perfusion imaging. Rom. J. Mil. Med. 2021, 124, 567–571. [Google Scholar] [CrossRef]
- Steven, B.; Anita, M. Artifacts and Pitfalls in Myocardial Perfusion Imaging. J. Nucl. Med. Technol. 2006, 34, 193. [Google Scholar]
- Peters, A.; Kumar, J.; Patil, P.V. Diagnostic implications of CZT SPECT and impact of CT attenuation correction. J. Nucl. Cardiol. 2019, 26, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Ćorović, H.; Kuburovic, J.; Salkica, N. Diagnostic accuracy of attenuation correction in perfusion scintigraphy of myocard. Int. J. Med. Rev. Case Rep. 2019, 3, 753. [Google Scholar]
- Slomka, P.J.; Betancur, J.; Liang, J.X.; Otaki, Y.; Hu, L.H.; Sharir, T.; Dorbala, S.; Di Carli, M.; Fish, M.B.; Ruddy, T.D.; et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J. Nucl. Cardiol. 2020, 27, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Niimi, T.; Nanasato, M.; Sugimoto, M.; Maeda, H. Evaluation of Cadmium-Zinc-Telluride Detector-based Single-Photon Emission Computed Tomography for Nuclear Cardiology: A Comparison with Conventional Anger Single-Photon Emission Computed Tomography. Nucl. Med. Mol. Imaging 2017, 51, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Vachatimanont, S.; Sirisalipoch, S.; Chantadisai, M. Comparison of the Diagnostic Performance of Myocardial Perfusion Scintigraphy with and without Attenuation Correction. Mol. Imaging Radionucl. Ther. 2022, 31, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Gambhir, S.S.; Berman, D.S.; Ziffer, J.; Nagler, M.; Sandler, M.; Patton, J.; Hutton, B.; Sharir, T.; Haim, S.B.; Haim, S.B. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J. Nucl. Med. 2009, 50, 635–643. [Google Scholar] [CrossRef]
- Santarelli, M.F.; Mori, A.; Bertasi, M.; Positano, V.; Gimelli, A.; Scipioni, M.; Marzullo, P.; Landini, L. CZT Detectors-Based SPECT Imaging: How Detector and Collimator Arrangement Can Determine the Overall Performance of the Tomograph. Electronics 2021, 10, 2230. [Google Scholar] [CrossRef]
- Dondi, M.; Rodella, C.; Giubbini, R.; Camoni, L.; Karthikeyan, G.; Vitola, J.V.; Einstein, A.J.; Arends, B.J.; Morozova, O.; Pascual, T.N.; et al. Inter-reader variability of SPECT MPI readings in low- and middle-income countries: Results from the IAEA-MPI Audit Project (I-MAP). J. Nucl. Cardiol. 2020, 27, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, G.; Valotassiou, V.; Tsougos, I.; Tzavara, C.; Psimadas, D.; Theodorou, E.; Ziaka, A.; Giannakou, S.; Ziangas, C.; Skoularigis, J.; et al. Automated Analysis vs. Expert Reading in Nuclear Cardiology: Correlations with the Angiographic Score. Medicina 2022, 58, 1432. [Google Scholar] [CrossRef]
- Liu, C.J.; Cheng, J.S.; Chen, Y.C.; Huang, Y.H.; Yen, R.F. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann. Nucl. Med. 2015, 29, 342–350. [Google Scholar] [CrossRef]
- Bonnefoy, P.B.; Janvier, L.; Arede, C.; Drouet, C.; Harami, D.; Marque, S.; Ahond-Vionnet, R. Reduced acquisition time for thallium myocardial perfusion imaging with large field cadmium-zinc-telluride SPECT/CT cameras: An equivalence study. J. Nucl. Cardiol. 2022, 29, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Gimelli, A.; Bottai, M.; Giorgetti, A.; Genovesi, D.; Kusch, A.; Ripoli, A.; Marzullo, P. Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: A pilot study. Circ. Cardiovasc. Imaging 2011, 4, 51–58. [Google Scholar] [CrossRef]
- Rawal, H.; Mehta, R.; Gupta, N.; Sattiraju, S.; Mehta, S. Comparison of high efficacy czt spect myocardial perfusion imaging (mpi) and na-i spect mpi with gold standard coronary angiography. J. Am. Coll. Cardiol. 2018, 71, A1496. [Google Scholar] [CrossRef]
- Agostini, D.; Marie, P.-Y.; Ben-Haim, S.; Rouzet, F.; Songy, B.; Giordano, A.; Gimelli, A.; Hyafil, F.; Sciagrà, R.; Bucerius, J.; et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: A review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Oddstig, J.; Martinsson, E.; Jögi, J.; Engblom, H.; Hindorf, C. Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras. J. Nucl. Cardiol. 2019, 26, 1984–1991. [Google Scholar] [CrossRef]
- Motwani, M. You might be correct, but it makes no difference: No impact of attenuation correction for SPECT MPI on downstream testing. J. Nucl. Cardiol. 2022, 29, 1843–1845. [Google Scholar] [CrossRef]
n = 77 | |
---|---|
Gender, male (n, %) | 45 (58.4%) |
Age, years (mean ± SD) | 71.9 ± 8.9 |
Weight, kg (mean ± SD) | 82.0 ± 15.6 |
Height, cm (mean ± SD) | 170.8 ± 8.5 |
BMI (mean ± SD) Patients with known CAD (n) Patients with HTN (n) Patients with DM (n) Patients with dyslipidemia (n) | 27.7 ± 5.6 27 53 16 41 |
Injected activity at stress test, MBq (mean ± SD) | 334.8 ± 50.1 |
Injected activity at rest test §, MBq (mean ± SD) | 577.8 ± 176.7 |
Time interval between the two acquisitions for stress test £, mins (median (range)) | 17 (7–72) |
Parameter | Reader 1 | Reader 2 | ||
---|---|---|---|---|
Kappa (95% CI) | Weighted Kappa | Kappa (95% CI) | Weighted Kappa | |
Final conclusion | 0.798 (0.643 to 0.952) | - | 0.811 (0.668 to 0.953) | - |
Perfusion defect/ischemia | 0.560 (0.383 to 0.737) | - | 0.564 (0.396 to 0.733) | - |
Territory | 0.344 (0.219 to 0.470) | 0.453 | 0.350 (0.229 to 0.470) | 0.507 |
Severity | 0.402 (0.256 to 0.547) | 0.568 | 0.354 (0.216 to 0.492) | 0.532 |
Attenuation | 0.270 (0.049 to 0.492) | - | 0.247 (0.024 to 0.471) | - |
Attenuation location | 0.225 (0.055 to 0.395) | 0.229 | 0.249 (0.067 to 0.430) | 0.223 |
Presence of artifact | 0.279 (0.064 to 0.494) | - | 0.113 (−0.144 to 0.369) | - |
Artifact severity | 0.172 (0.035 to 0.309) | 0.273 | 0.120 (−0.016 to 0.257) | 0.223 |
Gastrointestinal artifact | 0.323 (0.114 to 0.532) | - | 0.095 (−0.154 to 0.344) | - |
Scar | 0.762 (0.584 to 0.960) | - | 0.725 (0.499 to 0.952) | - |
TID | 0.147 (−0.197 to 0.491) | - | 0.529 (0.197 to 0.860) | - |
ICC (95% CI) | ICC (95% CI) | |||
Visual SSS | 0.822 (0.734 to 0.883) | 0.719 (0.591 to 0.812) | ||
Visual SDS | 0.788 (0.813 to 0.924) | 0.672 (0.529 to 0.779) |
Attenuation | Reader 1 | Reader 2 | ||||
---|---|---|---|---|---|---|
SPECT/CT | CZT-SPECT | p Value † | SPECT/CT | CZT-SPECT | p Value † | |
None | 49 (63.6%) | 50 (64.9%) | 0.97 | 53 (68.8%) | 49 (63.6%) | 0.67 |
Breast attenuation | 12 (15.6%) | 11 (14.3%) | 12 (15.6%) | 10 (13.0%) | ||
Diaphragmatic attenuation | 12 (15.6%) | 13 (16.9%) | 9 (11.7%) | 14 (18.2%) | ||
Breast + diaphragmatic attenuation | 4 (5.2%) | 3 (3.9%) | 3 (3.9%) | 4 (5.2%) |
Parameter | SPECT/CT | CZT-SPECT | ||
---|---|---|---|---|
Kappa (95% CI) | Weighted Kappa | Kappa (95% CI) | Weighted Kappa | |
Final conclusion | 0.930 (0.835 to 1.000) | - | 0.876 (0.759 to 0.993) | - |
Perfusion defect/ischemia | 0.974 (0.923 to 1.000) | - | 0.799 (0.658 to 0.940) | - |
Territory | 0.755 (0.646 to 0.865) | 0.777 | 0.750 (0.639 to 0.862) | 0.781 |
Severity | 0.779 (0.666 to 0.891) | 0.850 | 0.609 (0.473 to 0.745) | 0.708 |
Attenuation | 0.711 (0.545 to 0.876) | - | 0.663 (0.489 to 0.837) | - |
Attenuation location | 0.699 (0.546 to 0.852) | 0.704 | 0.685 (0.530 to 0.840) | 0.679 |
Presence of artifact | 0.467 (0.256 to 0.687) | - | 0.444 (0.264 to 0.625) | - |
Artifact severity | 0.522 (0.387 to 0.657) | 0.685 | 0.508 (0.370 to 0.647) | 0.567 |
Gastrointestinal artifact | 0.446 (0.237 to 0.654) | - | 0.383 (0.203 to 0.562) | - |
Scar | 0.656 (0.401 to 0.910) | - | 0.723 (0.514 to 0.931) | - |
TID | 0.708 (0.398 to 1.000) | - | 0.916 (0.753 to 1.000) | - |
ICC (95% CI) | ICC (95% CI) | |||
Visual SSS | 0.904 (0.853 to 0.938) | 0.782 (0.677 to 0.856) | ||
Visual SDS | 0.758 (0.644 to 0.839) | 0.639 (0.486 to 0.755) |
Parameter | Stress Test | Rest Test | ||||
---|---|---|---|---|---|---|
SPECT/CT (n = 16) | CZT-SPECT (n = 16) | Adj. p Value Ψ | SPECT/CT (n = 13) | CZT-SPECT (n = 13) | Adj. p Value Ψ | |
EDV gated | 147.81 ± 60.46 | 136.37 ± 33.84 | 0.300 | 149.54 ± 45.90 | 145.38 ± 48.02 | 0.467 |
ESV gated | 81.94 ± 62.80 | 60.00 ± 28.60 | 0.097 | 86.61 ± 48.69 | 70.69 ± 52.03 | 0.011 |
EF gated | 49.19 ± 15.74 | 57.56 ± 12.07 | 0.031 | 45.08 ± 15.10 | 55.38 ± 18.06 | 0.011 |
STS gated | 7 (1–31) | 11.5 (3–34) | 0.097 | 7 (1–32) | 18 (0–43) | 0.121 |
SMS gated | 15.5 (0–58) | 5.5 (0–46) | 0.031 | 13 (1–49) | 5 (0–51) | 0.374 |
SSS NC/SA | 9 (0–22) | 11.5 (2–24) | 0.257 | - | - | |
SRS NC/SA | - | - | 4 (0–19) | 9 (0–20) | 0.647 | |
SDS £ NC/SA | - | - | 7 (0–13) | 7 (0–10) | 0.936 | |
Total blackout score NC | 19.5 (0–43) | 21 (0–38) | 0.756 | 5 (0–32) | 15 (0–43) | 0.448 |
SSS SC/gated | 12.5 (0–30) | 8 (0–17) | 0.081 | - | - | |
SRS SC/gated | - | - | 5 (0–19) | 5 (0–19) | 0.433 | |
SDS £ SC/gated | - | - | 5 (0–18) | 6 (1–11) | 0.791 | |
Total blackout score SC/gated | 23 (0–70) | 17 (0–34) | 0.081 | 11 (0–55) | 12 (0–39) | 0.448 |
Parameter | Stress Test | Rest Test | ||||
---|---|---|---|---|---|---|
SPECT/CT (n = 77) | CZT-SPECT (n = 77) | Adj. p Value Ψ | SPECT/CT (n = 23) | CZT-SPECT (n = 23) | Adj. p Value Ψ | |
EDV gated | 114.44 ± 47.17 | 108.65 ± 38.68 | 0.026 | 139.68 ± 42.03 | 138.73 ± 41.44 | 0.803 |
ESV gated | 54.65 ± 39.93 | 42.75 ± 28.85 | 0.0001 | 77.59 ± 40.69 | 65.14 ± 41.41 | 0.001 |
EF gated | 56.04 ± 13.48 | 63.53 ± 11.95 | 0.0001 | 46.77 ± 13.55 | 55.55 ± 15.11 | <0.001 |
STS gated | 4 (0–41) | 15 (0–48) | <0.0001 | 5.5 (0–38) | 17 (0–51) | 0.008 |
SMS gated | 8 (0–58) | 2 (0–46) | <0.0001 | 13.5 (1–49) | 6.5 (0–51) | 0.009 |
SSS NC/SA | 2 (0–28) | 3 (0–24) | 0.270 | - | - | |
SRS NC/SA | - | - | 4.5 (0–25) | 7 (0–20) | 0.463 | |
SDS £ NC/SA | - | - | 4.5 (0–13) | 4.5 (0–11) | 0.539 | |
Total blackout score NC | 3 (0–69) | 5 (0–43) | 0.200 | 8.5 (0–53) | 15 (0–43) | 0.289 |
SSS SC/gated | 3 (0–39) | 1 (0–17) | 0.015 | - | - | |
SRS SC/gated | - | - | 5 (0–19) | 4 (0–19) | 0.463 | |
SDS £ SC/gated | - | - | 3 (0–18) | 4.5 (0–13) | 0.968 | |
Total blackout score SC/gated | 3 (0–85) | 2 (0–34) | 0.040 | 9 (0–55) | 8 (0–39) | 0.463 |
TP | FP | TN | FN | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) | |
---|---|---|---|---|---|---|---|---|---|
Reader 1, SPECT/CT | 18 | 8 | 14 | 8 | 0.69 (0.48–0.86) | 0.64 (0.41–0.83) | 0.69 (0.48–0.86) | 0.64 (0.41–0.83) | 0.67 (0.52–0.80) |
Reader 1, CZT-SPECT | 21 | 8 | 14 | 5 | 0.81 (0.61–0.93) | 0.64 (0.41–0.83) | 0.72 (0.53–0.87) | 0.74 (0.49–0.91) | 0.73 (0.58–0.85) |
Reader 2, SPECT/CT | 19 | 12 | 10 | 7 | 0.73 (0.52–0.88) | 0.45 (0.24–0.68) | 0.61 (0.42–0.78) | 0.59 (0.33–0.82) | 0.60 (0.45–0.74) |
Reader 2, CZT-SPECT | 22 | 11 | 10 | 5 | 0.81 (0.62–0.94) | 0.48 (0.26–0.70) | 0.67 (0.48–0.82) | 0.67 (0.38–0.88) | 0.67 (0.52–0.80) |
TP | FP | TN | FN | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) | |
---|---|---|---|---|---|---|---|---|---|
Reader | |||||||||
Reader 1, SPECT/CT | 12 | 4 | 0 | 0 | 1.00 (0.73–1.00) | 0.00 (0.00–0.60) | 0.75 (0.48–0.93) | N/A | 0.75 (0.48–0.93) |
Reader 1, CZT-SPECT | 11 | 3 | 1 | 1 | 0.92 (0.61–0.99) | 0.25 (0.01–0.81) | 0.79 (0.49–0.95) | 0.50 (0.01–0.99) | 0.75 (0.48–0.93) |
Reader 2, SPECT/CT | 12 | 4 | 0 | 0 | 1.00 (0.73–1.00) | 0.00 (0.00–0.60) | 0.75 (0.48–0.93) | N/A | 0.75 (0.48–0.93) |
Reader 2, CZT-SPECT | 12 | 4 | 0 | 0 | 1.00 (0.73–1.00) | 0.00 (0.00–0.60) | 0.75 (0.48–0.93) | N/A | 0.75 (0.48–0.93) |
Imaging modality | |||||||||
SPECT/CT £ | 6 | 2 | 0 | 5 | 0.54 (0.23–0.83) | 0.00 (0.00–0.84) | 0.75 (0.35–0.97) | 0.00 (0.00–0.52) | 0.46 (0.19–0.75) |
CZT-SPECT £ | 9 | 1 | 1 | 2 | 0.82 (0.48–0.98) | 0.50 (0.12–0.99) | 0.90 (0.55–0.99) | 0.33 (0.01–0.91) | 0.77 (0.46–0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantari, F.; Mohseninia, N.; Wetsch, A.; Harsini, S.; Hehenwarter, L.; Schweighofer-Zwink, G.; Zamani-Siahkali, N.; Rendl, G.; Beheshti, M.; Pirich, C. Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance. Life 2023, 13, 1879. https://doi.org/10.3390/life13091879
Kalantari F, Mohseninia N, Wetsch A, Harsini S, Hehenwarter L, Schweighofer-Zwink G, Zamani-Siahkali N, Rendl G, Beheshti M, Pirich C. Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance. Life. 2023; 13(9):1879. https://doi.org/10.3390/life13091879
Chicago/Turabian StyleKalantari, Forough, Nasibeh Mohseninia, Andreas Wetsch, Sara Harsini, Lukas Hehenwarter, Gregor Schweighofer-Zwink, Nazanin Zamani-Siahkali, Gundula Rendl, Mohsen Beheshti, and Christian Pirich. 2023. "Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance" Life 13, no. 9: 1879. https://doi.org/10.3390/life13091879
APA StyleKalantari, F., Mohseninia, N., Wetsch, A., Harsini, S., Hehenwarter, L., Schweighofer-Zwink, G., Zamani-Siahkali, N., Rendl, G., Beheshti, M., & Pirich, C. (2023). Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance. Life, 13(9), 1879. https://doi.org/10.3390/life13091879