HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies
Abstract
:1. Introduction
2. HER2 Alterations
2.1. HER2 Gene Mutations
2.2. HER2 Gene Amplification
2.3. HER2 Protein Overexpression
2.4. HER2 Protein Hyper-Phosphorylation
3. Biological Consequences of HER2 Alterations
3.1. Hypoxia and Angiogenesis
3.2. Epithelial-to-Mesenchymal Transition
3.3. Tumor Immune Escape
4. Clinical Consequences of HER2 Alterations and Therapeutic Strategies
4.1. HER2 Status and Response to Chemotherapy
4.2. HER2 Status and Reponse to Immunotherapy
4.3. HER2-Targeted Therapies
4.3.1. Tyrosine Kinase Inhibitors
4.3.2. Antibodies
Monoclonal Antibodies (mAbs)
Antibody–Drug Conjugates (ADCs)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-Small Cell Lung Cancer: Current Treatment and Future Advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed]
- De Mello, R.A.; Neves, N.M.; Tadokoro, H.; Amaral, G.A.; Castelo-Branco, P.; de Zia, V.A.A. New Target Therapies in Advanced Non-Small Cell Lung Cancer: A Review of the Literature and Future Perspectives. J. Clin. Med. 2020, 9, 3543. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, M.; Borgeaud, M.; Addeo, A.; Friedlaender, A. Oncogenic Driver Mutations in Non-Small Cell Lung Cancer: Past, Present and Future. World J. Clin. Oncol. 2021, 12, 217–237. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lin, Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int. J. Mol. Sci. 2022, 23, 15056. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB Signalling Network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Rubin, I.; Yarden, Y. The Basic Biology of HER2. Ann. Oncol. 2001, 12, S3–S8. [Google Scholar] [CrossRef]
- Moasser, M.M. The Oncogene HER2; Its Signaling and Transforming Functions and Its Role in Human Cancer Pathogenesis. Oncogene 2007, 26, 6469–6487. [Google Scholar] [CrossRef]
- Hynes, N.E.; MacDonald, G. ErbB Receptors and Signaling Pathways in Cancer. Curr. Opin. Cell Biol. 2009, 21, 177–184. [Google Scholar] [CrossRef]
- Riudavets, M.; Sullivan, I.; Abdayem, P.; Planchard, D. Targeting HER2 in Non-Small-Cell Lung Cancer (NSCLC): A Glimpse of Hope? An Updated Review on Therapeutic Strategies in NSCLC Harbouring HER2 Alterations. ESMO Open 2021, 6, 100260. [Google Scholar] [CrossRef]
- Pillai, R.N.; Behera, M.; Berry, L.D.; Rossi, M.R.; Kris, M.G.; Johnson, B.E.; Bunn, P.A.; Ramalingam, S.S.; Khuri, F.R. HER2 Mutations in Lung Adenocarcinomas: A Report from the Lung Cancer Mutation Consortium. Cancer 2017, 123, 4099–4105. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Kim, K.A.; Lee, C.Y.; Shim, H.S. The Frequency and Clinical Impact of HER2 Alterations in Lung Adenocarcinoma. PLoS ONE 2017, 12, e0171280. [Google Scholar] [CrossRef]
- Jebbink, M.; de Langen, A.J.; Boelens, M.C.; Monkhorst, K.; Smit, E.F. The Force of HER2—A Druggable Target in NSCLC? Cancer Treat. Rev. 2020, 86, 101996. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; Bang, Y.-J. HER2-Targeted Therapies—A Role beyond Breast Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized Phase II Trial of Gemcitabine–Cisplatin with or without Trastuzumab in HER2-Positive Non-Small-Cell Lung Cancer. Ann. Oncol. 2004, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Zinner, R.G.; Glisson, B.S.; Fossella, F.V.; Pisters, K.M.W.; Kies, M.S.; Lee, P.M.; Massarelli, E.; Sabloff, B.; Fritsche, H.A.; Ro, J.Y.; et al. Trastuzumab in Combination with Cisplatin and Gemcitabine in Patients with Her2-Overexpressing, Untreated, Advanced Non-Small Cell Lung Cancer: Report of a Phase II Trial and Findings Regarding Optimal Identification of Patients with Her2-Overexpressing Disease. Lung Cancer 2004, 44, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.E.; Narasanna, A.; Perez-Torres, M.; Xiang, B.; Wu, F.Y.; Yang, S.; Carpenter, G.; Gazdar, A.F.; Muthuswamy, S.K.; Arteaga, C.L. HER2 Kinase Domain Mutation Results in Constitutive Phosphorylation and Activation of HER2 and EGFR and Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Cell 2006, 10, 25–38. [Google Scholar] [CrossRef]
- Auliac, J.-B.; Dô, P.; Bayle, S.; Doubre, H.; Vinas, F.; Letreut, J.; Falchero, L.; Hauss, P.A.; Thomas, P.; Chouaid, C. Non-Small Cell Lung Cancer Patients Harboring HER2 Mutations: Clinical Characteristics and Management in a Real-Life Setting. Cohort HER2 EXPLORE GFPC 02–14. Adv. Ther. 2019, 36, 2161–2166. [Google Scholar] [CrossRef]
- Yu, X.; Ji, X.; Su, C. HER2-Altered Non-Small Cell Lung Cancer: Biology, Clinicopathologic Features, and Emerging Therapies. Front. Oncol. 2022, 12, 860313. [Google Scholar] [CrossRef]
- Mazières, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; et al. Lung Cancer That Harbors an HER2 Mutation: Epidemiologic Characteristics and Therapeutic Perspectives. JCO 2013, 31, 1997–2003. [Google Scholar] [CrossRef]
- Arcila, M.E.; Chaft, J.E.; Nafa, K.; Roy-Chowdhuri, S.; Lau, C.; Zaidinski, M.; Paik, P.K.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. Prevalence, Clinicopathologic Associations and Molecular Spectrum of ERBB2 (HER2) Tyrosine Kinase Mutations in Lung Adenocarcinomas. Clin. Cancer Res. 2012, 18, 4910–4918. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, G.R.R.; Russo, A.; Franchina, T.; Ferraro, G.; Zanghì, M.; Picone, A.; Scimone, A.; Adamo, V. NSCLC and HER2: Between Lights and Shadows. J. Thorac. Oncol. 2014, 9, 1750–1762. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Progress in Treatment of Non-Small Cell Lung Cancer Harboring HER2 Aberrations. Onco Targets Ther. 2021, 14, 4087–4098. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers. J. Thorac. Oncol. 2016, 11, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurti, U.; Silverman, J.F. HER2 in Breast Cancer: A Review and Update. Adv. Anat. Pathol. 2014, 21, 100–107. [Google Scholar] [CrossRef]
- Lee, J.; Franovic, A.; Shiotsu, Y.; Kim, S.T.; Kim, K.-M.; Banks, K.C.; Raymond, V.M.; Lanman, R.B. Detection of ERBB2 (HER2) Gene Amplification Events in Cell-Free DNA and Response to Anti-HER2 Agents in a Large Asian Cancer Patient Cohort. Front. Oncol. 2019, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal Growth Factor Receptor and HER2-Neu MRNA Expression in Non-Small Cell Lung Cancer Is Correlated with Survival. Clin. Cancer Res. 2001, 7, 1850–1855. [Google Scholar] [PubMed]
- Bunn, P.A.; Helfrich, B.; Soriano, A.F.; Franklin, W.A.; Varella-Garcia, M.; Hirsch, F.R.; Baron, A.; Zeng, C.; Chan, D.C. Expression of Her-2/Neu in Human Lung Cancer Cell Lines by Immunohistochemistry and Fluorescence in Situ Hybridization and Its Relationship to in Vitro Cytotoxicity by Trastuzumab and Chemotherapeutic Agents. Clin. Cancer Res. 2001, 7, 3239–3250. [Google Scholar]
- Suzuki, M.; Shiraishi, K.; Yoshida, A.; Shimada, Y.; Suzuki, K.; Asamura, H.; Furuta, K.; Kohno, T.; Tsuta, K. HER2 Gene Mutations in Non-Small Cell Lung Carcinomas: Concurrence with Her2 Gene Amplification and Her2 Protein Expression and Phosphorylation. Lung Cancer 2015, 87, 14–22. [Google Scholar] [CrossRef]
- Scrima, M.; Zito Marino, F.; Oliveira, D.M.; Marinaro, C.; La Mantia, E.; Rocco, G.; De Marco, C.; Malanga, D.; De Rosa, N.; Rizzuto, A.; et al. Aberrant Signaling through the HER2-ERK1/2 Pathway Is Predictive of Reduced Disease-Free and Overall Survival in Early Stage Non-Small Cell Lung Cancer (NSCLC) Patients. J. Cancer 2017, 8, 227–239. [Google Scholar] [CrossRef]
- Da Silva, J.; Jouida, A.; Ancel, J.; Dalstein, V.; Routhier, J.; Delepine, G.; Cutrona, J.; Jonquet, A.; Dewolf, M.; Birembaut, P.; et al. FHITlow/PHER2high Signature in Non-Small Cell Lung Cancer Is Predictive of Anti-HER2 Molecule Efficacy. J. Pathol. 2020, 251, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Brisebarre, A.; Ancel, J.; Ponchel, T.; Loeffler, E.; Germain, A.; Dalstein, V.; Dormoy, V.; Durlach, A.; Delepine, G.; Deslée, G.; et al. Transcriptomic FHITlow/PHER2high Signature as a Predictive Factor of Outcome and Immunotherapy Response in Non-Small Cell Lung Cancer. Front. Immunol. 2022, 13, 1058531. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.F.; Dragovich, T.; Ihle, N.T.; Williams, R.; Fenoglio-Preiser, C.; Powis, G. Stability of Phosphoprotein as a Biological Marker of Tumor Signaling. Clin. Cancer Res. 2005, 11, 4338–4340. [Google Scholar] [CrossRef] [PubMed]
- Thor, A.D.; Liu, S.; Edgerton, S.; Moore, D.; Kasowitz, K.M.; Benz, C.C.; Stern, D.F.; DiGiovanna, M.P. Activation (Tyrosine Phosphorylation) of ErbB-2 (HER-2/Neu): A Study of Incidence and Correlation With Outcome in Breast Cancer. JCO 2000, 18, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- DiGiovanna, M.P.; Stern, D.F.; Edgerton, S.M.; Whalen, S.G.; Moore, D.; Thor, A.D. Relationship of Epidermal Growth Factor Receptor Expression to ErbB-2 Signaling Activity and Prognosis in Breast Cancer Patients. JCO 2005, 23, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Frogne, T.; Laenkholm, A.-V.; Lyng, M.B.; Henriksen, K.L.; Lykkesfeldt, A.E. Determination of HER2 Phosphorylation at Tyrosine 1221/1222 Improves Prediction of Poor Survival for Breast Cancer Patients with Hormone Receptor-Positive Tumors. Breast Cancer Res 2009, 11, R11. [Google Scholar] [CrossRef] [PubMed]
- Graus-Porta, D.; Beerli, R.R.; Daly, J.M.; Hynes, N.E. ErbB-2, the Preferred Heterodimerization Partner of All ErbB Receptors, Is a Mediator of Lateral Signaling. EMBO J. 1997, 16, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Johnson, R.S. Hypoxia: A Key Regulator of Angiogenesis in Cancer. Cancer Metastasis Rev. 2007, 26, 281–290. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Shijubo, N.; Kojima, H.; Nagata, M.; Ohchi, T.; Suzuki, A.; Abe, S.; Sato, N. Tumor Angiogenesis of Non–Small Cell Lung Cancer. Microsc. Res. Tech. 2003, 60, 186–198. [Google Scholar] [CrossRef]
- Goudar, R.K.; Vlahovic, G. Hypoxia, Angiogenesis, and Lung Cancer. Curr. Oncol. Rep. 2008, 10, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Ancel, J.; Perotin, J.-M.; Dewolf, M.; Launois, C.; Mulette, P.; Nawrocki-Raby, B.; Dalstein, V.; Gilles, C.; Deslée, G.; Polette, M.; et al. Hypoxia in Lung Cancer Management: A Translational Approach. Cancers 2021, 13, 3421. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.A.; Schwab, L.P.; Karakashev, S.V.; Franchetti, L.; Johannes, G.J.; Seagroves, T.N.; Reginato, M.J. The Oncogene HER2/Neu (ERBB2) Requires the Hypoxia-Inducible Factor HIF-1 for Mammary Tumor Growth and Anoikis Resistance. J. Biol. Chem. 2013, 288, 15865–15877. [Google Scholar] [CrossRef] [PubMed]
- Laughner, E.; Taghavi, P.; Chiles, K.; Mahon, P.C.; Semenza, G.L. HER2 (Neu) Signaling Increases the Rate of Hypoxia-Inducible Factor 1α (HIF-1α) Synthesis: Novel Mechanism for HIF-1-Mediated Vascular Endothelial Growth Factor Expression. Mol. Cell Biol. 2001, 21, 3995–4004. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, K.L.; Dewhirst, M.W.; Liotcheva, V.; Snyder, S.; Broadwater, G.; Bentley, R.; Lal, A.; Riggins, G.; Anderson, S.; Vredenburgh, J.; et al. HER-2 Gene Amplification Correlates with Higher Levels of Angiogenesis and Lower Levels of Hypoxia in Primary Breast Tumors. Clin. Cancer Res. 2004, 10, 4083–4088. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Zhou, B.P.; Deng, J.; Pan, Y.; Hay, N.; Hung, M.-C. A Hypoxia-Independent Hypoxia-Inducible Factor–1 Activation Pathway Induced by Phosphatidylinositol-3 Kinase/Akt in HER2 Overexpressing Cells. Cancer Res. 2005, 7. [Google Scholar] [CrossRef] [PubMed]
- Klos, K.S.; Wyszomierski, S.L.; Sun, M.; Tan, M.; Zhou, X.; Li, P.; Yang, W.; Yin, G.; Hittelman, W.N.; Yu, D. ErbB2 Increases Vascular Endothelial Growth Factor Protein Synthesis via Activation of Mammalian Target of Rapamycin/P70S6K Leading to Increased Angiogenesis and Spontaneous Metastasis of Human Breast Cancer Cells. Cancer Res. 2006, 66, 2028–2037. [Google Scholar] [CrossRef]
- Ciesielski, M.; Szajewski, M.; Pęksa, R.; Lewandowska, M.A.; Zieliński, J.; Walczak, J.; Szefel, J.; Kruszewski, W.J. The Relationship between HER2 Overexpression and Angiogenesis in Gastric Cancer. Medicine 2018, 97, e12854. [Google Scholar] [CrossRef]
- Bădescu, A.; Georgescu, C.V.; Vere, C.C.; Crăiţoiu, S.; Grigore, D. Correlations between Her2 Oncoprotein, VEGF Expression, MVD and Clinicopathological Parameters in Gastric Cancer. Rom. J. Morphol. Embryol. 2012, 53, 997–1005. [Google Scholar]
- Zhang, A.; Shen, G.; Zhao, T.; Zhang, G.; Liu, J.; Song, L.; Wei, W.; Bing, L.; Wu, Z.; Wu, Q. Augmented Inhibition of Angiogenesis by Combination of HER2 Antibody ChA21 and Trastuzumab in Human Ovarian Carcinoma Xenograft. J. Ovarian Res. 2010, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, A.; Pintzas, A. Epithelial–Mesenchymal Transition in Cancer Metastasis: Mechanisms, Markers and Strategies to Overcome Drug Resistance in the Clinic. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2009, 1796, 75–90. [Google Scholar] [CrossRef]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular Mechanisms of Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Ancel, J.; Dewolf, M.; Deslée, G.; Nawrocki-Raby, B.; Dalstein, V.; Gilles, C.; Polette, M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cell. Tissues Organs 2020, 211, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Dauphin, M.; Barbe, C.; Lemaire, S.; Nawrocki-Raby, B.; Lagonotte, E.; Delepine, G.; Birembaut, P.; Gilles, C.; Polette, M. Vimentin Expression Predicts the Occurrence of Metastases in Non Small Cell Lung Carcinomas. Lung Cancer 2013, 81, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK Signalling Pathway and Tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Sig Transduct. Target. Ther. 2021, 6, 1–17. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Z.; Lu, N. A New Role for the PI3K/Akt Signaling Pathway in the Epithelial-Mesenchymal Transition. Cell Adh Migr. 2015, 9, 317–324. [Google Scholar] [CrossRef]
- Olea-Flores, M.; Zuñiga-Eulogio, M.D.; Mendoza-Catalán, M.A.; Rodríguez-Ruiz, H.A.; Castañeda-Saucedo, E.; Ortuño-Pineda, C.; Padilla-Benavides, T.; Navarro-Tito, N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial–Mesenchymal Transition in Cancer. Int. J. Mol. Sci. 2019, 20, 2885. [Google Scholar] [CrossRef]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-β-Induced Epithelial to Mesenchymal Transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef] [PubMed]
- Katsuno, Y.; Derynck, R. Epithelial Plasticity, Epithelial-Mesenchymal Transition, and the TGF-β Family. Dev. Cell 2021, 56, 726–746. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, J.; Liu, Y.; Duan, C.; Chang, R.; Zhang, C. MicroRNA-331-3p Inhibits Epithelial-mesenchymal Transition by Targeting ErbB2 and VAV2 through the Rac1/PAK1/Β-catenin Axis in Non-small-cell Lung Cancer. Cancer Sci. 2019, 110, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Feigin, M.E.; Muthuswamy, S.K. ErbB Receptors and Cell Polarity: New Pathways and Paradigms for Understanding Cell Migration and Invasion. Exp. Cell Res. 2009, 315, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Appert-Collin, A.; Hubert, P.; Crémel, G.; Bennasroune, A. Role of ErbB Receptors in Cancer Cell Migration and Invasion. Front. Pharmacol. 2015, 6, 283. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Lee, J.; Nam, S.J.; Shin, I.; Lee, J.E.; Kim, S. Induction of Fibronectin by HER2 Overexpression Triggers Adhesion and Invasion of Breast Cancer Cells. Exp. Cell Res. 2015, 333, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, L.; Jiang, D.; Luan, L.; Huang, J.; Hou, Y.; Xu, C. HER2 Promotes Epithelial-Mesenchymal Transition through Regulating Osteopontin in Gastric Cancer. Pathol.—Res. Pract. 2021, 227, 153643. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S.; Koyama, S.; Nishikawa, H. Antitumour Immunity Regulated by Aberrant ERBB Family Signalling. Nat. Rev. Cancer 2021, 21, 181–197. [Google Scholar] [CrossRef]
- Anichini, A.; Perotti, V.E.; Sgambelluri, F.; Mortarini, R. Immune Escape Mechanisms in Non Small Cell Lung Cancer. Cancers 2020, 12, 3605. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Zhang, F.; Meng, F.; Liu, S.; Zhou, R.; Wu, Q.; Li, X.; Shen, L.; Huang, J.; et al. HER2 Recruits AKT1 to Disrupt STING Signalling and Suppress Antiviral Defence and Antitumour Immunity. Nat. Cell Biol. 2019, 21, 1027–1040. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N.; Doorduijn, E.M.; Garcia Lora, A.M.; van Hall, T. The Urgent Need to Recover MHC Class I in Cancers for Effective Immunotherapy. Curr. Opin. Immunol. 2016, 39, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.; Lehr, H.-A.; Drexler, I.; Sutter, G.; Hengstler, J.; Wollscheid, U.; Seliger, B. HER-2/Neu-Mediated Regulation of Components of the MHC Class I Antigen-Processing Pathway. Cancer Res. 2004, 64, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Lollini, P.-L.; Nicoletti, G.; Landuzzi, L.; De Giovanni, C.; Rossi, I.; Di Carlo, E.; Musiani, P.; Muller, W.J.; Nanni, P. Down Regulation of Major Histocompatibility Complex Class I Expression in Mammary Carcinoma of HER-2/Neu Transgenic Mice. Int. J. Cancer 1998, 77, 937–941. [Google Scholar] [CrossRef]
- Mimura, K.; Ando, T.; Poschke, I.; Mougiakakos, D.; Johansson, C.C.; Ichikawa, J.; Okita, R.; Nishimura, M.I.; Handke, D.; Krug, N.; et al. T Cell Recognition of HLA-A2 Restricted Tumor Antigens Is Impaired by the Oncogene HER2. Int. J. Cancer 2011, 128, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Mimura, K.; Sato, E.; Watanabe, M.; Mizukami, Y.; Kawaguchi, Y.; Ando, T.; Kinouchi, H.; Fujii, H.; Kono, K. Inverse Correlation of HER2 with MHC Class I Expression on Oesophageal Squamous Cell Carcinoma. Br. J. Cancer 2010, 103, 552–559. [Google Scholar] [CrossRef]
- Inoue, M.; Mimura, K.; Izawa, S.; Shiraishi, K.; Inoue, A.; Shiba, S.; Watanabe, M.; Maruyama, T.; Kawaguchi, Y.; Inoue, S.; et al. Expression of MHC Class I on Breast Cancer Cells Correlates Inversely with HER2 Expression. Oncoimmunology 2012, 1, 1104–1110. [Google Scholar] [CrossRef]
- Choudhury, A.; Charo, J.; Parapuram, S.K.; Hunt, R.C.; Hunt, D.M.; Seliger, B.; Kiessling, R. Small Interfering RNA (SiRNA) Inhibits the Expression of the Her2/Neu Gene, Upregulates HLA Class I and Induces Apoptosis of Her2/Neu Positive Tumor Cell Lines. Int. J. Cancer 2004, 108, 71–77. [Google Scholar] [CrossRef]
- Hapke, R.Y.; Haake, S.M. Hypoxia-Induced Epithelial to Mesenchymal Transition in Cancer. Cancer Lett. 2020, 487, 10–20. [Google Scholar] [CrossRef]
- Foster, J.G.; Wong, S.C.; Sharp, T.V. The Hypoxic Tumor Microenvironment: Driving the Tumorigenesis of Non-Small-Cell Lung Cancer. Future Oncol. 2014, 10, 2659–2674. [Google Scholar] [CrossRef]
- Vito, A.; El-Sayes, N.; Mossman, K. Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells 2020, 9, 992. [Google Scholar] [CrossRef]
- Chouaib, S.; Janji, B.; Tittarelli, A.; Eggermont, A.; Thiery, J.P. Tumor Plasticity Interferes with Anti-Tumor Immunity. CRI 2014, 34. [Google Scholar] [CrossRef] [PubMed]
- Terry, S.; Savagner, P.; Ortiz-Cuaran, S.; Mahjoubi, L.; Saintigny, P.; Thiery, J.; Chouaib, S. New Insights into the Role of EMT in Tumor Immune Escape. Mol. Oncol. 2017, 11, 824–846. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Chang, S.; Ko, T.; Anker, J.; Agte, S.; Iams, W.; Choi, W.M.; Lee, K.; Cruz, M. Epithelial-Mesenchymal Transition (EMT) Signature Is Inversely Associated with T-Cell Infiltration in Non-Small Cell Lung Cancer (NSCLC). Sci. Rep. 2018, 8, 2918. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Diao, L.; Cuentas, E.R.P.; Denning, W.L.; Chen, L.; Fan, Y.H.; Byers, L.A.; Wang, J.; Papadimitrakopoulou, V.A.; Behrens, C.; et al. Epithelial–Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma. Clin. Cancer Res. 2016, 22, 3630–3642. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Temin, S.; Baker, S.; Blanchard, E.; Brahmer, J.R.; Celano, P.; Duma, N.; Ellis, P.M.; Elkins, I.B.; Haddad, R.Y.; et al. Therapy for Stage IV Non–Small-Cell Lung Cancer Without Driver Alterations: ASCO Living Guideline. JCO 2022, 40, 3323–3343. [Google Scholar] [CrossRef]
- Zukin, M.; Barrios, C.H.; Rodrigues Pereira, J.; De Albuquerque Ribeiro, R.; de Mendonça Beato, C.A.; do Nascimento, Y.N.; Murad, A.; Franke, F.A.; Precivale, M.; de Lima Araujo, L.H.; et al. Randomized Phase III Trial of Single-Agent Pemetrexed Versus Carboplatin and Pemetrexed in Patients With Advanced Non–Small-Cell Lung Cancer and Eastern Cooperative Oncology Group Performance Status of 2. JCO 2013, 31, 2849–2853. [Google Scholar] [CrossRef]
- Cappuzzo, F.; Ligorio, C.; Toschi, L.; Rossi, E.; Trisolini, R.; Paioli, D.; Magrini, E.; Finocchiaro, G.; Bartolini, S.; Cancellieri, A.; et al. EGFR and HER2 Gene Copy Number and Response to First-Line Chemotherapy in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2007, 2, 423–429. [Google Scholar] [CrossRef]
- Kuyama, S.; Hotta, K.; Tabata, M.; Segawa, Y.; Fujiwara, Y.; Takigawa, N.; Kiura, K.; Ueoka, H.; Eguchi, K.; Tanimoto, M. Impact of HER2 Gene and Protein Status on the Treatment Outcome of Cisplatin-Based Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2008, 3, 477–482. [Google Scholar] [CrossRef]
- Graziano, S.L.; Tatum, A.; Herndon, J.E.; Box, J.; Memoli, V.; Green, M.R.; Kern, J.A. Use of Neuroendocrine Markers, P53, and HER2 to Predict Response to Chemotherapy in Patients with Stage III Non-Small Cell Lung Cancer: A Cancer and Leukemia Group B Study. Lung Cancer 2001, 33, 115–123. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Wu, F.; Zhao, J.; Li, X.; Zhao, C.; Ren, S.; Zhou, C. Outcomes of Pemetrexed-Based Chemotherapies in HER2-Mutant Lung Cancers. BMC Cancer 2018, 18, 326. [Google Scholar] [CrossRef]
- Denault, M.-H.; Melosky, B. Immunotherapy in the First-Line Setting in Wild-Type NSCLC. Curr. Oncol. 2021, 28, 4457–4470. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Desai, A.P.; Adashek, J.J.; Reuss, J.E.; West, H.; Mansfield, A.S. Perioperative Immune Checkpoint Inhibition in Early-Stage Non–Small Cell Lung Cancer: A Review. JAMA Oncol. 2023, 9, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Seegobin, K.; Majeed, U.; Wiest, N.; Manochakian, R.; Lou, Y.; Zhao, Y. Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR. Front. Oncol. 2021, 11, 750657. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-C.V.; Feldman, D.L.; Buonocore, D.J.; Brzostowski, E.B.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Sabari, J.K.; Offin, M.D.; Kris, M.G.; et al. PD-L1 Expression, Tumor Mutation Burden and Response to Immune Checkpoint Blockade in Patients with HER2-Mutant Lung Cancers. JCO 2018, 36, 9060. [Google Scholar] [CrossRef]
- Negrao, M.V.; Reuben, A.; Robichaux, J.P.; Le, X.; Nilsson, M.B.; Wu, C.; Zhang, J.; Landry, L.C.A.; Roarty, E.; Rinsurongkawong, W.; et al. Association of EGFR and HER-2 Exon 20 Mutations with Distinct Patterns of Response to Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. JCO 2018, 36, 9052. [Google Scholar] [CrossRef]
- Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; et al. Immune Checkpoint Inhibitors for Patients with Advanced Lung Cancer and Oncogenic Driver Alterations: Results from the IMMUNOTARGET Registry. Ann. Oncol. 2019, 30, 1321–1328. [Google Scholar] [CrossRef]
- DeMatteo, R.; Goldman, D.A.; Lin, S.T.; Buonocore, D.J.; Gao, J.; Chang, J.C.; Rekhtman, N.; Offin, M.; Yu, H.A.; Isbell, J.M.; et al. Clinical Outcomes of Immune Checkpoint Inhibitors in HER2-Amplified Non-Small Cell Lung Cancers. JCO 2022, 40, e21098. [Google Scholar] [CrossRef]
- Guisier, F.; Dubos-Arvis, C.; Viñas, F.; Doubre, H.; Ricordel, C.; Ropert, S.; Janicot, H.; Bernardi, M.; Fournel, P.; Lamy, R.; et al. Efficacy and Safety of Anti–PD-1 Immunotherapy in Patients With Advanced NSCLC With BRAF, HER2, or MET Mutations or RET Translocation: GFPC 01-2018. J. Thorac. Oncol. 2020, 15, 628–636. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Smit, E.F.; Dafni, U.; Wolf, J.; Wasąg, B.; Biernat, W.; Finn, S.P.; Kammler, R.; Tsourti, Z.; Rabaglio, M.; et al. Afatinib in NSCLC With HER2 Mutations: Results of the Prospective, Open-Label Phase II NICHE Trial of European Thoracic Oncology Platform (ETOP). J. Thorac. Oncol. 2019, 14, 1086–1094. [Google Scholar] [CrossRef]
- Kris, M.G.; Camidge, D.R.; Giaccone, G.; Hida, T.; Li, B.T.; O’Connell, J.; Taylor, I.; Zhang, H.; Arcila, M.E.; Goldberg, Z.; et al. Targeting HER2 Aberrations as Actionable Drivers in Lung Cancers: Phase II Trial of the Pan-HER Tyrosine Kinase Inhibitor Dacomitinib in Patients with HER2-Mutant or Amplified Tumors. Ann. Oncol. 2015, 26, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Besse, B.; Mazieres, J.; Waqar, S.; Cortot, A.; Barlesi, F.; Quoix, E.; Otterson, G.; Ettinger, D.; Horn, L.; et al. MA04.02 Neratinib ± Temsirolimus in HER2-Mutant Lung Cancers: An International, Randomized Phase II Study. J. Thorac. Oncol. 2017, 12, S358–S359. [Google Scholar] [CrossRef]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER Kinase Inhibition in Patients with HER2- and HER3-Mutant Cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef]
- Socinski, M.A.; Cornelissen, R.; Garassino, M.C.; Clarke, J.; Tchekmedyian, N.; Molina, J.; Goldman, J.W.; Bhat, G.; Lebel, F.; Le, X. LBA60 ZENITH20, a Multinational, Multi-Cohort Phase II Study of Poziotinib in NSCLC Patients with EGFR or HER2 Exon 20 Insertion Mutations. Ann. Oncol. 2020, 31, S1188. [Google Scholar] [CrossRef]
- Cornelissen, R.; Prelaj, A.; Sun, S.; Baik, C.; Wollner, M.; Haura, E.B.; Mamdani, H.; Riess, J.W.; Cappuzzo, F.; Garassino, M.C.; et al. Poziotinib in Treatment-Naive NSCLC Harboring HER2 Exon 20 Mutations: ZENITH20-4, A Multicenter, Multicohort, Open-Label, Phase 2 Trial (Cohort 4). J. Thorac. Oncol. 2023, 18, 1031–1041. [Google Scholar] [CrossRef]
- Zhou, C.; Li, X.; Wang, Q.; Gao, G.; Zhang, Y.; Chen, J.; Shu, Y.; Hu, Y.; Fan, Y.; Fang, J.; et al. Pyrotinib in HER2-Mutant Advanced Lung Adenocarcinoma After Platinum-Based Chemotherapy: A Multicenter, Open-Label, Single-Arm, Phase II Study. JCO 2020, 38, 2753–2761. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, Y.; Chen, S.; Ying, S.; Xu, S.; Huang, J.; Wu, D.; Lv, D.; Bei, T.; Liu, S.; et al. Efficacy and Safety of Pyrotinib in Advanced Lung Adenocarcinoma with HER2 Mutations: A Multicenter, Single-Arm, Phase II Trial. BMC Med. 2022, 20, 42. [Google Scholar] [CrossRef]
- Yang, G.; Xu, H.; Yang, Y.; Zhang, S.; Xu, F.; Hao, X.; Li, J.; Xing, P.; Hu, X.; Liu, Y.; et al. Pyrotinib Combined with Apatinib for Targeting Metastatic Non-Small Cell Lung Cancer with HER2 Alterations: A Prospective, Open-Label, Single-Arm Phase 2 Study (PATHER2). BMC Med. 2022, 20, 277. [Google Scholar] [CrossRef]
- Mazieres, J.; Lafitte, C.; Ricordel, C.; Greillier, L.; Negre, E.; Zalcman, G.; Domblides, C.; Madelaine, J.; Bennouna, J.; Mascaux, C.; et al. Combination of Trastuzumab, Pertuzumab, and Docetaxel in Patients With Advanced Non–Small-Cell Lung Cancer Harboring HER2 Mutations: Results From the IFCT-1703 R2D2 Trial. JCO 2022, 40, 719–728. [Google Scholar] [CrossRef]
- Iwama, E.; Zenke, Y.; Sugawara, S.; Daga, H.; Morise, M.; Yanagitani, N.; Sakamoto, T.; Murakami, H.; Kishimoto, J.; Matsumoto, S.; et al. Trastuzumab Emtansine for Patients with Non–Small Cell Lung Cancer Positive for Human Epidermal Growth Factor Receptor 2 Exon-20 Insertion Mutations. Eur. J. Cancer 2022, 162, 99–106. [Google Scholar] [CrossRef]
- Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; Carpeno, J.D.C.; Garrido, P.; et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non–Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin. Cancer Res. 2019, 25, 64–72. [Google Scholar] [CrossRef]
- Nakagawa, K.; Nagasaka, M.; Felip, E.; Pacheco, J.; Baik, C.; Goto, Y.; Saltos, A.; Li, B.; Udagawa, H.; Gadgeel, S.; et al. OA04.05 Trastuzumab Deruxtecan in HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Interim Results of DESTINY-Lung01. J. Thorac. Oncol. 2021, 16, S109–S110. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.-W.; Planchard, D.; Ahn, M.-J.; Smit, E.F.; de Langen, A.J.; Pérol, M.; et al. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- De Grève, J.; Moran, T.; Graas, M.-P.; Galdermans, D.; Vuylsteke, P.; Canon, J.-L.; Schallier, D.; Decoster, L.; Teugels, E.; Massey, D.; et al. Phase II Study of Afatinib, an Irreversible ErbB Family Blocker, in Demographically and Genotypically Defined Lung Adenocarcinoma. Lung Cancer 2015, 88, 63–69. [Google Scholar] [CrossRef]
- Peters, S.; Curioni-Fontecedro, A.; Nechushtan, H.; Shih, J.-Y.; Liao, W.-Y.; Gautschi, O.; Spataro, V.; Unk, M.; Yang, J.C.-H.; Lorence, R.M.; et al. Activity of Afatinib in Heavily Pretreated Patients With ERBB2 Mutation–Positive Advanced NSCLC: Findings From a Global Named Patient Use Program. J. Thorac. Oncol. 2018, 13, 1897–1905. [Google Scholar] [CrossRef]
- Robichaux, J.P.; Elamin, Y.Y.; Vijayan, R.S.K.; Nilsson, M.B.; Hu, L.; He, J.; Zhang, F.; Pisegna, M.; Poteete, A.; Sun, H.; et al. Pan-Cancer Landscape and Functional Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity. Cancer Cell 2019, 36, 444–457.e7. [Google Scholar] [CrossRef]
- Heymach, J.; Negrao, M.; Robichaux, J.; Carter, B.; Patel, A.; Altan, M.; Gibbons, D.; Fossella, F.; Simon, G.; Lam, V.; et al. OA02.06 A Phase II Trial of Poziotinib in EGFR and HER2 Exon 20 Mutant Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2018, 13, S323–S324. [Google Scholar] [CrossRef]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.-Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non–Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. JCO 2022, 40, 710–718. [Google Scholar] [CrossRef]
- Elamin, Y.Y.; Robichaux, J.P.; Carter, B.W.; Altan, M.; Gibbons, D.L.; Fossella, F.V.; Lam, V.K.; Patel, A.B.; Negrao, M.V.; Le, X.; et al. Poziotinib for Patients With HER2 Exon 20 Mutant Non–Small-Cell Lung Cancer: Results From a Phase II Trial. JCO 2022, 40, 702–709. [Google Scholar] [CrossRef]
- Wang, B.-C.; Kuang, B.-H.; Liu, X.-X.; Lin, G.-H. Poziotinib in Non-Small-Cell Lung Cancer Patients with HER2 Exon 20 Mutations: A Pooled Analysis of Randomized Clinical Trials. Medicine 2022, 101, e31337. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, T.; Qin, Z.; Jiang, J.; Wang, Q.; Yang, S.; Rivard, C.; Gao, G.; Ng, T.L.; Tu, M.M.; et al. HER2 Exon 20 Insertions in Non-Small-Cell Lung Cancer Are Sensitive to the Irreversible Pan-HER Receptor Tyrosine Kinase Inhibitor Pyrotinib. Ann. Oncol. 2019, 30, 447–455. [Google Scholar] [CrossRef]
- Song, Z.; Lv, D.; Chen, S.-Q.; Huang, J.; Li, Y.; Ying, S.; Wu, X.; Hua, F.; Wang, W.; Xu, C.; et al. Pyrotinib in Patients with HER2-Amplified Advanced Non–Small Cell Lung Cancer: A Prospective, Multicenter, Single-Arm Trial. Clin. Cancer Res. 2022, 28, 461–467. [Google Scholar] [CrossRef]
- Liu, S.V.; Villaruz, L.C.; Lee, V.H.F.; Zhu, V.W.; Baik, C.S.; Sacher, A.; McCoach, C.E.; Nguyen, D.; Li, J.Y.-C.; Pacheco, J.M.; et al. LBA61 First Analysis of RAIN-701: Study of Tarloxotinib in Patients with Non-Small Cell Lung Cancer (NSCLC) EGFR Exon 20 Insertion, HER2-Activating Mutations & Other Solid Tumours with NRG1/ERBB Gene Fusions. Ann. Oncol. 2020, 31, S1189. [Google Scholar] [CrossRef]
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.; Piotrowska, Z.; Horn, L.; Costa, D.B.; Tsao, A.; Patel, J.; Gadgeel, S.; et al. 1261MO Updated Results from a Phase I/II Study of Mobocertinib (TAK-788) in NSCLC with EGFR Exon 20 Insertions (Exon20ins). Ann. Oncol. 2020, 31, S815–S816. [Google Scholar] [CrossRef]
- Han, H.; Li, S.; Chen, T.; Fitzgerald, M.; Liu, S.; Peng, C.; Tang, K.H.; Cao, S.; Chouitar, J.; Wu, J.; et al. Targeting HER2 Exon 20 Insertion-Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor Mobocertinib. Cancer Res. 2021, 81, 5311–5324. [Google Scholar] [CrossRef]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
- Heymach, J.; Opdam, F.; Barve, M.; Gibson, N.; Sadrolhefazi, B.; Serra, J.; Yamamoto, N. A Phase I, Open-Label, Dose Confirmation, Escalation, and Expansion Trial of BI 1810631 as Monotherapy in Patients With Advanced or Metastatic Solid Tumors With HER2 Aberrations. Clin. Lung Cancer 2023, 24, e65–e68. [Google Scholar] [CrossRef]
- Yamamoto, N.; Opdam, F.; Barve, M.; Tu, H.-Y.; Wu, Y.-L.; Schroeter, L.; Sadrolhefazi, B.; Serra, J.; Yoh, K.; Heymach, J. MA13.08 Beamion Lung 1, a Phase Ia/Ib Trial of the HER2 TKI, BI 1810631 in Patients with Advanced Solid Tumors with HER2 Aberrations. J. Thorac. Oncol. 2023, 18, S147. [Google Scholar] [CrossRef]
- Aujay, M.; Broad, A.J.; Gross, S.D.; Ren, L.; Lyssikatos, J.P.; Kintz, S.; Wang, Q.; Collins, H. Abstract 4019: Preclinical Activity of ELVN-002: A Potent, Selective, and Irreversible HER2 and Pan-HER2 Mutant Small Molecule Inhibitor for the Treatment of HER2 Driven Malignancies. Cancer Res. 2023, 83, 4019. [Google Scholar] [CrossRef]
- Bowyer, S.; Spira, A.; Patil, T.; Lyssikatos, J.; Deng, W.; Collins, H.; Cho, B.C. P2.09-27 Trials in Progress: Phase 1a/b Study of ELVN-002, in Solid Tumors with HER2 Mutations, Amplification or Overexpression. J. Thorac. Oncol. 2023, 18, S342–S343. [Google Scholar] [CrossRef]
- Kinoshita, I.; Goda, T.; Watanabe, K.; Maemondo, M.; Oizumi, S.; Amano, T.; Hatanaka, Y.; Matsuno, Y.; Nishihara, H.; Asahina, H.; et al. A Phase II Study of Trastuzumab Monotherapy in Pretreated Patients with Non-Small Cell Lung Cancers (NSCLCs) Harboring HER2 Alterations: HOT1303-B Trial. Ann. Oncol. 2018, 29, viii540. [Google Scholar] [CrossRef]
- Lara, P.N.; Laptalo, L.; Longmate, J.; Lau, D.H.M.; Gandour-Edwards, R.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R. Trastuzumab plus Docetaxel in HER2/Neu–Positive Non–Small-Cell Lung Cancer: A California Cancer Consortium Screening and Phase II Trial. Clin. Lung Cancer 2004, 5, 231–236. [Google Scholar] [CrossRef]
- Krug, L.M.; Miller, V.A.; Patel, J.; Crapanzano, J.; Azzoli, C.G.; Gomez, J.; Kris, M.G.; Heelan, R.T.; Pizzo, B.; Tyson, L.; et al. Randomized Phase II Study of Weekly Docetaxel plus Trastuzumab versus Weekly Paclitaxel plus Trastuzumab in Patients with Previously Untreated Advanced Nonsmall Cell Lung Carcinoma. Cancer 2005, 104, 2149–2155. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef]
- Hotta, K.; Aoe, K.; Kozuki, T.; Ohashi, K.; Ninomiya, K.; Ichihara, E.; Kubo, T.; Ninomiya, T.; Chikamori, K.; Harada, D.; et al. A Phase II Study of Trastuzumab Emtansine in HER2-Positive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 273–279. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Y.; Li, H.; Fan, Y. Targeting HER2 Alterations in Non-Small Cell Lung Cancer: Therapeutic Breakthrough and Challenges. Cancer Treat. Rev. 2023, 114, 102520. [Google Scholar] [CrossRef]
- Nützinger, J.; Bum Lee, J.; Li Low, J.; Ling Chia, P.; Talisa Wijaya, S.; Chul Cho, B.; Min Lim, S.; Soo, R.A. Management of HER2 Alterations in Non-Small Cell Lung Cancer—The Past, Present, and Future. Lung Cancer 2023, 186, 107385. [Google Scholar] [CrossRef]
- Dumbrava, E.E.; Calvo, E.; Garralda, E.; Ryu, M.H.; Oh, D.-Y.; Bai, L.-Y.; Chung, W.; Laimito, K.I.R.; Yildirim, O.; Masciari, S.; et al. 1075TiP A Phase I/Ib Open-Label, First-in-Human, Single Agent, Dose Escalation and Expansion Study of a HER2-Targeted T Cell Engager (SAR443216) in Patients with Relapsed/Refractory HER2-Expressing Solid Tumors. Ann. Oncol. 2023, 34, S647. [Google Scholar] [CrossRef]
- Wu, H.-X.; Zhuo, K.-Q.; Wang, K. Efficacy of Targeted Therapy in Patients with HER2-Positive Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Br. J. Clin. Pharmacol. 2022, 88, 2019–2034. [Google Scholar] [CrossRef]
- Hudelist, G.; Köstler, W.J.; Attems, J.; Czerwenka, K.; Müller, R.; Manavi, M.; Steger, G.G.; Kubista, E.; Zielinski, C.C.; Singer, C.F. Her-2/Neu-Triggered Intracellular Tyrosine Kinase Activation: In Vivo Relevance of Ligand-Independent Activation Mechanisms and Impact upon the Efficacy of Trastuzumab-Based Treatment. Br. J. Cancer 2003, 89, 983–991. [Google Scholar] [CrossRef]
- Ginestier, C.; Adélaïde, J.; Gonçalvès, A.; Repellini, L.; Sircoulomb, F.; Letessier, A.; Finetti, P.; Geneix, J.; Charafe-Jauffret, E.; Bertucci, F.; et al. ERBB2 Phosphorylation and Trastuzumab Sensitivity of Breast Cancer Cell Lines. Oncogene 2007, 26, 7163–7169. [Google Scholar] [CrossRef]
- Giuliani, R.; Durbecq, V.; Di Leo, A.; Paesmans, M.; Larsimont, D.; Leroy, J.-Y.; Borms, M.; Vindevoghel, A.; Jerusalem, G.; D’Hondt, V.; et al. Phosphorylated HER-2 Tyrosine Kinase and Her-2/Neu Gene Amplification as Predictive Factors of Response to Trastuzumab in Patients with HER-2 Overexpressing Metastatic Breast Cancer (MBC). Eur. J. Cancer 2007, 43, 725–735. [Google Scholar] [CrossRef]
- Ramić, S.; Asić, K.; Balja, M.P.; Paić, F.; Benković, V.; Knežević, F. Correlation of Phosphorylated HER2 with Clinicopathological Characteristics and Efficacy of Trastuzumab Treatment for Breast Cancer. Anticancer. Res. 2013, 33, 2509–2515. [Google Scholar]
- Burguin, A.; Furrer, D.; Ouellette, G.; Jacob, S.; Diorio, C.; Durocher, F. Trastuzumab Effects Depend on HER2 Phosphorylation in HER2-Negative Breast Cancer Cell Lines. PLoS ONE 2020, 15, e0234991. [Google Scholar] [CrossRef]
Type of Alteration | Frequency | Method of Detection | Interpretation of Results |
---|---|---|---|
HER2 gene mutation | 1–4% | NGS * RT-(q)PCR | Presence of A775_G776insYVMA (50–83% of cases), G776delinsVC (10%), G778_P780dup (8.7%), etc. |
HER2 gene amplification | 2–5% | FISH * NGS | HER2/CEP17 ≥ 2: positive (If multiple HER2 copies but HER2/CEP17 < 2: chromosome 17 polysomy) |
HER2 protein overexpression | 2–30% | IHC * RT-qPCR | IHC 0–1+: negative IHC 2+: weak to moderate in ≥10% of tumor cells IHC 3+: strong in ≥10% of tumor cells |
HER2 protein hyper-phosphorylation | 30–40% | IHC | No standard (Detection of Y1221/1222, Y1248, etc.) |
Trial | Drug | Population | n | Phase | Line | Efficacy | Safety G3+ TRAE | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
ORR | mPFS (Months) | mDoR (Months) | mOS (Months) | ||||||||
HER2 TKIs | |||||||||||
NICHE | Afatinib | HER2 mutation (exon-20 insertion) | 13 | II | ≥2L | 53.8% | 3.9 | NR | 14.0 | <10% | [100] |
MG Kris et al. | Dacomitinib | HER mutations/amplification | 30 | II | ≥2L | 12% (3/26 HER2 mutated), 0% (HER2 amplified) | 3 | NR | 9.0 | NR | [101] |
PUMA-NER-4201 | Neratinib +/− temsirolimus | HER mutations | 62 | II | ≥2L | 0% (neratinib) 19% (8/43 combined) | 3 (neratinib) 4.1 (combined) | NR | 10.0 (neratinib) 15.8 (combined) | G3 diarrhea (12% neratinib, 14% combined) | [102] |
SUMMIT | Neratinib | HER2/3 mutations | 26 | II | ≥2L | 4% (1/26) | 5.5 | NR | NR | G3 diarrhea (22%) | [103] |
ZENITH-20 (cohort 2) | Poziotinib (16 mg QD) | HER2 mutation (exon-20 insertion) | 90 | II | ≥2L | 27.8% | 5.5 | 5.1 | NR | G3 rash (48.9%), G3 diarrhea (25.6%), G3 stomatitis (24.4%) | [104] |
ZENITH-20 (cohort 4) | Poziotinib (16 mg QD or 8 mg QD) | HER2 mutation (exon-20 insertion) | 80 | II | 1L | 39% | 5.6 | 5.7 | NR | G3 rash (QD, 45%; BID, 39%), stomatitis (QD, 21%; BID, 15%), diarrhea (QD, 15%; BID, 21%) | [105] |
Zhou et al. | Pyrotinib | HER2 mutation | 60 | II | ≥2L | 30% | 6.9 | 6.9 | 14.4 | G3 or G4 (28.3%), G3 diarrhea (20%) | [106] |
Song et al. | Pyrotinib | HER2 mutation | 78 | II | ≥1L | 19.2% | 5.6 | 9.9 | 10.5 | 20.5% | [107] |
PATHER2 | Pyrotinib + apatinib | HER mutations/amplification | 33 | II | ≥2L | 51.5% | 6.9 | 6.0 | 14.8 | G3 diarrhea (3%), G3 hypertension (9.1%) | [108] |
Monoclonal antibodies | |||||||||||
IFCT 1703-R2D2 | Pertuzumab Trastuzumab Docetaxel | HER2 alteration (exon-20 mutation or insertion) | 47 | II | ≥2L | 29% | 6.8 | 11.0 | 17.6 | 64% | [109] |
Antibody–drug conjugates | |||||||||||
Iwama et al. | TDM-1 | HER2 mutation (exon-20 insertion) | 22 | II | ≥2L | 38.1% | 2.8 | 3.5 | 8.1 | 22.7% | [110] |
Peters et al. | TDM-1 | HER2 IHC ≥2+ | 49 | II | ≥2L | 0% (IHC 2+) 20% (IHC 3+) | 2.6 (IHC 2+) 2.7 (IHC 3+) | 3.6 | 12.2 (IHC 2+) 15.3 (IHC 3+) | 22% | [111] |
DESTINY- Lung01 Cohort 1 | T-DXd (6.4 mg/kg) | HER2 IHC 2, 3+ | 49 | II | ≥2L | 24.5% | 5.4 | 6.0 | NR | 73.5% | [112] |
DESTINY- Lung01 Cohort 2 | T-DXd (6.4 mg/kg) | HER2 mutation | 91 | II | ≥2L | 55% | 8.2 | 9.3 | 17.8 | 46% | [113] |
DESTINY- Lung02 | T-DXd (5.4 mg/kg or 6.4 mg/kg) | HER2 mutation | 152 | II | ≥2L | 49.0% (5.4 mg/kg) 56.0% (6.4 mg/kg) | 9.9 (5.4 mg/kg) 15.4 (6.4 mg/kg) | 16.8 (5.4 mg/kg) NR (6.4 mg/kg) | 19.5 (5.4 mg/kg) NR (6.4 mg/kg) | 31.7% (5.4 mg/kg) 58% (6.4 mg/kg) | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loeffler, E.; Ancel, J.; Dalstein, V.; Deslée, G.; Polette, M.; Nawrocki-Raby, B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life 2024, 14, 64. https://doi.org/10.3390/life14010064
Loeffler E, Ancel J, Dalstein V, Deslée G, Polette M, Nawrocki-Raby B. HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life. 2024; 14(1):64. https://doi.org/10.3390/life14010064
Chicago/Turabian StyleLoeffler, Emma, Julien Ancel, Véronique Dalstein, Gaëtan Deslée, Myriam Polette, and Béatrice Nawrocki-Raby. 2024. "HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies" Life 14, no. 1: 64. https://doi.org/10.3390/life14010064
APA StyleLoeffler, E., Ancel, J., Dalstein, V., Deslée, G., Polette, M., & Nawrocki-Raby, B. (2024). HER2 Alterations in Non-Small Cell Lung Cancer: Biologico-Clinical Consequences and Interest in Therapeutic Strategies. Life, 14(1), 64. https://doi.org/10.3390/life14010064