Different ECLS Pump Configurations for Temporary Right Ventricular Assist Device in LVAD Patients: A Retrospective Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design and Data Collection
2.3. RVAD Implantation and Weaning Protocol
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. The Patient Characteristics
3.2. The Study Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rojas, S.V.; Hanke, J.S.; Haverich, A.; Schmitto, J.D. Chronic ventricular assist device support: Surgical innovation. Curr. Opin. Cardiol. 2016, 31, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Gyoten, T.; Rojas, S.V.; Fox, H.; Deutsch, M.A.; Ruiz-Cano, M.; Hakim-Meibodi, K.; Gummert, J.F.; Morshuis, M.; Schramm, R. The HeartWare Ventricular Assist Device (HVAD): A Single Institutional 10-Year Experience. Thorac. Cardiovasc. Surg. 2022, 70, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Naka, Y.; Uriel, N.; Goldstein, D.J.; Cleveland, J.C., Jr.; Colombo, P.C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Jorde, U.P.; et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C., Jr.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef]
- Ruiz-Cano, M.J.; Ramazyan, L.; Schramm, R.; Lauenroth, V.; Paluszkiewicz, L.; Rojas, S.; Gummert, J.; Morshuis, M. Clinical implications of late-onset right ventricular failure after implantation of a continuous-flow left ventricular assist device as bridge to transplantation. Eur. J. Cardiothorac. Surg. 2021, 60, 177–185. [Google Scholar] [CrossRef]
- Dandel, M.; Potapov, E.; Krabatsch, T.; Stepanenko, A.; Low, A.; Vierecke, J.; Knosalla, C.; Hetzer, R. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 2013, 128, S14–S23. [Google Scholar] [CrossRef]
- Dang, N.C.; Topkara, V.K.; Mercando, M.; Kay, J.; Kruger, K.H.; Aboodi, M.S.; Oz, M.C.; Naka, Y. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J. Heart Lung Transplant. 2006, 25, 1–6. [Google Scholar] [CrossRef]
- Kapelios, C.J.; Lund, L.H.; Wever-Pinzon, O.; Selzman, C.H.; Myers, S.L.; Cantor, R.S.; Stehlik, J.; Chamogeorgakis, T.; McKellar, S.H.; Koliopoulou, A.; et al. Right Heart Failure Following Left Ventricular Device Implantation: Natural History, Risk Factors, and Outcomes: An Analysis of the STS INTERMACS Database. Circ. Heart Fail. 2022, 15, e008706. [Google Scholar] [CrossRef]
- Mehra, M.R.; Park, M.H.; Landzberg, M.J.; Lala, A.; Waxman, A.B.; International Right Heart Failure Foundation Scientific Working Group. Right heart failure: Toward a common language. J. Heart Lung Transplant. 2014, 33, 123–126. [Google Scholar] [CrossRef]
- Boyle, A.J.; Ascheim, D.D.; Russo, M.J.; Kormos, R.L.; John, R.; Naka, Y.; Gelijns, A.C.; Hong, K.N.; Teuteberg, J.J. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J. Heart Lung Transplant. 2011, 30, 402–407. [Google Scholar] [CrossRef]
- Birks, E.J.; Tansley, P.D.; Hardy, J.; George, R.S.; Bowles, C.T.; Burke, M.; Banner, N.R.; Khaghani, A.; Yacoub, M.H. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 2006, 355, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Crespo, R.; Khan, N.A.; Mudy, K.; Bae, A.; Samara, M.; Eckman, P.; Sun, B.; Hryniewicz, K. Proactive Right Ventricular Assist Device Placement in Patients Undergoing Left Ventricular Assist Device Implantation Leads to Improved Short and Long Term Survival. J. Heart Lung Transpl. 2023, 42, S366. [Google Scholar] [CrossRef]
- Horstmanshof, D.A.; George, S.; Becker, C.A.; Patrick, A.R.; El Banayosy, A.M.; Gorthi, J.R.; Cunningham, L.C.; Eshelbrenner, C.L.; Phancao, A.A.; Long, J.W. Concurrent RVAD Improves Survival for Patients with RV Failure at the Time of LVAD Implantation. J. Heart Lung Transpl. 2020, 39, S409. [Google Scholar] [CrossRef]
- Moayedifar, R.; Sandner, S.; Kagerl, E.; Riebandt, J.; Wiedemann, D.; Schloeglhofer, T.; Laufer, G.; Zimpfer, D. Raising the (LVAD) Bar: Temporary RVAD Support and its Effects on Renal Function. J. Heart Lung Transpl. 2021, 40, S178. [Google Scholar] [CrossRef]
- Aissaoui, N.; Morshuis, M.; Schoenbrodt, M.; Meibodi, K.H.; Kizner, L.; Börgermann, J.; Gummert, J. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J. Thorac. Cardiov Sur 2013, 146, 186–191. [Google Scholar] [CrossRef]
- Dutt, D.P.; Pinney, S.P. Clinical variability within the INTERMACS 1 profile: Implications for treatment options. Curr. Opin. Cardiol. 2014, 29, 244–249. [Google Scholar] [CrossRef]
- Pappalardo, F.; Potapov, E.; Loforte, A.; Morshuis, M.; Schibilsky, D.; Zimpfer, D.; Riebandt, J.; Etz, C.; Attisani, M.; Rinaldi, M.; et al. Left ventricular assist device implants in patients on extracorporeal membrane oxygenation: Do we need cardiopulmonary bypass? Interact. Cardiovasc. Thorac. Surg. 2022, 34, 676–682. [Google Scholar] [CrossRef]
- D’Agostino, D.; Cappabianca, G.; Rotunno, C.; Castellaneta, F.; Quagliara, T.; Carrozzo, A.; Mastro, F.; Charitos, I.A.; Beghi, C. The Preoperative Inflammatory Status Affects the Clinical Outcome in Cardiac Surgery. Antibiotics 2019, 8, 176. [Google Scholar] [CrossRef]
- Lakhdar, S.; Nassar, M.; Buttar, C.; Guzman Perez, L.M.; Akbar, S.; Zafar, A.; Munira, M. Outcomes with Left Ventricular Assist Device in End-Stage Renal Disease: A Systematic Review. Cureus 2022, 14, e24227. [Google Scholar] [CrossRef]
- Ebner, B.; Grant, J.K.; Vincent, L.; Maning, J.; Olarte, N.; Olorunfemi, O.; Colombo, R.; Chaparro, S. Evaluating the impact of chronic obstructive pulmonary disease on in-hospital outcomes following left ventricular assist device implantation. J. Card. Surg. 2020, 35, 3374–3380. [Google Scholar] [CrossRef]
- Yang, J.A.; Kato, T.S.; Shulman, B.P.; Takayama, H.; Farr, M.; Jorde, U.P.; Mancini, D.M.; Naka, Y.; Schulze, P.C. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: Use of the Model of End-stage Liver Disease (MELD) and MELD eXcluding INR (MELD-XI) scoring system. J. Heart Lung Transplant. 2012, 31, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Angleitner, P.; Simon, P.; Kaider, A.; Wiedemann, D.; Dimitrov, K.; Schloglhofer, T.; Rajek, M.A.; Riebandt, J.; Laufer, G.; Zimpfer, D. Impact of Bleeding Revision on Outcomes After Left Ventricular Assist Device Implantation. Ann. Thorac. Surg. 2019, 108, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Leebeek, F.W.G.; Muslem, R. Bleeding in critical care associated with left ventricular assist devices: Pathophysiology, symptoms, and management. Hematol. Am. Soc. Hematol. Educ. Program 2019, 2019, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Opfermann, P.; Felli, A.; Schlommer, C.; Dworschak, M.; Bevilacqua, M.; Mouhieddine, M.; Zimpfer, D.; Zuckermann, A.; Steinlechner, B. A Prospective Observational Study on Multiplate((R))-, ROTEM((R))- and Thrombin Generation Examinations Before and Early After Implantation of a Left Ventricular Assist Device (LVAD). Front. Med. 2022, 9, 760816. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.C.; Turi, J.L.; Hornik, C.P.; Bonadonna, D.K.; Williford, W.L.; Walczak, R.J.; Watt, K.M.; Cheifetz, I.M. Circuit oxygenator contributes to extracorporeal membrane oxygenation-induced hemolysis. ASAIO J. 2015, 61, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, K.S.; Saifee, N.H.; Chandler, W.L. Causes of red blood cell loss during extracorporeal membrane oxygenation. Transfusion 2023, 63, 933–941. [Google Scholar] [CrossRef]
- Lorusso, R.; Whitman, G.; Milojevic, M.; Raffa, G.; McMullan, D.M.; Boeken, U.; Haft, J.; Bermudez, C.; Shah, A.; D’Alessandro, D.A. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. J. Thorac. Cardiov. Sur. 2021, 161, 1287–1331. [Google Scholar] [CrossRef]
- Boulate, D.; Luyt, C.E.; Pozzi, M.; Niculescu, M.; Combes, A.; Leprince, P.; Kirsch, M. Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: An unrecognized problem. Eur. J. Cardiothorac. Surg. 2013, 44, 544–549. [Google Scholar] [CrossRef]
- Schmack, B.; Grossekettler, L.; Weymann, A.; Schamroth, J.; Sabashnikov, A.; Raake, P.W.; Popov, A.F.; Mansur, A.; Karck, M.; Schwenger, V.; et al. Prognostic relevance of hemodialysis for short-term survival in patients after LVAD implantation. Sci. Rep. 2018, 8, 8546. [Google Scholar] [CrossRef]
- Mahboub-Ahari, A.; Heidari, F.; Sadeghi-Ghyassi, F.; Asadi, M. A systematic review of effectiveness and economic evaluation of Cardiohelp and portable devices for extracorporeal membrane oxygenation (ECMO). J. Artif. Organs 2019, 22, 6–13. [Google Scholar] [CrossRef]
CentrimagTM (n = 146) | CardiohelpTM (n = 46) | DeltastreamTM (n = 53) | p | |
---|---|---|---|---|
Preoperative parameters | ||||
Age (years) | 52.7 ± 13.0; 55.5; 17 | 51.9 ± 11.0; 52.5; 12 | 56.5 ± 9.2; 66.0; 11 ‡ | 0.039 |
Body Mass Index | 26.7 ± 5.4; 25.5; 6.2 | 27.3 ± 6.3; 25.4; 5.8 | 26.2 ± 5.1; 25.4; 6.9 | 0.926 |
Sex (male, n (%)) | 110 (75.3%) | 38 (82.6%) | 45 (84.9%) | 0.269 |
INTERMACS Score | 1.71 ± 0.75; 2; 1 | 1.26 ± 0.54; 1; 0 † | 1.91 ± 0.93; 2; 2 ‡ | <0.001 |
LVEF (%) | 20.0; 10.0 | 17.0; 10 | 20.0; 10.0 | 0.041 |
Previous Cardiac Surgery, n, (%) | 25 (17.1%) | 4 (8.7%) | 16 (30.2%) †,‡ | 0.009 |
Neurology, n, (%) | 19 (13.0%) | 6 (13.0%) | 8 (15.1%) | 0.926 |
Previous CVI, n (%) | 16 (11.0%) | 5 (10.9%) | 8 (15.1%) | 0.709 |
PAOD, n (%) | 11 (7.5%) | 2 (4.3%) | 6 (11.3%) | 0.428 |
Diabetes Mellitus, n (%) | 45 (30.8%) | 15 (32.6%) | 12(22.6%) | 0.464 |
Dialysis, n (%) | 5 (3.4%) | 0 (0.0%) | 1 (1.9%) | 0.405 |
Urgency, n (%) | 119 (95.2%) | 36 (100.0%) | 44 (95.7%) | 0.413 |
Pulmonary Hypertension, n (%) | 82 (56.2%) | 28 (60.9%) | 35 (66.0%) | 0.441 |
Preoperative CPR, n (%) | 5 (3.4%) | 7 (15.2%) † | 3 (5.7%) | 0.014 |
Cardiomyopathies | ||||
Ischemic Cardiomyopathy | 54 (37.0%) | 21 (45.7%) | 30 (56.6%) † | 0.043 |
Dilated Cardiomyopathy | 50 (34.3%) | 17 (37.0%) | 17 (32.1%) | 0.261 |
Dilated Cardiomyopathy: Myocarditis | 31 (21.2%) | 3 (6.5%) † | 2 (3.8%) † | 0.002 |
Dilated Cardiomyopathy: Toxic | 6 (4.1%) | 2 (4.3%) | 2 (3.8%) | 0.989 |
Hypertrophic Cardiomyopathy | 1 (0.7%) | 0 (0.0%) | 2 (3.8%) | 0.999 |
Restrictive Cardiomyopathy | 1 (0.7%) | 1 (2.2%) | 0 (0.0%) | 0.999 |
Valvular Heart Disease | 1 (0.7%) | 2 (4.3%) | 0 (0.0%) | 0.999 |
Congenital Heart Disease | 2 (1.4%) | 0 (0.0%) | 0 (0.0%) | 0.999 |
Preoperative MCS | ||||
Preoperative ECLS, n (%) | 43 (29.5%) | 26 (56.5%) † | 14 (26.4%) ‡ | 0.001 |
Preoperative IABP, n (%) | 32 (21.9%) | 8 (17.4%) | 7 (13.2%) | 0.364 |
Preoperative ImpellaTM, n (%) | 9 (6.2%) | 8 (17.4%) † | 3 (5.7%) | 0.040 |
Intraoperative parameters | ||||
Cardiopulmonary Bypass, n (%) | 124 (84.9%) | 27 (58.7%) † | 41 (77.4%) | <0.001 |
Hemofiltration, n (%) | 62 (42.5%) | 7 (15.2%) † | 19 (35.8%) ‡ | 0.004 |
Cell-Saver, n (%) | 137 (93.8%) | 42 (91.3%) | 48 (90.6%) | 0.689 |
LVAD Type | ||||
HVADTM, n (%) | 105 (71.9%) | 41 (89.1%) † | 40 (75.5%) | 0.040 |
HM3TM, n (%) | 41 (28.1%) | 5 (10.9%) † | 13 (24.5%) | |
Bypass Time (min) | 138.4 ± 65.9; 125.5; 84 | 130.7 ± 72.5; 108; 72 | 143.9 ± 55.7; 135; 84 | 0.712 |
Body Temperature (°C) | 33.6 ± 6.6; 35.0; 2.0 | 30.7 ± 12.1; 34.9; 1.8 | 31.6 ± 10.4; 34.6; 1.8 | 0.084 |
Oxygenator, n (%) | 101 (69.2%) | 46 (100.0%) † | 44 (83.0%) ‡ | <0.001 |
CentrimagTM (n = 146) | CardiohelpTM (n = 46) | DeltastreamTM (n = 53) | p | |
---|---|---|---|---|
Creatinine (mg/dL) | 1.60 ± 0.81; 1.4; 1.0 | 1.73 ± 0.99; 1.35; 1.49 | 1.76 ± 0.95; 1.5; 1.05 | 0.581 |
Urea (mg/dL) | 78.8 ± 45.9; 66.5; 58 | 68.2 ± 47.4; 52.5; 68 | 72.3 ± 47.2; 59.0; 44 | 0.131 |
GFR (mL/min) | 56.8 ± 28.0; 52.5; 39 | 59.7 ± 36.5; 52.0; 50 | 51.4 ± 26.0; 47.0; 36 | 0.535 |
Haemoglobin (g/dL) | 10.7 ± 1.9; 10.2; 2.3 | 10.9 ± 1.8; 10.5; 1.9 | 10.2 ± 1.7; 9.9; 2.1 | 0.099 |
Plasma Free Haemoglobin (mg/dL) | 12.8 ± 19.9; 8.0; 8 | 15.9 ± 17.9; 9.0; 11 | 12.2 ± 11.7; 9.0; 9 | 0.446 |
Haematocrit (%) | 32.2 ± 5.5; 31.2; 7 | 32.5 ± 4.7; 30.9; 5 | 31.2 ± 5.1; 30.5; 7 | 0.314 |
Thrombocytes (109/L) | 159.4 ± 89.9; 144; 104 | 122.3 ± 72.8 †; 109; 98 | 160.6 ± 103.6; 150; 116 | 0.030 |
CK (U/L) | 670.9 ± 2447.0; 62.0; 184 | 1163.8 ± 3097.9; 197.0; 840 † | 473.7 ± 1198.9; 55.0; 330 | 0.010 |
CK MB (ng/mL) | 17.9 ± 59.0; 2.3; 6.9 | 54.8 ± 206.9; 3.2; 10.7 | 9.85 ± 15.86; 3.0; 7.8 | 0.630 |
Bilirubin (mg/dL) | 2.36 ± 2.03; 1.74; 1.6 | 2.75 ± 2.98; 1.73; 2.4 | 2.36 ± 2.35; 1.64; 1.5 | 0.821 |
ALT (U/L) | 257.2 ± 614.4; 55; 121 | 529.1 ± 1105.4; 98.0; 375 | 140.7 ± 404.8; 29; 69 ‡ | 0.008 |
GGT (U/L) | 167.1 ± 165.4; 113.5; 138 | 189.5 ± 189.4; 122.0; 180 | 238.9 ± 272.0; 132.0; 157 | 0.204 |
AST (U/L) | 290.8 ± 844.4; 53.5; 90 | 1126.7 ± 2887.8; 76.0; 303 † | 213.5 ± 660.5; 41.0; 60 ‡ | 0.008 |
LDH (U/L) | 693.0 ± 1170.3; 376; 272 | 726.2 ± 1170.4; 497; 785 | 726.2 ± 1170.4; 325; 288 ‡ | 0.003 |
Alkaline phosphatase (U/L) | 121.3 ± 78.1; 106; 58 | 115.8 ± 64.4; 96; 77 | 137.5 ± 81.5; 122; 64 | 0.142 |
INR | 1.61 ± 0.71; 1.30; 0.6 | 1.60 ± 0.73; 1.30; 0.8 | 1.31 ± 0.26; 1.20; 0.4 | 0.066 |
PTT (s) | 45.6 ± 22.2; 41.0; 17 | 52.3 ± 29.6; 45.5; 19 | 44.3 ± 23.5; 38.0; 17 | 0.097 |
Fibrinogen (mg/dL) | 356.7 ± 147.5; 334.0; 175 | 408.5 ± 197.1; 360.5; 243 | 360.5 ± 110.6; 370.0; 167 | 0.355 |
Antithrombin III (%) | 76.1 ± 18.7; 74.0; 24 | 76.1 ± 23.8; 78.0; 26 | 84.0 ± 22.5; 82.0; 19 | 0.064 |
CentrimagTM (n = 146) | CardiohelpTM (n = 46) | DeltastreamTM (n = 53) | p | |
---|---|---|---|---|
Primary endpoints | ||||
In-hospital death | 61 (41.8%) | 15 (32.6%) | 29 (54.7%) †,‡ | 0.079 |
Reoperation due to Bleeding | 32 (21.9%) | 8 (17.4%) | 25 (47.2%) †,‡ | 0.001 |
Secondary endpoints | ||||
ICU stay (days) | 47.3 ± 41.4; 34.0; 48 | 54.3 ± 48.4; 41.0; 42 | 68.8 ± 70.5; 49.0; 70 † | 0.100 |
Invasive Respiration (hours) | 694.9 ± 732.4; 499.4; 953 | 801.6 ± 758.5; 689.7; 1012 | 1069.1 ± 932.6; 743.4; 1295 † | 0.020 |
Hospital stay (days) | 95.7 ± 68.8; 82.0; 83 | 97.4 ± 60.5; 83.5; 81 | 107.5 ± 75.2; 85.0; 82 | 0.495 |
RVAD duration (days) | 27.4 ± 27.7; 22.0; 22 | 20.8 ± 12.6; 16.0; 17 | 30.6 ± 27.0; 25.0; 22 | 0.105 |
Successful RVAD weaning | 41 (28.1%) | 15 (32.6%) | 7 (13.2%) †,‡ | 0.052 |
Heart transplant | 36 (24.7%) | 12 (26.1%) | 5 (9.4%) †,‡ | 0.050 |
OR | 95% CI | p | |
---|---|---|---|
Reoperation due to bleeding | |||
Preoperative Antithrombin III | 1.02 | 1.00 to 1.04 | 0.021 |
DeltastreamTM | 2.66 | 1.31 to 5.42 | 0.007 |
Intra-hospital mortality | |||
Age | 1.06 | 1.03 to 1.09 | <0.001 |
Previous Cardiac Surgery | 2.19 | 1.04 to 4.64 | 0.040 |
Preoperative serum LDH | 1.00 | 1.00 to 1.00 | 0.031 |
DeltastreamTM | 2.68 | 1.04 to 6.92 | 0.041 |
CentrimagTM (n = 146) | CardiohelpTM (n = 46) | DeltastreamTM (n = 53) | p | |
---|---|---|---|---|
EC total (Units) | 71.3 ± 51.5; 62.5; 72 | 64.7 ± 40.7; 53.5; 54 | 85.6 ± 47.4; 85.0; 75 | 0.054 |
EC intraoperative (Units) | 3.03 ± 2.83; 3.0; 5 | 2.50 ± 2.99; 2.0; 4 | 3.15 ± 2.65; 3.0; 6 | 0.291 |
EC postoperative (Units) | 54.80 ± 48.18; 44.5; 60 | 46.46 ± 39.48; 32.5; 47 | 73.06 ± 47.30; 69.0; 73 †,‡ | 0.005 |
TC total (Units) | 19.97 ± 17.67; 15.0; 21 | 17.91 ± 15.36; 15.0; 13 | 32.28 ± 27.72; 25.0; 27 †,‡ | <0.001 |
TC postoperative (Units) | 15.18 ± 17.36; 9.5; 19 | 11.50 ± 13.36; 9.0; 12 | 28.26 ± 27.29; 21.0; 23 †,‡ | <0.001 |
FFP total (Units) | 35.24 ± 25.35; 32.0; 33 | 30.1 ± 17.1; 29.0; 22 | 39.9 ± 28.8; 32.0; 34 | 0.405 |
FFP postoperative (Units) | 24.04 ± 22.64; 20.0; 31 | 16.54 ± 17.47; 8.0; 24 | 30.81 ± 26.71; 25.0; 23 †,‡ | 0.008 |
Transfusions of | B | 95% CI | Beta | p |
---|---|---|---|---|
Erythrocyte concentrates | ||||
INTERMACS Score | 8.05 | −0.30 to 10.62 | 0.13 | 0.047 |
Oxygenator | 18.78 | 3.94 to 33.62 | 0.17 | 0.013 |
Preoperative AST | 0.005 | 0.001 to 0.009 | 0.15 | 0.027 |
DeltastreamTM | 14.70 | −0.44 to 29.83 | 0.13 | 0.057 |
CardiohelpTM | −14.96 | −31.63 to 1.72 | −0.13 | 0.078 |
Thrombocytes concentrates | ||||
Age | 0.24 | 0.04 to 0.45 | 0.14 | 0.021 |
Preoperative serum AST | 0.002 | 0.001 to 0.004 | 0.19 | 0.004 |
Preoperative serum Antithrombin III | −0.14 | −0.26 to −0.02 | −0.14 | 0.026 |
DeltastreamTM | 12.99 | 6.73 to 19.261 | 0.26 | 0.000 |
Fresh Frozen Plasma | ||||
Age | 0.28 | 0.023 to 0.53 | 0.143 | 0.033 |
Oxygenator | 8.21 | 1.03 to 15.38 | 0.147 | 0.025 |
Preoperative Serum LDH levels | 0.003 | 0.001 to 0.004 | 0.228 | 0.000 |
CardiohelpTM | −11.97 | −19.70 to −4.24 | −0.203 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opacic, D.; Klüß, C.; Radakovic, D.; El-Hachem, G.; Becker, T.; Rudloff, M.; Lauenroth, V.; Deutsch, M.-A.; Velasquez-Silva, C.; Fox, H.; et al. Different ECLS Pump Configurations for Temporary Right Ventricular Assist Device in LVAD Patients: A Retrospective Case–Control Study. Life 2024, 14, 1274. https://doi.org/10.3390/life14101274
Opacic D, Klüß C, Radakovic D, El-Hachem G, Becker T, Rudloff M, Lauenroth V, Deutsch M-A, Velasquez-Silva C, Fox H, et al. Different ECLS Pump Configurations for Temporary Right Ventricular Assist Device in LVAD Patients: A Retrospective Case–Control Study. Life. 2024; 14(10):1274. https://doi.org/10.3390/life14101274
Chicago/Turabian StyleOpacic, Dragan, Christian Klüß, Darko Radakovic, Georges El-Hachem, Tobias Becker, Markus Rudloff, Volker Lauenroth, Marcus-André Deutsch, Claudio Velasquez-Silva, Henrik Fox, and et al. 2024. "Different ECLS Pump Configurations for Temporary Right Ventricular Assist Device in LVAD Patients: A Retrospective Case–Control Study" Life 14, no. 10: 1274. https://doi.org/10.3390/life14101274
APA StyleOpacic, D., Klüß, C., Radakovic, D., El-Hachem, G., Becker, T., Rudloff, M., Lauenroth, V., Deutsch, M. -A., Velasquez-Silva, C., Fox, H., Schramm, R., Morshuis, M., Gummert, J. F., & Rojas, S. V. (2024). Different ECLS Pump Configurations for Temporary Right Ventricular Assist Device in LVAD Patients: A Retrospective Case–Control Study. Life, 14(10), 1274. https://doi.org/10.3390/life14101274