Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings
Abstract
:1. Introduction
2. The Potential Bridging Role of Perilymph in Future Audiological Practice
3. Perilymph Sampling in Actual Ontological Surgery and Possible Evolution Using Microneedles
4. Proposal for an Ideal Surgical Approach to Perform Routine Perilymph Sampling in Humans
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavazzani, E.; Spaiardi, P.; Contini, D.; Sancini, G.; Russo, G.; Masetto, S. Precision medicine: A new era for inner ear diseases. Front. Pharmacol. 2024, 15, 1328460. [Google Scholar] [CrossRef] [PubMed]
- Wangemann, P.; Marcus, D.C. Ion and fluid homeostasis in the cochlea. In Understanding the Cochlea, Springer Handbook of Auditory Research; Manley, G., Gummer, A., Popper, A., Fay, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 253–286. [Google Scholar]
- Frisch, T.; Sørensen, M.S.; Overgaard, S.; Lind, M.; Bretlau, P. Volume referent bone turnover estimated from the interlabel area fraction after sequential labeling. Bone 1998, 22, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Sluydts, M.; Bernaerts, A.; Casselman, J.W.; De Foer, B.; Blaivie, C.; Zarowski, A.; van Dinther, J.J.; Offeciers, E.; Wuyts, F.L.; Vanspauwen, R. The relationship between cochleovestibular function tests and endolymphatic hydrops grading on MRI in patients with Meniere’s disease. Eur. Arch. Otorhinolaryngol. 2021, 278, 4783–4793. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Kim, Y.S.; Kim, Y.; Lee, S.Y.; Song, J.J.; Choi, B.Y.; Kim, J.S.; Bae, Y.J.; Koo, J.W. Correlation of clinical parameters with endolymphatic hydrops on MRI in Meniere’s disease. Front. Neurol. 2022, 13, 937703. [Google Scholar] [CrossRef]
- Peter, M.S.; Warnecke, A.; Staecker, H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J. Clin. Med. 2022, 11, 316. [Google Scholar] [CrossRef]
- Ishiyama, G.; Lopez, I.A.; Ishiyama, P.; Vinters, H.V.; Ishiyama, A. The blood labyrinthine barrier in the human normal and Meniere’s disease macula utricle. Sci. Rep. 2017, 7, 253. [Google Scholar] [CrossRef]
- Di Stadio, A.; Ralli, M.; Kaski, D.; Koohi, N.; Gioacchini, F.M.; Kysar, J.W.; Lalwani, A.K.; Warnecke, A.; Bernitsas, E. Exploring Inner Ear and Brain Connectivity through Perilymph Sampling for Early Detection of Neurological Diseases: A Provocative Proposal. Brain Sci. 2024, 14, 621. [Google Scholar] [CrossRef]
- Mavel, S.; Lefèvre, A.; Bakhos, D.; Dufour-Rainfray, D.; Blasco, H.; Emond, P. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear. Res. 2018, 367, 129–136. [Google Scholar] [CrossRef]
- Edvardsson Rasmussen, J.; Laurell, G.; Rask-Andersen, H.; Bergquist, J.; Eriksson, P.O. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE 2018, 13, e0198442. [Google Scholar]
- Lin, H.-C.; Ren, Y.; Lysaght, A.C.; Kao, S.-Y.; Stankovic, K.M. Proteome of normal human perilymph and perilymph from people with disabling vertigo. PLoS ONE 2019, 14, e0218292. [Google Scholar] [CrossRef]
- Trinh, T.T.; Blasco, H.; Emond, P.; Andres, C.; Lefevre, A.; Lescanne, E.; Bakhos, D. Relationship between Metabolomics Profile of Perilymph in Cochlear-Implanted Patients and Duration of Hearing Loss. Metabolites 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- de Vries, I.; Schmitt, H.; Lenarz, T.; Prenzler, N.; Alvi, S.; Staecker, H.; Durisin, M.; Warnecke, A. Detection of BDNF-Related Proteins in Human Perilymph in Patients With Hearing Loss. Front. Neurosci. 2019, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, A.; Prenzler, N.K.; Schmitt, H.; Daemen, K.; Keil, J.; Dursin, M.; Lenarz, T.; Falk, C.S. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front. Neurol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Shew, M.; Wichova, H.; St Peter, M.; Warnecke, A.; Staecker, H. Distinct MicroRNA Profiles in the Perilymph and Serum of Patients With Menière’s Disease. Front. Neurol. 2021, 12, 646928. [Google Scholar] [CrossRef]
- Schmitt, H.A.; Pich, A.; Prenzler, N.K.; Lenarz, T.; Harre, J.; Staecker, H.; Durisin, M.; Warnecke, A. Personalized Proteomics for Precision Diagnostics in Hearing Loss: Disease-Specific Analysis of Human Perilymph by Mass Spectrometry. ACS Omega 2021, 6, 21241–21254. [Google Scholar] [CrossRef]
- van Dieken, A.; Staecker, H.; Schmitt, H.; Harre, J.; Pich, A.; Roßberg, W.; Lenarz, T.; Durisin, M.; Warnecke, A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front. Cell Dev. Biol. 2022, 10, 847157. [Google Scholar] [CrossRef]
- Bird, P.A.; Begg, E.J.; Zhang, M.; Keast, A.T.; Murray, D.P.; Balkany, T.J. Intratympanic Versus Intravenous Delivery of Methylprednisolone to Cochlear Perilymph. Otol. Neurotol. 2007, 28, 1124–1130. [Google Scholar] [CrossRef]
- Alicandri-Ciufelli, M.; Molinari, G.; Rosa, M.S.; Monzani, D.; Presutti, L. Gusher in stapes surgery: A systematic review. Eur. Arch. Otorhinolaryngol. 2019, 276, 2363–2376. [Google Scholar] [CrossRef]
- Leong, S.; Aksit, A.; Feng, S.J.; Kysar, J.W.; Lalwani, A.K. Inner Ear Diagnostics and Drug Delivery via Microneedles. J. Clin. Med. 2022, 11, 5474. [Google Scholar] [CrossRef]
- Aksit, A.; Rastogi, S.; Nadal, M.L.; Parker, A.M.; Lalwani, A.K.; West, A.C.; Kysar, J.W. Drug delivery device for the inner ear: Ultra-sharp fully metallic microneedles. Drug Deliv. Transl. Res. 2021, 11, 214–226. [Google Scholar] [CrossRef]
- Okuno, H.; Sando, I. Anatomy of the round window: A histopathological study with a graphic reconstruction method. Acta Otolaryngol. 1988, 106, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Goycoolea, M.V.; Lundman, L. Round window membrane. Structure function and permeability: A review. Microsc. Res. Tech. 1997, 36, 201–211. [Google Scholar] [PubMed]
- Paprocki, A.; Biskup, B.; Kozłowska, K.; Kuniszyk, A.; Bien, D.; Niemczyk, K. The topographical anatomy of the round window and related structures for the purpose of cochlear implant surgery. Folia Morphol. 2004, 63, 309–312. [Google Scholar]
- Presutti, L.; Gioacchini, F.M.; Alicandri-Ciufelli, M.; Villari, D.; Marchioni, D. Results of endoscopic middle ear surgery for cholesteatoma treatment: A systematic review. Acta Otorhinolaryngol. Ital. 2014, 34, 153–157. [Google Scholar] [PubMed]
- Carner, M.; Sacchetto, A.; Bianconi, L.; Soloperto, D.; Sacchetto, L.; Presutti, L.; Marchioni, D. Endoscopic-Assisted Cochlear Implantation in Children with Malformed Ears. Otolaryngol. Head. Neck Surg. 2019, 161, 688–693. [Google Scholar] [CrossRef]
- Marchioni, D.; Grammatica, A.; Alicandri-Ciufelli, M.; Genovese, E.; Presutti, L. Endoscopic cochlear implant procedure. Eur. Arch. Otorhinolaryngol. 2014, 271, 959–966. [Google Scholar] [CrossRef]
- Gülşen, S.; Çıkrıkcı, S. Pure endoscopic transcanal revision cochlear implantation for a misplaced electrode array: A novel and minimally invasive approach. Cochlear Implant. Int. 2024, 25, 248–253. [Google Scholar] [CrossRef]
Years | Total Number of Participants | Cause of Hearing Loss | Control Group Without SNHL | Surgical Procedure/Sampling Tool | Perilympatic Components Analyzed | Main Findings | |
---|---|---|---|---|---|---|---|
Mavel et al. [9] | 2018 | 23 | CMV; trauma; MD | None | CI/ needle 22 g | Metabolome | Fingerprinting was obtained from 98 robust metabolites. |
Rasmussen et al. [10] | 2018 | 16 | VS | None | TC, L/ n.a. | Proteome | Alpha-2-HS-glycoprotein, P02765, was shown to be an independent variable for tumor-associated hearing loss. |
Lin et al. [11] | 2019 | 5 | MD | Yes | TO, TC, L needle 28 g | Proteome | A total of 228 common proteins were identified in the perilymph of patients with Meniere’s disease, 38 of which were significantly differential in abundance. |
Thrin et al. [12] | 2019 | 19 | n.a. | None | CI/ needle 22 g | Metabolome | A total of 106 different metabolites were identified. Metabolomic profiles were significantly different in subjects with ≤12 or >12 years of hearing loss |
de Vires et al. [13] | 2019 | 38 | MD, CMV, EVA, CHARGE, meningitis | Yes | CI/ microglass capillary | Proteome | (1) BDNF was found to be expressed in cochlear tissue in individuals with normal hearing; (2) there was an overall decreased level of expression of BDNF-regulated proteins in profoundly hearing-impaired patients compared to patients with some residual hearing. |
Warnecke et al. [14] | 2019 | 43 | n.a. | None | CI/microglass capillary | Proteome | Multiplex proteins were identified in very small samples (1 microL or less). Higher IGFBP1 levels were identified in deaf patients compared to patients with residual hearing. |
Shew et al. [15] | 2021 | 10 | MD | Yes | S, L/microglass capillary | miRNA | Sixteen differentially expressed miRNAs were identified in the perilymph of patients with MD. |
Schmitt et al. [16] | 2021 | 31 | MD, OS, EVA | None | CI/ n.a. | Proteome | Overall, 895 different proteins were found in all samples. Based on quantification values, a disease-specific protein distribution in perilymph was demonstrated. |
van Dieken et al. [17] | 2022 | 38 | n.a. | None | CI/microglass capillary | Proteome | The authors propose a human atlas of protein of the cochlea. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioacchini, F.M.; Re, M.; Scarpa, A.; Chiarella, G.; Viola, P.; Pisani, D.; Iannella, G.; Ralli, M.; Di Stadio, A. Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings. Life 2024, 14, 1323. https://doi.org/10.3390/life14101323
Gioacchini FM, Re M, Scarpa A, Chiarella G, Viola P, Pisani D, Iannella G, Ralli M, Di Stadio A. Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings. Life. 2024; 14(10):1323. https://doi.org/10.3390/life14101323
Chicago/Turabian StyleGioacchini, Federico Maria, Massimo Re, Alfonso Scarpa, Giuseppe Chiarella, Pasquale Viola, Davide Pisani, Giannicola Iannella, Massimo Ralli, and Arianna Di Stadio. 2024. "Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings" Life 14, no. 10: 1323. https://doi.org/10.3390/life14101323
APA StyleGioacchini, F. M., Re, M., Scarpa, A., Chiarella, G., Viola, P., Pisani, D., Iannella, G., Ralli, M., & Di Stadio, A. (2024). Proposal of a Theoretically Feasible Method to Perform Perilymph Sampling in Clinical Settings. Life, 14(10), 1323. https://doi.org/10.3390/life14101323