The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Compounds
2.2. Determination of Compound Properties
2.3. Data Evaluation and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, L.M.; Blaber, M. Protein design at the interface of the pre-biotic and biotic worlds. Arch. Biochem. Biophys. 2012, 526, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Moosmann, B. Redox biochemistry of the genetic code. Trends Biochem. Sci. 2021, 46, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Bacon, C.; Meringer, M.; Havel, R.; Aponte, J.C.; Freeland, S. A closer look at non-random patterns within chemistry space for a smaller, earlier amino acid alphabet. J. Mol. Evol. 2022, 90, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, V.B.; Taylor, A.I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J.C.; Wengel, J.; Peak-Chew, S.-Y.; McLaughlin, S.H.; et al. Synthetic genetic polymers capable of heredity and evolution. Science 2012, 336, 341–344. [Google Scholar] [CrossRef]
- Benner, S.A. Detecting Darwinism from molecules in the Enceladus plumes, Jupiter’s moons, and other planetary water lagoons. Astrobiology 2017, 17, 840–851. [Google Scholar] [CrossRef]
- McKaig, J.M.; Kim, M.G.; Carr, C.E. Translation as a biosignature. BioRxiv 2023. [Google Scholar] [CrossRef]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dworkin, J.P. The search for chiral asymmetry as a potential biosignature in our solar system. Chem. Rev. 2020, 120, 4660–4689. [Google Scholar] [CrossRef]
- Neveu, M.; Hays, L.E.; Voytek, M.A.; New, M.H.; Schulte, M.D. The ladder of life detection. Astrobiology 2018, 18, 1375–1402. [Google Scholar] [CrossRef]
- Barge, L.M.; Rodriguez, L.E.; Weber, J.M.; Theiling, B.P. Determining the “Biosignature Threshold” for life detection on biotic, abiotic, or prebiotic worlds. Astrobiology 2022, 22, 481–493. [Google Scholar] [CrossRef]
- Foden, C.S.; Islam, S.; Fernández-García, C.; Maugeri, L.; Sheppard, T.D.; Powner, M.W. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 2020, 370, 865–869. [Google Scholar] [CrossRef]
- Moosmann, B.; Schindeldecker, M.; Hajieva, P. Cysteine, glutathione and a new genetic code: Biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol. Chem. 2020, 401, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial ribose and other sugars in primitive meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.P.; Smith, K.E.; Cleaves, H.J., 2nd; Ruzicka, J.; Stern, J.C.; Glavin, D.P.; House, C.H.; Dworkin, J.P. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 2011, 108, 13995–13998. [Google Scholar] [CrossRef] [PubMed]
- Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dworkin, J.P.; Naraoka, H. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nat. Commun. 2022, 13, 2008. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, R.; Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 2020, 120, 4766–4805. [Google Scholar] [CrossRef]
- Holden, D.T.; Morato, N.M.; Cooks, R.G. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. Proc. Natl. Acad. Sci. USA 2022, 119, e2212642119. [Google Scholar] [CrossRef]
- Jerome, C.A.; Kim, H.J.; Mojzsis, S.J.; Benner, S.A.; Biondi, E. Catalytic synthesis of polyribonucleic acid on prebiotic rock glasses. Astrobiology 2022, 22, 629–636. [Google Scholar] [CrossRef]
- Saladino, R.; Crestini, C.; Ciciriello, F.; Di Mauro, E.; Costanzo, G. Origin of informational polymers: Differential stability of phosphoester bonds in ribomonomers and ribooligomers. J. Biol. Chem. 2006, 281, 5790–5796. [Google Scholar] [CrossRef]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA 1986, 83, 8440–8441. [Google Scholar] [CrossRef]
- Arnett, E.M.; Ludwig, R.T. On the relevance of the Parr-Pearson principle of absolute hardness to organic chemistry. J. Am. Chem. Soc. 1995, 117, 6627–6628. [Google Scholar] [CrossRef]
- Granold, M.; Hajieva, P.; Toşa, M.I.; Irimie, F.D.; Moosmann, B. Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl. Acad. Sci. USA 2018, 115, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Saito, K.; Ishikita, H. Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers. Proc. Natl. Acad. Sci. USA 2020, 117, 16373–16382. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.E.; Ramírez-Colón, J.L.; Duzdevich, D.; Lee, S.; Taniguchi, M.; Ohshiro, T.; Komoto, Y.; Soderblom, J.M.; Zuber, M.T. Solid-state single-molecule sensing with the Electronic Life-Detection Instrument for Enceladus/Europa (ELIE). Astrobiology 2023, 23, 1056–1070. [Google Scholar] [CrossRef]
- Ramírez-Colón, J.L.; Johnson, E.; Duzdevich, D.; Lee, S.; Soderblom, J.; Zuber, M.T.; Taniguchi, M.; Ohshiro, T.; Komoto, Y.; Carr, C.E. Nanogap solid-state single-molecule detection at Mars, Europa, and microgravity conditions. BioRxiv 2024. [Google Scholar] [CrossRef]
- Glavin, D.P.; McLain, H.L.; Dworkin, J.P.; Parker, E.T.; Elsila, J.E.; Aponte, J.C.; Simkus, D.N.; Pozarycki, C.I.; Graham, H.V.; Nittler, L.R.; et al. Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteorit. Planet. Sci. 2020, 55, 1979–2006. [Google Scholar] [CrossRef]
- Orthous-Daunay, F.-R.; Piani, L.; Flandinet, L.; Thissen, R.; Wolters, C.; Vuitton, V.; Poch, O.; Moynier, F.; Sugawara, I.; Naraoka, H.; et al. Ultraviolet-photon fingerprints on chondritic large organic molecules. Geochem. J. 2019, 53, 21–32. [Google Scholar] [CrossRef]
- Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 2010, 107, 2763–2768. [Google Scholar] [CrossRef]
- Jungclaus, G.A.; Cronin, J.R.; Moore, C.B.; Yuen, G.U. Aliphatic amines in the Murchison meteorite. Nature 1976, 261, 126–128. [Google Scholar] [CrossRef]
- Cooper, G.W.; Onwo, W.M.; Cronin, J.R. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. Cosmochim. Acta 1992, 56, 4109–4115. [Google Scholar] [CrossRef]
- Cooper, G.W.; Cronin, J.R. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim. Cosmochim. Acta 1995, 59, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Sephton, M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002, 19, 292–311. [Google Scholar] [CrossRef] [PubMed]
- Lerner, N.; Cooper, G. Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions. Geochim. Cosmochim. Acta 2005, 69, 2901–2906. [Google Scholar] [CrossRef]
- Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 2001, 414, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S.; Cooper, G.W.; Flynn, G.J. The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles. In Meteorites and the Early Solar System II; McSween, H.Y., Lauretta, D.S., Eds.; University of Arizona Press: Tucson, AZ, USA, 2006; pp. 625–652. [Google Scholar]
- Shimoyama, A.; Shigematsu, R. Dicarboxylic acids in the Murchison and Yamato-791198 carbonaceous chondrites. Chem. Lett. 1994, 23, 523–526. [Google Scholar] [CrossRef]
- Monroe, A.A.; Pizzarello, S. The soluble organic compounds of the Bells meteorite: Not a unique or unusual composition. Geochim. Cosmochim. Acta 2011, 75, 7585–7595. [Google Scholar] [CrossRef]
- Kyoto Encyclopedia of Genes and Genomes (KEGG). Available online: www.genome.jp/kegg (accessed on 26 August 2024).
- National Center for Biotechnology Information PubChem. Available online: www.pubchem.ncbi.nlm.nih.gov (accessed on 9 August 2024).
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- General Atomic and Molecular Electronic Structure System—US Version (GAMESS-US). Available online: www.msg.chem.iastate.edu (accessed on 9 October 2024).
- Social Science Statistics. Available online: www.socscistatistics.com (accessed on 3 October 2024).
- Wink, M. Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism; Wink, M., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2010; pp. 1–19. [Google Scholar]
- Weng, J.K.; Philippe, R.N.; Noel, J.P. The rise of chemodiversity in plants. Science 2012, 336, 1667–1670. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Hayatsu, R.; Studier, M.H.; Oda, A.; Fuse, K.; Anders, E. Origin of organic matter in early solar system—II. Nitrogen compounds. Geochim. Cosmochim. Acta 1968, 32, 175–190. [Google Scholar] [CrossRef]
- Moosmann, B.; Skutella, T.; Beyer, K.; Behl, C. Protective activity of aromatic amines and imines against oxidative nerve cell death. Biol. Chem. 2001, 382, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Ohlow, M.J.; Granold, M.; Schreckenberger, M.; Moosmann, B. Is the chromanol head group of vitamin E nature’s final truth on chain-breaking antioxidants? FEBS Lett. 2012, 586, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Koricheva, J.; Nykänen, H.; Gianoli, E. Meta-analysis of trade-offs among plant antiherbivore defenses: Are plants jacks-of-all-trades, masters of all? Am. Nat. 2004, 163, E64–E75. [Google Scholar] [CrossRef]
- Kroymann, J. Natural diversity and adaptation in plant secondary metabolism. Curr. Opin. Plant Biol. 2011, 14, 246–251. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.-M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Kwak, J.H.; Seo, J.M.; Kim, N.H.; Arasu, M.V.; Kim, S.; Yoon, M.K.; Kim, S.J. Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi, J. Biol. Sci. 2017, 24, 1387–1391. [Google Scholar] [CrossRef]
- Hatti-Kaul, R.; Abouhmad, A. Extremophiles: A Promising Source of Novel Natural Products. In Biotechnological Applications of Extremophilic Microorganisms; Lee, N., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020; pp. 1–42. [Google Scholar]
- Pardo-Esté, C.; Cortés, J.; Castro-Severyn, J.; Pérez, V.; Henriquez-Aedo, K.; Cuadros, F.; Yañez, C.; Cuadros-Orellana, S.; Dorador, C.; Molina, V.; et al. Secondary metabolites with antimicrobial activity produced by thermophilic bacteria from a high-altitude hydrothermal system. Front. Microbiol. 2024, 15, 1477458. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, T.; Wu, W.; Peng, Y.; Liu, X.; Han, Y.; Chen, X.; Gao, Z.; Xia, J.; Shao, Z.; et al. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. Sci. Adv. 2024, 10, eadl2281. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Liang, J.; Zhao, L.; Li, Q.; Zhou, C.; Cen, H.; Weng, Q.; Zhang, G. Mining of novel secondary metabolite biosynthetic gene clusters from acid mine drainage. Sci. Data 2022, 9, 760. [Google Scholar] [CrossRef]
- Henry, J.B.; Vann, M.C.; Lewis, R.S. Agronomic practices affecting nicotine concentration in flue-cured tobacco: A review. Agron. J. 2019, 111, 3067–3075. [Google Scholar] [CrossRef]
- Lecasble, M.; Remusat, L.; Viennet, J.C.; Laurent, B.; Bernard, S. Polycyclic aromatic hydrocarbons in carbonaceous chondrites can be used as tracers of both pre-accretion and secondary processes. Geochim. Cosmochim. Acta 2022, 335, 243–255. [Google Scholar] [CrossRef]
- Elsila, J.E.; Aponte, J.C.; McLain, H.L.; Simkus, D.N.; Dworkin, J.P.; Glavin, D.P.; Zeigler, R.A.; McCubbin, F.M.; The ANGSA Science Team. Soluble organic compounds and cyanide in Apollo 17 lunar samples: Origins and curation effects. J. Geophys. Res. Planets 2024, 129, e2023JE008133. [Google Scholar] [CrossRef]
- Ansari, A.H. Detection of organic matter on Mars, results from various Mars missions, challenges, and future strategy: A review. Front. Astron. Space Sci. 2023, 10, 1075052. [Google Scholar] [CrossRef]
- Parker, E.T.; Chan, Q.H.; Glavin, D.P.; Dworkin, J.P. Non-protein amino acids identified in carbon-rich Hayabusa particles. Meteorit. Planet. Sci. 2022, 57, 776–793. [Google Scholar] [CrossRef]
Secondary Metabolites (All) | Meteorite Compounds (All) | Secondary Metabolites (Hydrophilic: XlogP < 2) | Meteorite Compounds (Hydrophilic: XlogP < 2) | |
---|---|---|---|---|
Number of compounds | 570 | 134 | 233 | 107 |
Mean HLG [eV] (± SD) | −10.4 ± 0.9 | −12.4 ± 1.6 | −10.7 ± 0.8 | −13.0 ± 1.1 |
Mean XlogP (± SD) | 2.6 ± 2.3 | 0.2 ± 2.2 | 0.6 ± 1.0 | −0.7 ± 1.5 |
Correlation HLG vs. XlogP | r = 0.259; p = 4 × 10−10 | r = 0.501; p = 7 × 10−10 | r = 0.254; p = 9 × 10−5 | r = −0.203; p = 4 × 10−2 |
ANOVA | F = 380; df = 703; p = 6 × 10−68 | F = 465; df = 339; p = 2 × 10−65 | ||
ANOVA on ranks | U = 11,700; n = 704; p = 8 × 10−36 | U = 1210; n = 340; p = 9 × 10−41 | ||
Effect size (Hedges) | g = 1.87 | g = 2.52 | ||
Effect size (Cohen) | d = 1.56 | d = 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrosimov, R.; Moosmann, B. The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries. Life 2024, 14, 1330. https://doi.org/10.3390/life14101330
Abrosimov R, Moosmann B. The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries. Life. 2024; 14(10):1330. https://doi.org/10.3390/life14101330
Chicago/Turabian StyleAbrosimov, Roman, and Bernd Moosmann. 2024. "The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries" Life 14, no. 10: 1330. https://doi.org/10.3390/life14101330
APA StyleAbrosimov, R., & Moosmann, B. (2024). The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries. Life, 14(10), 1330. https://doi.org/10.3390/life14101330