Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model
Abstract
:1. Introduction
2. Results
2.1. Computational Modeling
2.2. Pathology
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. In Situ Tumor Induction
4.3. Imaging
4.4. Image Segmentation
4.5. Mathematical Modeling
4.6. Pathology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Appendix A
References
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, E.; Lee, H.M. Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers 2024, 16, 666. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Janevska, D.; Chaloska-Ivanova, V.; Janevski, V. Hepatocellular Carcinoma: Risk Factors, Diagnosis and Treatment. Open Access Maced. J. Med. Sci. 2015, 3, 732–736. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Macek Jilkova, Z.; Kurma, K.; Decaens, T. Animal Models of Hepatocellular Carcinoma: The Role of Immune System and Tumor Microenvironment. Cancers 2019, 11, 1487. [Google Scholar] [CrossRef]
- Lencioni, R.; de Baere, T.; Soulen, M.C.; Rilling, W.S.; Geschwind, J.-F.H. Lipiodol Transarterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review of Efficacy and Safety Data. Hepatology 2016, 64, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Bruix, J. Systematic Review of Randomized Trials for Unresectable Hepatocellular Carcinoma: Chemoembolization Improves Survival. Hepatology 2003, 37, 429–442. [Google Scholar] [CrossRef]
- Asgharpour, A.; Cazanave, S.C.; Pacana, T.; Seneshaw, M.; Vincent, R.; Banini, B.A.; Kumar, D.P.; Daita, K.; Min, H.-K.; Mirshahi, F.; et al. A Diet-Induced Animal Model of Non-Alcoholic Fatty Liver Disease and Hepatocellular Cancer. J. Hepatol. 2016, 65, 579–588. [Google Scholar] [CrossRef]
- Gade, T.P.F.; Hunt, S.J.; Harrison, N.; Nadolski, G.J.; Weber, C.; Pickup, S.; Furth, E.E.; Schnall, M.D.; Soulen, M.C.; Celeste Simon, M. Segmental Transarterial Embolization in a Translational Rat Model of Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2015, 26, 1229–1237. [Google Scholar] [CrossRef]
- Chandra, V.M.; Wilkins, L.R.; Brautigan, D.L. Animal Models of Hepatocellular Carcinoma for Local-Regional Intraarterial Therapies. Radiol. Imaging Cancer 2022, 4, e210098. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.Y.; Lee, J.-S. Genomic Perspective on Mouse Liver Cancer Models. Cancers 2019, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Pascale, F.; Pelage, J.-P.; Wassef, M.; Ghegediban, S.H.; Saint-Maurice, J.-P.; De Baere, T.; Denys, A.; Duran, R.; Deschamps, F.; Pellerin, O.; et al. Rabbit VX2 Liver Tumor Model: A Review of Clinical, Biology, Histology, and Tumor Microenvironment Characteristics. Front. Oncol. 2022, 12, 871829. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Morsy, M.; Jacob, S. Dose Translation between Laboratory Animals and Human in Preclinical and Clinical Phases of Drug Development. Drug Dev. Res. 2018, 79, 373–382. [Google Scholar] [CrossRef]
- Schook, L.B.; Collares, T.V.; Hu, W.; Liang, Y.; Rodrigues, F.M.; Rund, L.A.; Schachtschneider, K.M.; Seixas, F.K.; Singh, K.; Wells, K.D.; et al. A Genetic Porcine Model of Cancer. PLoS ONE 2015, 10, e0128864. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Tinkey, P.T.; Avritscher, R.; Van Pelt, C.; Eskandari, G.; Konnath George, S.; Xiao, L.; Cressman, E.; Morris, J.S.; Rashid, A.; et al. Validation of a Preclinical Model of Diethylnitrosamine-Induced Hepatic Neoplasia in Yucatan Miniature Pigs. Oncology 2016, 91, 90–100. [Google Scholar] [CrossRef]
- Nurili, F.; Monette, S.; Michel, A.O.; Bendet, A.; Basturk, O.; Askan, G.; Cheleuitte-Nieves, C.; Yarmohammadi, H.; Maxwell, A.W.P.; Ziv, E.; et al. Transarterial Embolization of Liver Cancer in a Transgenic Pig Model. J. Vasc. Interv. Radiol. 2021, 32, 510–517.e3. [Google Scholar] [CrossRef]
- Schachtschneider, K.M.; Schwind, R.M.; Darfour-Oduro, K.A.; De, A.K.; Rund, L.A.; Singh, K.; Principe, D.R.; Guzman, G.; Ray, C.E.; Ozer, H.; et al. A Validated, Transitional and Translational Porcine Model of Hepatocellular Carcinoma. Oncotarget 2017, 8, 63620–63634. [Google Scholar] [CrossRef]
- Gaba, R.C.; Elkhadragy, L.; Boas, F.E.; Chaki, S.; Chen, H.H.; El-Kebir, M.; Garcia, K.D.; Giurini, E.F.; Guzman, G.; LoBianco, F.V.; et al. Development and Comprehensive Characterization of Porcine Hepatocellular Carcinoma for Translational Liver Cancer Investigation. Oncotarget 2020, 11, 2686–2701. [Google Scholar] [CrossRef]
- The MathWorks Inc. Statistics and Machine Learning Toolbox Documentation; The MathWorks Inc.: Natick, MA, USA, 2022. [Google Scholar]
- Weis, J.A.; Miga, M.I.; Yankeelov, T.E. Three-Dimensional Image-Based Mechanical Modeling for Predicting the Response of Breast Cancer to Neoadjuvant Therapy. Comput. Methods Appl. Mech. Eng. 2017, 314, 494–512. [Google Scholar] [CrossRef]
- Junatas, K.L.; Tonar, Z.; Kubíková, T.; Liška, V.; Pálek, R.; Mik, P.; Králíčková, M.; Witter, K. Stereological Analysis of Size and Density of Hepatocytes in the Porcine Liver. J. Anat. 2017, 230, 575. [Google Scholar] [CrossRef] [PubMed]
- Byrne, H.M. Dissecting Cancer through Mathematics: From the Cell to the Animal Model. Nat. Rev. Cancer 2010, 10, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Rockne, R.C.; Trister, A.D.; Jacobs, J.; Hawkins-Daarud, A.J.; Neal, M.L.; Hendrickson, K.; Mrugala, M.M.; Rockhill, J.K.; Kinahan, P.; Krohn, K.A.; et al. A Patient-Specific Computational Model of Hypoxia-Modulated Radiation Resistance in Glioblastoma Using 18F-FMISO-PET. J. R. Soc. Interface 2015, 12, 20141174. [Google Scholar] [CrossRef]
- Hogea, C.; Davatzikos, C.; Biros, G. An Image-Driven Parameter Estimation Problem for a Reaction-Diffusion Glioma Growth Model with Mass Effects. J. Math. Biol. 2008, 56, 793–825. [Google Scholar] [CrossRef]
- Yankeelov, T.E.; Quaranta, V.; Evans, K.J.; Rericha, E.C. Toward a Science of Tumor Forecasting for Clinical Oncology. Cancer Res. 2015, 75, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Boas, F.E.; Duran-Struuck, R.; Gaba, R.C.; Schachtschneider, K.M.; Comin-Anduix, B.; Galic, Z.; Haile, S.; Bassir, A.; Chiang, J. Pigs as Clinically Relevant Models for Synergizing Interventional Oncology and Immunotherapy. J. Vasc. Interv. Radiol. 2024, 35, 809–817.e1. [Google Scholar] [CrossRef]
- Mondal, P.; Patel, N.S.; Bailey, K.; Aravind, S.; Cartwright, S.B.; Hollingsworth, M.A.; Lazenby, A.J.; Carlson, M.A. Induction of Pancreatic Neoplasia in the KRAS/TP53 Oncopig. Dis. Model. Mech. 2023, 16, dmm049699. [Google Scholar] [CrossRef]
- Taylor, G.D.; Johnson, D.B.; Hogg, D.C.; Cadeddu, J.A. Development of a Renal Tumor Mimic Model for Learning Minimally Invasive Nephron Sparing Surgical Techniques. J. Urol. 2004, 172, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Belani, J.; Maxwell, K.; Lieber, D.; Talcott, M.; Baron, P.; Ames, C.; Venkatesh, R.; Landman, J. Development of Exophytic Tumor Model for Laparoscopic Partial Nephrectomy: Technique and Initial Experience. Urology 2005, 65, 872–876. [Google Scholar] [CrossRef]
- Mauch, S.C.; Zlevor, A.M.; Knott, E.A.; Couillard, A.B.; Periyasamy, S.; Williams, E.C.; Swietlik, J.F.; Laeseke, P.F.; Zhang, X.; Xu, Z.; et al. Hepatic and Renal Histotripsy in an Anticoagulated Porcine Model. J. Vasc. Interv. Radiol. 2023, 34, 386–394.e2. [Google Scholar] [CrossRef]
- Hendricks-Wenger, A.; Arnold, L.; Gannon, J.; Simon, A.; Singh, N.; Sheppard, H.; Nagai-Singer, M.A.; Imran, K.M.; Lee, K.; Clark-Deener, S.; et al. Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Solbiati, M.; Ierace, T.; Muglia, R.; Pedicini, V.; Iezzi, R.; Passera, K.M.; Rotilio, A.C.; Goldberg, S.N.; Solbiati, L.A. Thermal Ablation of Liver Tumors Guided by Augmented Reality: An Initial Clinical Experience. Cancers 2022, 14, 1312. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
Variable | Optimized Value | |
---|---|---|
Lesion Growth | c | 5.823 |
κ | 0.146 | |
θ | 8.740 × 108 | |
Lesion Regression | c | 5.909 × 10−4 |
κ | −0.360 | |
θ | 1.470 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smetanick, D.; Stolley, D.; Fuentes, D.; Fowlkes, N.W.; Shakoor, F.; Stenkamp, M.S.; Hicks, S.; Parrish, S.; Cressman, E. Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model. Life 2024, 14, 1395. https://doi.org/10.3390/life14111395
Smetanick D, Stolley D, Fuentes D, Fowlkes NW, Shakoor F, Stenkamp MS, Hicks S, Parrish S, Cressman E. Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model. Life. 2024; 14(11):1395. https://doi.org/10.3390/life14111395
Chicago/Turabian StyleSmetanick, Derek, Danielle Stolley, David Fuentes, Natalie W. Fowlkes, Faith Shakoor, Maria Sophia Stenkamp, Samantha Hicks, Steve Parrish, and Erik Cressman. 2024. "Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model" Life 14, no. 11: 1395. https://doi.org/10.3390/life14111395
APA StyleSmetanick, D., Stolley, D., Fuentes, D., Fowlkes, N. W., Shakoor, F., Stenkamp, M. S., Hicks, S., Parrish, S., & Cressman, E. (2024). Volumetric CT Assessment of In Situ Induced Hepatic Lesions in a Transgenic Swine Model. Life, 14(11), 1395. https://doi.org/10.3390/life14111395