Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Procedures
2.3.1. Anthropometric Measurements and PHV
2.3.2. Lower-Body Muscular Strength
Jumping Ability
2.3.3. Acceleration and Speed
2.3.4. Change-of-Direction Ability
2.3.5. Cardiorespiratory Fitness
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivarsson, A.; Johnson, U. Psychological factors as predictors of injuries among senior soccer players: A prospective study. J. Sports Sci. Med. 2010, 9, 347–352. [Google Scholar] [PubMed]
- Bradley, P.S. ‘Setting the Benchmark’ Part 2: Contextualising the Physical Demands of Teams in the FIFA World Cup Qatar 2022. Biol. Sport 2024, 41, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.; Brito, J.; Maia, J.; Coelho-E-Silva, M.J.; Figueiredo, A.J.; Bangsbo, J.; Malina, R.M.; Seabra, A. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int. J. Sports Med. 2013, 34, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13-15 years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding Change of Direction Ability in Sport A Review of Resistance Training Studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- McMillan, K.; Helgerud, J.; Macdonald, R.; Hoff, J. Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br. J. Sports Med. 2005, 39, 273–277. [Google Scholar] [CrossRef]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. Int. J. Sports Sci. Coach. 2010, 5, 571–592. [Google Scholar] [CrossRef]
- Hill, M.; Scott, S.; Malina, R.M.; McGee, D.; Cumming, S.P. Relative age and maturation selection biases in academy football. J. Sports Sci. 2020, 38, 1359–1367. [Google Scholar] [CrossRef]
- Bezuglov, E.; Morgans, R.; Butovskiy, M.; Emanov, A.; Shagiakhmetova, L.; Pirmakhanov, B.; Waśkiewicz, Z.; Lazarev, A. The relative age effect is widespread among European adult professional soccer players but does not affect their market value. PLoS ONE 2023, 18, e0283390. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho e Silva, M.J.; Figueiredo, A.J. Biological maturation of youth athletes: Assessment and implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Lovell, R.; Towlson, C.; Parkin, G.; Portas, M.; Vaeyens, R.; Cobley, S. Soccer Player Characteristics in English Lower-League Development Programmes: The Relationships between Relative Age, Maturation, Anthropometry and Physical Fitness. PLoS ONE 2015, 10, e0137238. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, J.; Beunen, G.; Steens, G.; Claessens, A.; Renson, R. Motor performance during adolescence and age thirty as related to age at peak height velocity. Ann. Hum. Biol. 1990, 17, 423–435. [Google Scholar] [CrossRef]
- Mathisen, G.; Pettersen, S.A. Anthropometric factors related to sprint and agility performance in young male soccer players. Open Access J. Sports Med. 2015, 6, 337–342. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The relationship between peak height velocity and physical performance in youth soccer players. J. Sports Sci. 2006, 24, 221–230. [Google Scholar] [CrossRef]
- Meylan, C.M.P.; Nosaka, K.; Green, J.P.; Cronin, J.B. Variability and influence of eccentric kinematics on unilateral vertical, horizontal, and lateral countermovement jump performance. J. Strength Cond. Res. 2010, 24, 840–845. [Google Scholar] [CrossRef]
- Currell, K.; Jeukendrup, A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef]
- Alcazar, J.; Pareja-Blanco, F.; Rodriguez-Lopez, C.; Navarro-Cruz, R.; Cornejo-Daza, P.J.; Ara, I.; Alegre, L.M. Comparison of linear, hyperbolic and double-hyperbolic models to assess the force–velocity relationship in multi-joint exercises. Eur. J. Sport. Sci. 2021, 21, 359–369. [Google Scholar] [CrossRef]
- de Hoyo, M.; Núñez, F.J.; Sañudo, B.; Gonzalo-Skok, O.; Muñoz-López, A.; Romero-Boza, S.; Otero-Esquina, C.; Sánchez, H.; Nimphius, S. Predicting Loading Intensity Measuring Velocity in Barbell Hip Thrust Exercise. J. Strength Cond. Res. 2021, 35, 2075–2081. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Suarez-Arrones, L.; Arjol-Serrano, J.L.; Casajús, J.A.; Mendez-Villanueva, A. Validity of the V-cut Test for Young Basketball Players. Int. J. Sports Med. 2015, 36, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bright, T.; Handford, M.J.; Hughes, J.D.; Mundy, P.D.; Lake, J.P.; Doggart, L. Development and Reliability of Countermovement Jump Performance in Youth Athletes at Pre-, Circa- and Post-Peak Height Velocity. Int. J. Strength Cond. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: Effect of age and maturation. J. Sports Sci. 2013, 31, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Altmann, S.; Ringhof, S.; Neumann, R.; Woll, A.; Rumpf, M.C. Validity and reliability of speed tests used in soccer: A systematic review. PLoS ONE 2019, 14, e0220982. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Pedisic, Z. Test–retest reliability of the 30–15 Intermittent Fitness Test: A systematic review. J. Sport Health Sci. 2021, 10, 413–418. [Google Scholar] [CrossRef]
- Stanković, M.; Gušić, M.; Nikolić, S.; Barišić, V.; Krakan, I.; Sporiš, G.; Mikulić, I.; Trajković, N. 30–15 Intermittent Fitness Test: A Systematic Review of Studies, Examining the VO2max Estimation and Training Programming. Appl. Sci. 2021, 11, 11792. [Google Scholar] [CrossRef]
- Pescatello, L.; Arena, R.; Riebe, D.; Thompson, P.D. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 60–113. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Morris, R.; Jones, B.; Myers, T.; Lake, J.; Emmonds, S.; Clarke, N.D.; Singleton, D.; Ellis, M.; Till, K. Isometric Midthigh Pull Characteristics in Elite Youth Male Soccer Players: Comparisons by Age and Maturity Offset. J. Strength Cond. Res. 2018, 34, 2947–2955. [Google Scholar] [CrossRef]
- Darrall-Jones, J.D.; Jones, B.; Till, K. Anthropometric and Physical Profiles of English Academy Rugby Union Players. J. Strength Cond. Res. 2015, 29, 2086–2096. [Google Scholar] [CrossRef]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo de Mora, J.; Sáez de Villarreal, E. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J Strength Cond Res. 2020, 36, 340–345. [Google Scholar] [CrossRef] [PubMed]
- González-Badillo, J.J.; Ribas-Serna, J. Fuerza, Velocidad y Rendimiento Físico y Deportivo; ESM: San Sebastian, Spain, 2019. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates, Publishers: Mahwah, NJ, USA, 1988. [Google Scholar]
- Alcaraz, P.E.; Carlos-Vivas, J.; Oponjuru, B.O.; Martínez-Rodríguez, A. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 2143–2165. [Google Scholar] [CrossRef] [PubMed]
- Darrall-Jones, J.D.; Jones, B.; Roe, G.; Till, K. Reliability and usefulness of linear sprint testing in adolescent rugby union and league players. J. Strength Cond. Res. 2016, 30, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Barr, M.J.; Sheppard, J.M.; Gabbett, T.J.; Newton, R.U. Long-term training-induced changes in sprinting speed and sprint momentum in elite rugby union players. J. Strength Cond. Res. 2014, 28, 2724–2731. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. The 30–15 intermittent fitness test: Accuracy for individualizing interval training of young intermittent sport players. J. Strength Cond. Res. 2008, 22, 365–374. [Google Scholar] [CrossRef]
- Vincent-Smith, B.; Gibbons, P. Inter-examiner and intra-examiner reliability of the standing flexion test. Man. Ther. 1999, 4, 87–93. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Comfort, P. Within- and between-session reliability of power, force, and rate of force development during the power clean. J. Strength Cond. Res. 2013, 27, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Stewart, A.D.; Lloyd, R.; Agouris, I.; Keogh, J.W.L. Effect of load positioning on the kinematics and kinetics of weighted vertical jumps. J. Strength Cond. Res. 2012, 26, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Collazo García, C.L.; Rueda, J.; Suárez Luginick, B.; Navarro, E. Differences in the Electromyographic Activity of Lower-Body Muscles in Hip Thrust Variations. J. Strength Cond. Res. 2020, 34, 2449–2455. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Araújo, D.; Hristovski, R.; Passos, P.; Chow, J.Y. Ecological dynamics and motor learning design in sport. In Skill Acquisition in Sport: Research, Theory and Practice; Routledge: London, UK, 2012; pp. 112–130. [Google Scholar] [CrossRef]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisløff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Lozano, F.J.M.; Carrasco Gallego, A. Deficits of accounting in the valuation of rights to exploit the performance of professional players in football clubs. A case study. J. Manag. Control. 2011, 22, 335–357. [Google Scholar] [CrossRef]
- González-frutos, P.; Aguilar-navarro, M.; Morencos, E.; Mallo, J.; Veiga, S. Relationships between strength and step frequency with fatigue index in repeated sprint ability. Int. J. Environ. Res. Public Health 2022, 19, 196. [Google Scholar] [CrossRef]
All | PHV0 | PHV1 | PHV2 | PHV0 vs. PHV1 | PHV0 vs. PHV2 | PHV1 vs. PHV2 | |
---|---|---|---|---|---|---|---|
Test | |||||||
Age (y) | 15 (2.2) | 12 (1.12) | 15 (0.76) | 16 (1.2) | <0.001 | <0.001 | <0.001 |
(12–19) | (12–13) | (13–15) | (16–19) | ||||
Weight (kg) | 59 (13.8) | 43.13 (7.57) | 60.28 (4.24) | 69.51 (7.24) | <0.001 | <0.001 | <0.001 |
(34.5–84.4) | (34.5–44.6) | (46.7–69.6) | (57.3–84.4) | ||||
Height (cm) | 166.88 (12.85) | 152.64 (9.05) | 168.62 (5.08) | 176.13 (6.23) | <0.001 | <0.001 | <0.001 |
(139.1–195) | (139.1–159.2) | (153.5–176.3) | (164.3–195) | ||||
Sitting height (cm) | 84.38 (6.77) | 76.87 (4.27) | 85.7 (2.69) | 89.05 (3.95) | <0.001 | <0.001 | <0.001 |
(69.5–100.7) | (69.5–82.1) | (74.3–90.1) | (76.1–100.7) | ||||
Leg length (cm) | 82.51 (11.49) | 76.9 (12.85) | 82.92 (3.76) | 87.07 (5.98) | 0.01 | <0.001 | 0.174 |
(66.8–94) | (66.8–82.5) | (68.2–90.2) | (74.4–94) | ||||
CMJ (cm) | 32.33 (5.61) | 27.66 (3.51) | 31.78 (5.29) | 35.73 (4.38) | <0.001 | <0.001 | <0.001 |
(22.3–60.6) | (22.3–31.5) | (29.6–37.2) | (31.9–60.6) | ||||
10 m sprint (s) | 1.97 (0.15) | 2.14 (0.12) | 1.95 (0.09) | 1.87 (0.08) | <0.001 | <0.001 | 0.012 |
(1.64–2.44) | (2.1–2.36) | (1.71–2.3) | (1.64–2.02) | ||||
30 m sprint (s) | 4.74 (0.43) | 5.22 (0.34) | 4.62 (0.25) | 4.46 (0.17) | <0.001 | <0.001 | <0.001 |
(3.91–6.09) | (5.13–6.09) | (4.13–4.65) | (3.91–4.56) | ||||
VCUT (s) | 7.25 (0.55) | 7.73 (0.59) | 7.02 (0.37) | 7 (0.32) | <0.001 | <0.001 | 1.00 |
(6.43–8.56) | (7.39–8.56) | (6.51–7.2) | (6.43–7.18) | ||||
30–15 (km/h) | 19.5 (1.08) | 19 (0.87) | 19.37 (1.04) | 19.75 (1.09) | 0.48 | 0.001 | 0.257 |
(16.5–23) | (16.5–20) | (18.5–23) | (18.5–23) | ||||
SQ (kg) | 75.11 (11.96) | - | 69.61 (11.4) | 76.5 (11.68) | <0.001 | <0.001 | 0.02 |
(30–90) | (–) | (45–85) | (65–90) | ||||
HT (kg) | 74.43 (15.8) | - | 65.97 (14.43) | 76.33 (15.64) | <0.001 | <0.001 | 0.009 |
(25–90) | (–) | (40–85) | (55–90) | ||||
Retest | |||||||
Age (y) | 15 (2.23) | 12 (1.13) | 15 (0.76) | 17 (1.24) | <0.001 | <0.001 | <0.001 |
(12–19) | (12–13) | (13–15) | (16–19) | ||||
Weight (kg) | 59.01 (13.85) | 43.17 (7.6) | 60.16 (4.33) | 69.54 (7.22) | <0.001 | <0.001 | <0.001 |
(34.2–85) | (34.2–44.7) | (46.3–69) | (57.5–84.4) | ||||
Height (cm) | 166.92 (12.9) | 152.64 (9.05) | 168.6 (5.06) | 176.22 (6.31) | <0.001 | <0.001 | <0.001 |
(139.4–195) | (139.4–159.4) | (153.2–176.5) | (164.3–195) | ||||
Sitting height (cm) | 84.37 (6.77) | 76.9 (4.28) | 85.68 (2.69) | 89.04 (3.95) | <0.001 | <0.001 | <0.001 |
(69.5–100.7) | (69.5–82.56) | (74.2–90.1) | (76.1–100.7) | ||||
Leg length (cm) | 82.56 (11.5) | 76.9 (12.84) | 82.92 (3.75) | 87.17 (6.09) | 0.006 | <0.001 | 0.066 |
(66.6–94) | (66.6–82.1) | (68.2–90.3) | (74.5–94) | ||||
CMJ (cm) | 32.46 (5.71) | 27.66 (3.54) | 31.79 (5.36) | 35.97 (4.42) | <0.001 | <0.001 | <0.001 |
(22.5–60.5) | (22.5–31.4) | (29.8–37) | (31.6–60.5) | ||||
10 m sprint (s) | 1.96 (0.16) | 2.12 (0.13) | 1.94 (0.92) | 1.86 (0.09) | 0.002 | <0.001 | <0.001 |
(1.64–2.4) | (2.1–2.4) | (1.7–2.3) | (1.64–2) | ||||
30 m sprint (s) | 4.47 (0.43) | 5.23 (0.39) | 4.61 (0.24) | 4.44 (0.21) | 0.003 | <0.001 | 0.023 |
(3.9–6.1) | (5.14–6.1) | (4.12–4.68) | (3.92–4.51) | ||||
VCUT (s) | 7.23 (0.55) | 7.71 (0.58) | 7.01 (0.37) | 6.98 (0.33) | <0.004 | <0.001 | 1.00 |
(6.41–8.51) | (7.42–8.51) | (6.57–7.25) | (6.41–7.05) | ||||
30–15 (km/h) | 19.55 (1.07) | 18.97 (0.84) | 19.46 (1.01) | 19.78 (1.09) | 0.186 | <0.001 | 0.437 |
(16.5–23) | (16.5–20) | (18.5–23) | (18.5–23) | ||||
SQ (kg) | 74.45 (11.75) | - | 69.02 (10.91) | 75.81 (11.54) | - | - | 0.02 |
(30–90) | (–) | (45–85) | (65–90) | ||||
HT (kg) | 74.32 (15.48) | - | 66.79 (13.78) | 76.06 (15.39) | - | - | 0.016 |
(25–90) | (–) | (40–85) | (55–90) |
n | Intertrial Difference (Retest-Test) | p-Value | Cohen’s d | ICC (95% CI) | SSE | MSE | RMSE | % Error | %SEM | MDC90 | % CV | SEE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | |||||||||||||
CMJ (cm) | 197 | 0.14 ± 0.60 | 0.001 | 0.025 | 0.997 | 74.203 | 0.377 | 0.614 | 1.821 | 0.433 | 0.010 | 17.469 | 0.597 |
10 m sprint (s) | 197 | −0.01 ± 0.04 | <0.001 | 0.088 | 0.979 | 0.409 | 0.002 | 0.046 | 6.418 | 0.467 | 0.011 | 8.085 | 0.044 |
30 m sprint (s) | 197 | −0.01 ± 0.12 | 0.521 | - | 0.981 | 2.965 | 0.015 | 0.123 | 6.196 | 0.119 | 0.003 | 9.396 | 0.123 |
VCUT (s) | 197 | −0.02 ± 0.07 | <0.001 | 0.036 | 0.996 | 1.035 | 0.005 | 0.072 | 2.681 | 0.274 | 0.006 | 7.676 | 0.070 |
30–15 (km/h) | 162 | 0.03 ± 0.26 | 0.181 | - | 0.985 | 11.250 | 0.069 | 0.264 | 4.054 | 0.142 | 0.003 | 5.519 | 0.262 |
SQ (kg) | 118 | −0.66 ± 2.71 | 0.009 | 0.055 | 0.986 | 915.356 | 7.757 | 2.785 | 4.262 | 0.864 | 0.020 | 15.693 | 2.680 |
HT (kg) | 118 | −0.10 ± 2.73 | 0.687 | - | 0.989 | 874.839 | 7.414 | 2.723 | 2.443 | 0.113 | 0.003 | 21.113 | 2.671 |
PHV 0 | |||||||||||||
CMJ (cm) | 68 | 0.05 ± 0.32 | 0.248 | - | 0.998 | 7.113 | 0.105 | 0.323 | 1.965 | 0.165 | 0.004 | 12.716 | 0.324 |
10 m sprint (s) | 68 | −0.01 ± 0.06 | 0.037 | 0.116 | 0.944 | 0.218 | 0.003 | 0.057 | 10.690 | 0.666 | 0.016 | 5.741 | 0.056 |
30 m sprint (s) | 68 | 0.01 ± 0.14 | 0.742 | - | 0.961 | 1.376 | 0.020 | 0.142 | 9.482 | 0.110 | 0.003 | 6.977 | 0.143 |
VCUT (s) | 68 | −0.03 ± 0.07 | 0.001 | 0.048 | 0.996 | 0.352 | 0.005 | 0.072 | 3.126 | 0.361 | 0.008 | 7.530 | 0.067 |
30–15 (km/h) | 35 | −0.03 ± 0.21 | 0.422 | - | 0.985 | 1.500 | 0.043 | 0.207 | 5.175 | 0.150 | 0.004 | 4.505 | 0.205 |
PHV 1 | |||||||||||||
CMJ (cm) | 30 | 0.01 ± 0.90 | 0.937 | - | 0.993 | 23.354 | 0.778 | 0.882 | 3.834 | 0.041 | 0.001 | 16.620 | 0.913 |
10 m sprint (s) | 30 | −0.01 ± 0.03 | 0.033 | 0.125 | 0.973 | 0.028 | 0.001 | 0.030 | 7.996 | 0.595 | 0.014 | 4.752 | 0.029 |
30 m sprint (s) | 30 | 0.00 ± 0.04 | 0.440 | - | 0.993 | 0.047 | 0.002 | 0.039 | 3.860 | 0.123 | 0.003 | 5.239 | 0.039 |
VCUT (s) | 30 | −0.01 ± 0.08 | 0.462 | - | 0.990 | 0.168 | 0.006 | 0.075 | 4.436 | 0.146 | 0.003 | 5.264 | 0.077 |
30–15 (km/h) | 28 | 0.09 ± 0.39 | 0.232 | - | 0.963 | 4.250 | 0.152 | 0.390 | 7.792 | 0.461 | 0.011 | 5.260 | 0.381 |
SQ (kg) | 19 | −0.59 ± 3.41 | 0.462 | - | 0.977 | 216.536 | 11.397 | 3.376 | 6.816 | 0.846 | 0.020 | 15.928 | 3.351 |
HT (kg) | 19 | 0.83 ± 2.91 | 0.232 | - | 0.989 | 165.019 | 9.168 | 3.028 | 5.533 | 1.251 | 0.029 | 20.979 | 2.834 |
PHV 2 | |||||||||||||
CMJ (cm) | 99 | 0.24 ± 0.62 | <0.001 | 0.055 | 0.994 | 43.736 | 0.442 | 0.665 | 2.329 | 0.681 | 0.016 | 12.271 | 0.625 |
10 m sprint (s) | 99 | −0.01 ± 0.04 | <0.001 | 0.170 | 0.942 | 0.163 | 0.002 | 0.041 | 9.020 | 0.783 | 0.018 | 4.627 | 0.038 |
30 m sprint (s) | 99 | −0.01 ± 0.12 | 0.287 | - | 0.887 | 1.543 | 0.016 | 0.125 | 13.871 | 0.301 | 0.007 | 4.393 | 0.125 |
VCUT (s) | 99 | −0.02 ± 0.07 | 0.016 | 0.053 | 0.988 | 0.515 | 0.005 | 0.072 | 3.913 | 0.247 | 0.006 | 4.664 | 0.071 |
30–15 (km/h) | 99 | 0.03 ± 0.23 | 0.202 | - | 0.988 | 5.500 | 0.056 | 0.236 | 4.285 | 0.153 | 0.004 | 5.521 | 0.235 |
SQ (kg) | 99 | −0.69 ± 2.59 | 0.010 | 0.057 | 0.987 | 698.821 | 7.059 | 2.657 | 4.066 | 0.867 | 0.020 | 15.274 | 2.561 |
HT (kg) | 99 | −0.27 ± 2.69 | 0.315 | - | 0.992 | 709.820 | 7.170 | 2.678 | 2.403 | 0.340 | 0.008 | 20.532 | 2.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Iglesias, J.; Gonzalo-Skok, O.; Landi-Fernández, M.; Perez-Bey, A.; Castro-Piñero, J. Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age. Life 2024, 14, 1448. https://doi.org/10.3390/life14111448
Jimenez-Iglesias J, Gonzalo-Skok O, Landi-Fernández M, Perez-Bey A, Castro-Piñero J. Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age. Life. 2024; 14(11):1448. https://doi.org/10.3390/life14111448
Chicago/Turabian StyleJimenez-Iglesias, Jose, Oliver Gonzalo-Skok, Mario Landi-Fernández, Alejandro Perez-Bey, and Jose Castro-Piñero. 2024. "Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age" Life 14, no. 11: 1448. https://doi.org/10.3390/life14111448
APA StyleJimenez-Iglesias, J., Gonzalo-Skok, O., Landi-Fernández, M., Perez-Bey, A., & Castro-Piñero, J. (2024). Age-Related Differences and Reliability of a Field-Based Fitness Test Battery in Young Trained Footballers: The Role of Biological Age. Life, 14(11), 1448. https://doi.org/10.3390/life14111448