Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Skill (technical disciplines): archery, golf, shooting, figure skating, sailing, curling, diving, and equestrian sports.
- (2)
- Power (strength disciplines): weightlifting, Greco-Roman wrestling, judo, javelin, bobsleigh, skeleton, snowboard, swimming (<800 mt), alpine skiing, athletics (sprinting, shot put, and discus), and luge.
- (3)
- Mixed discipline (alternate dynamic and strength components): soccer, volleyball, basketball, tennis, fencing, water polo, rhythmic gymnastics, taekwondo, badminton, beach volleyball, and softball.
- (4)
- Endurance (primarily dynamic components): cycling, rowing, canoeing, triathlon, long-distance running, long-distance swimming (>800 mt), cross-country skiing, pentathlon, biathlon, speed skating, and Nordic combined.
- (1)
- Family history for cardiovascular disease: Fatal or non-fatal CV events or/and established diagnosis of CV disease in first-degree male relatives aged under 55 years, or female relatives aged under 65 years [12], or evidence of carotid/peripheral atherosclerotic disease in first-degree relatives.
- (2)
- Cigarette smoking: Defined as regular smokers of at least one cigarette per day.
- (3)
- Overweight: BMI over 25; obesity: BMI over 30.
Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmet, P.Z.; Alberti, K.G.; Shaw, J.E. Mainstreaming the metabolic syndrome: A definitive definition. Med. J. Aust. 2005, 183, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Negishi, K.; Ohyama, Y.; Okada, H.; Imai, K.; Kurabayashi, M. A Risk Score with Additional Four Independent Factors to Predict the Incidence and Recovery from Metabolic Syndrome: Development and Validation in Large Japanese Cohorts. PLoS ONE 2015, 10, e0133884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Ferreira, M.V.; Rendo-Urteaga, T.; Vilanova-Campelo, R.C.; Carvalho, H.B.; da Paz Oliveira, G.; Paes Landim, M.B.; Torres-Leal, F.L. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clin. Nutr. 2017, 36, 1693–1700. [Google Scholar] [CrossRef]
- Ray, L.; Ravichandran, K.; Nanda, S.K. Comparison of Lipid Accumulation Product Index with Body Mass Index and WC as a Predictor of Metabolic Syndrome in Indian Population. Metab. Syndr. Relat. Disord. 2018, 16, 240–245. [Google Scholar] [CrossRef]
- Wakabayashi, I.; Daimon, T. The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin. Chim. Acta 2015, 438, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Kahn, H.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26, Erratum in: BMC Cardiovasc. Disord. 2006, 6, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiang, J.K.; Koo, M. Lipid accumulation product: A simple and accurate index for predicting metabolic syndrome in Taiwanese people aged 50 and over. BMC Cardiovasc. Disord. 2012, 12, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, Y.L.; Wang, Y.J.; Lan, K.H.; Huo, T.I.; Huang, Y.H.; Su, C.W.; Hsieh, W.Y.; Hou, M.C.; Lin, H.C.; Lee, F.Y.; et al. Fatty Liver Index and Lipid Accumulation Product Can Predict Metabolic Syndrome in Subjects without Fatty Liver Disease. Gastroenterol. Res. Pract. 2017, 2017, 9279836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Zhang, Y.; Luo, H.; Lin, R. The lipid accumulation product is a powerful tool to diagnose metabolic dysfunction-associated fatty liver disease in the United States adults. Front. Endocrinol. 2022, 13, 977625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Khandekar, M.J.; Cohen, P.; Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer 2011, 11, 886–895. [Google Scholar] [CrossRef]
- Kim, M.Y.; An, S.; Shim, Y.S.; Lee, H.S.; Hwang, J.S. Waist-height ratio and body mass index as indicators of obesity and cardiometabolic risk in Korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2024, 29, 182–190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Gioia, G.; Crispino, S.P.; Monosilio, S.; Maestrini, V.; Nenna, A.; Segreti, A.; Squeo, M.R.; Lemme, E.; Ussia, G.P.; Grigioni, F.; et al. Cardiovascular and metabolic effects of hyperbilirubinemia in a cohort of Italian Olympic athletes. Scand. J. Med. Sci. Sports 2023, 33, 2534–2547. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caro, J.; Navarro, I.; Romero, P.; Lorente, R.I.; Priego, M.A.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F. Metabolic effects of regular physical exercise in healthy population. Endocrinol. Nutr. 2013, 60, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Shariful Islam, M.; Fardousi, A.; Sizear, M.I.; Rabbani, M.G.; Islam, R.; Saif-Ur-Rahman, K.M. Effect of leisure-time physical activity on blood pressure in people with hypertension: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 10639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joseph, M.S.; Tincopa, M.A.; Walden, P.; Jackson, E.; Conte, M.L.; Rubenfire, M. The Impact Of Structured Exercise Programs On Metabolic Syndrome And Its Components: A Systematic Review. Diabetes Metab. Syndr. Obes. 2019, 12, 2395–2404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katzmarzyk, P.T.; Leon, A.S.; Wilmore, J.H.; Skinner, J.S.; Rao, D.C.; Rankinen, T.; Bouchard, C. Targeting the metabolic syndrome with exercise: Evidence from the HERITAGE Family Study. Med. Sci. Sports Exerc. 2003, 35, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, A.M.; Bojko, E.R. Lipid accumulation product or lap as an up-to-date clinical biochemical marker of human obesity. Health Risk Anal. 2019, 2019, 164–174. [Google Scholar] [CrossRef]
- Rotter, I.; Rył, A.; Szylińska, A.; Pawlukowska, W.; Lubkowska, A.; Laszczyńska, M. Lipid Accumulation Product (LAP) as an Index of Metabolic and Hormonal Disorders in Aging Men. Exp. Clin. Endocrinol. Diabetes 2017, 125, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.X.; Zhang, X.H.; Zhang, J.Y.; He, J.; Yan, Y.Z.; Ma, J.L.; Ma, R.L.; Guo, H.; Mu, L.T.; Li, S.G.; et al. Visceral Adiposity and Anthropometric Indicators as Screening Tools of Metabolic Syndrome among Low Income Rural Adults in Xinjiang. Sci. Rep. 2016, 6, 36091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzer, S.; D’Alleva, M.; Isola, M.; De Martino, M.; Caroli, D.; Bondesan, A.; Marra, A.; Sartorio, A. Cardiometabolic Index (CMI) and Visceral Adiposity Index (VAI) Highlight a Higher Risk of Metabolic Syndrome in Women with Severe Obesity. J. Clin. Med. 2023, 12, 3055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Celeski, M.; Di Gioia, G.; Nusca, A.; Segreti, A.; Squeo, M.R.; Lemme, E.; Mango, F.; Ferrera, A.; Ussia, G.P.; Grigioni, F. The Spectrum of Coronary Artery Disease in Elite Endurance Athletes-A Long-Standing Debate: State-of-the-Art Review. J. Clin. Med. 2024, 13, 5144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alipour, P.; Azizi, Z.; Raparelli, V.; Norris, C.M.; Kautzky-Willer, A.; Kublickiene, K.; Herrero, M.T.; Emam, K.E.; Vollenweider, P.; Preisig, M.; et al. Role of sex and gender-related variables in development of metabolic syndrome: A prospective cohort study. Eur. J. Intern. Med. 2024, 121, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Ziaei, S.; Mohseni, H. Correlation between Hormonal Statuses and Metabolic Syndrome in Postmenopausal Women. J. Fam. Reprod. Health 2013, 7, 63–66. [Google Scholar] [PubMed] [PubMed Central]
- Jamka, M.; Makarewicz-Bukowska, A.; Bokayeva, K.; Śmidowicz, A.; Geltz, J.; Kokot, M.; Kaczmarek, N.; Żok, A.; Kononets, V.; Cielecka-Piontek, J.; et al. Comparison of the Effect of Endurance, Strength and Endurance-Strength Training on Glucose and Insulin Homeostasis and the Lipid Profile of Overweight and Obese Subjects: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamini, S.; Bondesan, A.; Caroli, D.; Sartorio, A. The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity. J. Clin. Med. 2024, 13, 2843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Sartorio, A. Indexes of adiposity and body composition in the prediction of metabolic syndrome in obese children and adolescents: Which is the best? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Gortan Cappellari, G.; Semolic, A.; Ius, M.; Zanetti, M.; Gabrielli, A.; Vinci, P.; Guarnieri, G.; Simon, G. Central adiposity markers, plasma lipid profile and cardiometabolic risk prediction in overweight-obese individuals. Clin. Nutr. 2019, 38, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- American Heart Association; National Heart, Lung, and Blood Institute; Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol. Rev. 2005, 13, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wang, W.; Chen, R.; Chen, Z.; Lu, Y.; Yuan, H. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr. Metab. 2017, 14, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, S.; Yang, D.; Xia, H.; Ren, Z.; Chen, J.; Yao, S. Cardiometabolic index: A new predictor for metabolic associated fatty liver disease in Chinese adults. Front. Endocrinol. 2022, 13, 1004855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
N = 793 | MS | High Risk | Low Risk | No Risk | p Pooled | p Pairwise |
---|---|---|---|---|---|---|
Three criteria | Two criteria | One criteria | No criteria | |||
N, (%) | 6 (0.8) | 72 (9.1) | 300 (37.8) | 415 (52.3) | ||
LAP | 109.4 ± 57.6 | 54.7 ± 45.4 | 37.1 ± 26.6 | 11.3 ± 7.8 | <0.0001 | MS vs. HR, p = 0.007; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001 |
CMI | 4.23 ± 4.42 | 1.21 ± 0.87 | 0.76 ± 0.46 | 0.45 ± 0.22 | <0.0001 | MS vs. HR, p < 0.0001; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001 |
Male, n (%) | 6 (100) | 53 (73.6) | 147 (49) | 227 (54.7) | 0.0002 | MS vs. LR, p = 0.013; MS vs. NR, p = 0.026; HR vs. LR, p = 0.0002; HR vs. NR, p = 0.002; LR vs. NR, p = 0.132; MS vs. HR, p = 0.151. |
Age, years | 26.7 ± 4.7 | 25.4 ± 6 | 24.4 ± 5 | 24.9 ± 4.8 | 0.303 | - |
Weight, kg | 106.5 ± 20.6 | 81.9 ± 16.9 | 72.7 ± 13.8 | 72.3 ± 13.8 | <0.0001 | MS vs. HR, p = 0.001; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.696. |
BMI, kg/m2 | 29.3 ± 5.4 | 25.2 ± 4.1 | 23.2 ± 2.9 | 22.7 ± 2.6 | <0.0001 | MS vs. HR, p = 0.027; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.006 |
BMI > 25 kg/m2 | 5 (83.3) | 29 (40.3) | 76 (25.3) | 75 (18.1) | <0.0001 | MS vs. HR, p = 0.041; MS vs. LR, p = 0.001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.018. |
BSA | 2.35 ± 0.26 | 2 ± 0.24 | 1.87 ± 0.23 | 1.87 ± 0.24 | <0.0001 | MS vs. HR, p = 0.001; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.945. |
Fat mass, % | 17.1 ± 7.8 | 16.5 ± 8.1 | 16.6 ± 7.2 | 14.4 ± 6.2 | 0.0004 | HR vs. NR, p = 0.018; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.877; MS vs. LR, p = 0.866; MS vs. NR, p = 0.300; HR vs. LR, p = 0.973; |
WC, cm | 121.7 ± 22 | 111.6 ± 23.9 | 105.4 ± 24.3 | 77.5 ± 9.8 | <0.0001 | MS vs. NR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.326; MS vs. LR, p = 0.107; HR vs. LR, p = 0.056. |
Afro-Caribbean, n (%) | 0 (0) | 0 (0) | 13 (4.3) | 25 (6) | 0.142 | - |
Smokers, n (%) | 1 (16.7) | 12 (16.7) | 26 (8.7) | 23 (5.5) | 0.006 | HR vs. LR, p = 0.037; HR vs. NR, p = 0.0005; MS vs. HR, p = 0.976; MS vs. LR, p = 0.500; MS vs. NR, p = 0.245; LR vs. NR, p = 0.099. |
Family history for CVD, n (%) | 0 (0) | 11 (15.3) | 47 (15.7) | 84 (20.2) | 0.258 | - |
Training hours/week | 23 ± 2.3 | 22.3 ± 9 | 22.3 ± 9.3 | 24 ± 10.2 | 0.310 | - |
TC, mg/dL | 184.8 ± 24 | 172.3 ± 8.1 | 175.7 ± 27.4 | 161 ± 27.7 | <0.0001 | MS vs. NR, p = 0.036; HR vs. NR, p = 0.001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.209; MS vs. LR, p = 0.421; HR vs. LR, p = 0.320; |
LDL, mg/dL | 97 ± 35 | 98.5 ± 21.9 | 97.8 ± 22.4 | 84.3 ± 22.7 | <0.0001 | HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.877; MS vs. LR, p = 0.931; MS vs. NR, p = 0.180; HR vs. LR, p = 0.804; |
HDL, mg/dL | 42 ± 15 | 54 ± 13 | 63 ± 15 | 64.7 ± 14 | <0.0001 | MS vs. HR, p = 0.037; MS vs. LR, p = 0.0006; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.245. |
TG, mg/dL | 228.8 ± 184 | 94.5 ± 50.1 | 74.3 ± 35.7 | 62.9 ± 22.1 | <0.0001 | MS vs. HR, p < 0.0001; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001 |
SBP, mmHg | 129.2 ± 6.1 | 121.7 ± 10.9 | 110.2 ± 11.5 | 108.7 ± 9.9 | <0.0001 | MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.064; MS vs. HR, p = 0.104. |
DBP, mmHg | 81.7 ± 6.2 | 74.9 ± 8 | 68.8 ± 7.6 | 67.3 ± 7.1 | <0.0001 | MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.005; MS vs. HR, p = 0.052; |
Glycemia, mg/dL | 104.3 ± 21.5 | 95.6 ± 7.1 | 90.8 ± 8.9 | 88.3 ± 5.5 | <0.0001 | MS vs. HR, p = 0.027; MS vs. LR, p = 0.0005; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001. |
WC ≥ 88 cm female, n (%) | 0 (0) | 17 (23.6) | 119 (39.7) | 0 (0) | <0.0001 | MS vs. LR, p = 0.048; HR vs. LR, p = 0.010; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.182. |
WC ≥ 102 cm, male, n (%) | 5 (83.3) | 37 (51.4) | 86 (28.7) | 0 (0) | <0.0001 | MS vs. LR, p = 0.003; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.135; |
HDL < 40 mg/dL, male, n (%) | 4 (66.6) | 7 (9.7) | 8 (2.7) | 0 (0) | <0.0001 | MS vs. HR, p < 0.0001; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p = 0.006; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.0008. |
HDL < 50 mg/dL, female, n (%) | 0 (0) | 8 (11.1) | 15 (5) | 0 (0) | <0.0001 | HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.395; MS vs. LR, p = 0.575; HR vs. LR, p = 0.053; |
SBP ≥ 130 mmHg, n (%) | 4 (66.6) | 33 (45.8) | 28 (9.3) | 0 (0) | <0.0001 | MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.332. |
DBP ≥ 85 mmHg, n (%) | 0 (0) | 7 (9.7) | 2 (0.7) | 0 (0) | <0.0001 | HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; MS vs. HR, p = 0.430; MS vs. LR, p = 0.841; LR vs. NR, p = 0.096. |
TG ≥ 150 mg/dL, n (%) | 3 (50) | 12 (16.7) | 6 (2) | 0 (0) | <0.0001 | MS vs. HR, p = 0.043; MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p = 0.003. |
GI, n (%) | 4 (66.6) | 23 (31.9) | 36 (12) | 0 (0) | <0.0001 | MS vs. LR, p < 0.0001; MS vs. NR, p < 0.0001; HR vs. LR, p < 0.0001; HR vs. NR, p < 0.0001; LR vs. NR, p < 0.0001; MS vs. HR, p = 0.088. |
Rest HR, bpm | 85 ± 16.6 | 73 ± 13 | 70.3 ± 7.6 | 69.4 ± 13 | 0.009 | MS vs. HR, p = 0.038; MS vs. LR, p = 0.013; MS vs. NR, p = 0.004; HR vs. NR, p = 0.032; HR vs. LR, p = 0.148; LR vs. NR, p = 0.379. |
Power, n (%) | 3 (50) | 22 (30.5) | 84 (28) | 137 (33) | 0.382 | - |
Skill, n (%) | 1 (16.7) | 11 (15.3) | 43 (14.3) | 35 (8.4) | 0.059 | LR vs. NR, p = 0.012; MS vs. HR, p = 0.929; MS vs. LR, p = 0.872; MS vs. NR, p = 0.475; HR vs. LR, p = 0.838; HR vs. NR, p = 0.067; |
Endurance, n (%) | 0 (0) | 4 (5.5) | 32 (10.7) | 81 (19.5) | 0.0006 | HR vs. NR, p = 0.003; LR vs. NR, p = 0.001; MS vs. HR, p = 0.559; MS vs. LR, p = 0.399; MS vs. NR, p = 0.229; HR vs. LR, p = 0.188. |
Mixed, n (%) | 2 (33.3) | 35 (48.6) | 141 (47) | 162 (39) | 0.123 | - |
AUC (Continuous Variable) | Cut-Off (Youden) | Sensitivity | Specificity | AUC (Cut-Off) | Youden Index | |
---|---|---|---|---|---|---|
LAP | 0.80 (0.77–0.83) | 34.66 | 67% | 80% | 0.73 | 0.468 |
CMI | 0.79 (0.76–0.82) | 0.776 | 68% | 79% | 0.74 | 0.474 |
Males, n = 433 | ||||||
LAP | 0.81 (0.77–0.84) | 38.79 | 68% | 82% | 0.75 | 0.499 |
CMI | 0.78 (0.74–0.82) | 0.881 | 66% | 79% | 0.72 | 0.450 |
Females, n = 360 | ||||||
LAP | 0.77 (0.72–0.81) | 14.16 | 95% | 52% | 0.73 | 0.466 |
CMI | 0.74 (0.69–0.78) | 0.965 | 53% | 94% | 0.73 | 0.465 |
Unadjusted | Adjusted 1 | Unadjusted 2 | Adjusted 1,2 | |||||
---|---|---|---|---|---|---|---|---|
Cut-Off | “Likely MS” (MS + H vs. L + No) | “Likely MS” (MS + H vs. L + No) | Low | High | MS | Low | High | MS |
All athletes | ||||||||
LAP ≥ 34.66 | 8.07 [4.87–13.38] p < 0.001 | 7.22 [3.75–13.89] p < 0.001 | 6.07 [3.86–12.37] p < 0.001 | 57.06 [26.32–123.72] p < 0.001 | >1000 p < 0.001 | 6.73 [2.98–13.99] p < 0.001 | 48.60 [21.69–108.89] p < 0.001 | >1000 p < 0.001 |
CMI ≥ 0.776 | 8.19 [4.92–13.62] p < 0.001 | 5.37 [2.96–9.73] p < 0.001 | 6.06 [3.42–10.00] p < 0.001 | 8.19 [4.92–13.63] p < 0.001 | 15.12 [1.76–130.72] p = 0.013 | 4.01 [1.30–8.93] p < 0.001 | 6.30 [4.08–9.74] p < 0.001 | 4.84 [0.44–0.52] p = 0.195 |
Sex: male | ||||||||
LAP ≥ 38.79 | 9.64 [5.25–17.69] p < 0.001 | 6.22 [2.92–13.24] p < 0.001 | 7.64 [3.25–15.69] p < 0.001 | 55.74 [19.98–155.49] p < 0.001 | >1000 p < 0.001 | 4.36 [1.95–11.67] p < 0.001 | 38.24 [13.09–111.71] p < 0.001 | >1000 p < 0.001 |
CMI ≥ 0.881 | 7.16 [3.96–12.96] p < 0.001 | 4.80 [2.42–9.50] p < 0.001 | 5.16 [1.96–10.99] p < 0.001 | 7.74 [4.64–12.89] p < 0.001 | 13.72 [1.58–118.76] p = 0.017 | 2.72 [1.38–7.39] p < 0.001 | 5.30 [3.07–9.16] p < 0.001 | 4.33 [0.37–50.14] p = 0.240 |
Sex: female | ||||||||
LAP ≥ 14.16 | 19.42 [2.56–147.15] p = 0.004 | 29.70 [3.50–252.06] p = 0.002 | 7.6 [4.25–13.23] p < 0.001 | 19.42 [2.56–147.15] p = 0.004 | - | 34.49 [17.18–69.27] p < 0.001 | 96.03 [8.87–1039.27] p < 0.001 | - |
CMI ≥ 0.965 | 16.93 [6.21–46.15] p < 0.001 | 97.18 [16.00–590.37] p < 0.001 | 4.21 [1.71–11.55] p < 0.001 | 16.93 [6.21–46.15] p < 0.001 | - | 21.75 [3.75–120.24] p < 0.001 | 83.01 [14.44–477.06] p < 0.001 | - |
Male | Female | |
---|---|---|
LAP | ≥38.79 | ≥14.16 |
CMI | ≥0.881 | ≥0.965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gioia, G.; Ferrera, A.; Celeski, M.; Mistrulli, R.; Lemme, E.; Mango, F.; Squeo, M.R.; Pelliccia, A. Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome. Life 2024, 14, 1452. https://doi.org/10.3390/life14111452
Di Gioia G, Ferrera A, Celeski M, Mistrulli R, Lemme E, Mango F, Squeo MR, Pelliccia A. Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome. Life. 2024; 14(11):1452. https://doi.org/10.3390/life14111452
Chicago/Turabian StyleDi Gioia, Giuseppe, Armando Ferrera, Mihail Celeski, Raffaella Mistrulli, Erika Lemme, Federica Mango, Maria Rosaria Squeo, and Antonio Pelliccia. 2024. "Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome" Life 14, no. 11: 1452. https://doi.org/10.3390/life14111452
APA StyleDi Gioia, G., Ferrera, A., Celeski, M., Mistrulli, R., Lemme, E., Mango, F., Squeo, M. R., & Pelliccia, A. (2024). Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome. Life, 14(11), 1452. https://doi.org/10.3390/life14111452