Risk Factors Involved in Postural Disorders in Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Measurements
- -
- The child is in a standing position, with their back towards the examiner (who is positioned 1.5–2 m away);
- -
- The positions, the levels, and the inclinations of the different body segments (head, neck, shoulders, arms, and hemithorax) are examined;
- -
- The examination of the landmarks is carried out (posterosuperior iliac spine, iliac crests, scapular spines, shoulder blades, ribs, and vertebral spinous processes), and they are marked with a skin pencil, from bottom to top.
- -
- Lumbar bulge, protruding on the convex side of a lumbar curvature (given by the protrusion of the lumbar costiform processes through the muscle mass of the vertebral grooves);
- -
- Rib hump (hemithorax uneveness)—a prominence of the posterior arches of the ribs on the convex side of the thoracic curvature;
- -
- Shoulder asymmetry;
- -
- The unevenness and tilting of the scapular tips (on the convex side, the tip of the scapula is more elevated, more prominent);
- -
- The inequality of the “waist triangles” (between the lateral edges of the thorax and pelvis and the upper limb on that side)—on the concave side, the lower angle of this triangle is sharper and lower than on the opposite side;
- -
- Intergluteal fold—with the cranial extremity towards the convexity of the lumbar curvature;
- -
- Uneven subgluteal folds, lower on side of the convexity of the lumbar spine, the buttock is more prominent.
- -
- The degree of symmetry and unevenness of the collarbones, shoulders, and breasts;
- -
- The anterior chondral rib hump (located in the concave part of the main curvature).
- -
- Differentiate a scoliosis proper from a postural defect (scoliotic attitude); the scoliotic attitude is a longer curvature, largely reducible by the anterior flexion of the trunk or the suspension of the child by the head; there are no secondary changes (vertebral rotation); if the curvature persists during the anterior flexion, then the scoliosis is structural.
- -
- Assess, by lateral flexion (lifting the upper limbs from the side of the concavity or association with the lateral inclination of the trunk at 90° towards the convexity), the possibility of the reduction of the lateral inclination and the rotation of the vertebrae of the curvature.
- 1.
- For boys:
- -
- For ages 8 to 11 years, weights ranged from 13.0 to 18.5 kg;
- -
- Ages 12 to 15 years—from 21.6 to 37.6 kg;
- -
- Ages 16 to 19 years—from 45.9 to 51.0 kg.
- 2.
- For girls:
- -
- For ages 8 to 11 years, the standard was from 9.8 to 17.1 kg;
- -
- For ages 12 to 15 years, the standard was from 19.9 to 28.3;
- -
- Ages 16 to 19 years—from 31.3 to 33.8 kg.
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
- 1.
- General characteristics of the study group
- 2.
- Postural deformities
- 3.
- The relationship between hand and back muscle strength and posture disorders
- 4.
- The relationship between diagnostic investigations and posture disorders
4. Discussion
5. Conclusions
Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rusnák, R.; Kolarová, M.; Aštaryová, I.; Kutiš, P. Screening and Early Identification of Spinal Deformities and Posture in 311 Children: Results from 16 Districts in Slovakia. Rehabil. Res. Pract. 2019, 2019, 4758386. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brzęk, A.; Dworrak, T.; Strauss, M.; Sanchis-Gomar, F.; Sabbah, I.; Dworrak, B.; Leischik, R. The weight of pupils’ schoolbags in early school age and its influence on body posture. BMC Musculoskelet. Disord. 2017, 18, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Lu, X.; Yan, B.; Huang, Y. Prevalence of Incorrect Posture among Children and Adolescents: Finding from a Large Population-Based Study in China. Iscience 2020, 23, 101043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banjevic, B. Analysis of postural disorders with preschool and school children at the regional level. J. Anthropol. Sport Phys. Educ. 2022, 6, 9–14. [Google Scholar] [CrossRef]
- Pan, X.-X.; Huang, C.-A.; Lin, L.; Zhang, Z.-J.; Shi, Y.-F.; Chen, B.-D.; Zhang, H.-W.; Dai, Z.-Y.; Yu, X.-P.; Wang, X.-Y. Prevalence of the thoracic scoliosis in children and adolescent candidates for strabismus surgery: Results from a 1935-patient cross-sectional study in China. Eur. Spine J. 2020, 29, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Minghelli, B.; Oliveira, R.; Nunes, C. Non-specific low back pain in adolescents from the south of Portugal: Prevalence and associated factors. J. Orthop. Sci. 2014, 19, 883–892. [Google Scholar] [CrossRef]
- da Rosa, B.N.; Candotti, C.T.; Pivotto, L.R.; Noll, M.; Silva, M.G.; Vieira, A.; Loss, J.F. Back Pain and Body Posture Evaluation Instrument for Children and Adolescents (BackPEI-CA): Expansion, Content Validation, and Reliability. Int. J. Environ. Res. Public Health 2022, 19, 1398. [Google Scholar] [CrossRef]
- Coelho, J.J.; Graciosa, M.D.; de Medeiros, D.L.; Pacheco, S.C.; da Costa, L.M.; Ries, L.G. Influência da flexibilidade e sexonapostura de escolares [Influence of flexibility and gender on the posture of school children]. Rev. Paul. Pediatr. 2014, 32, 223–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Voichyshyn, L.; Golod, N.; Marchuck, O.; Zastavna, O.; Chepurna, L.; Rybalko, P.; Khomenko, S.; Kuzmik, V.; Kolisnyk, S.; Babii, I. Physical Rehabilitation of Adolescents with Postural Disorders in the Sagittal Plane and its Relation to Neurophysiology. BRAIN Broad Res. Artif. Intell. Neurosci. 2022, 13, 61–87. [Google Scholar] [CrossRef]
- Maekawa, M.; Yoshizawa, E.; Hayata, G.; Ohashi, S. Physical and psychological effects of postural educational intervention for students experienced school refusal. Curr. Psychol. 2023, 42, 3510–3519. [Google Scholar] [CrossRef]
- Santonja-Medina, F.; Collazo-Diéguez, M.; Martínez-Romero, M.T.; Rodríguez-Ferrán, O.; Aparicio-Sarmiento, A.; Cejudo, A.; Andújar, P.; Sainz de Baranda, P. Classification System of the Sagittal Integral Morphotype in Children from the ISQUIOS Programme (Spain). Int. J. Environ. Res. Public Health 2020, 17, 2467. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Penha, P.J.; João, S.M.; Casarotto, R.A.; Amino, C.J.; Penteado, D.C. Postural assessment of girls between 7 and 10 years of age. Clinics 2005, 60, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Diebo, B.G.; Henry, J.; Lafage, V.; Berjano, P. Sagittal deformities of the spine: Factors influencing the outcomes and complications. Eur. Spine J. 2015, 24 (Suppl. S1), 3–15. [Google Scholar] [CrossRef] [PubMed]
- Widhe, T. Spine: Posture, mobility and pain. A longitudinal study from childhood to adolescence. Eur. Spine J. 2001, 10, 118–123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcu, I.R.; Dop, D.; Padureanu, V.; Niculescu, S.A.; Padureanu, R.; Niculescu, C.E.; Rogoveanu, O.C. Non-Steroidal Anti-Inflammatory Drug Etoricoxib Facilitates the Application of Individualized Exercise Programs in Patients with Ankylosing Spondylitis. Medicina 2020, 56, 270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO Fact Sheet. Obesity and Overweight. 2016. Available online: https://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 10 October 2024).
- Araújo, C.L.; Moreira, A.; Carvalho, G.S. Postural Education Programmes with School Children: A Scoping Review. Sustainability 2023, 15, 10422. [Google Scholar] [CrossRef]
- Kratenová, J.; Žejglicová, K.; Malý, M.; Filipová, V. Prevalence and Risk Factors of Poor Posture in School Children in the Czech Republic. J. Sch. Health 2007, 77, 131–137. [Google Scholar] [CrossRef]
- Lafond, D.; Descarreaux, M.; Normand, M.C.; Harrison, D.E. Postural development in school children: A cross-sectional study. Chiropr. Osteopat. 2007, 15, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burdukiewicz, A.; Miałkowska, J.; Pietraszewska, J. Body build versus body posture of children and youth aged 7–12 years. Stand. Med. 2006, 3, 307–313. [Google Scholar]
- Brianezi, L.; Cajazeiro, D.C.; Maifrino, L.B.M. Prevalence of postural deviations in school of education and professional practice of physical education. Morphol. Sci. 2011, 28, 35–36. [Google Scholar]
- Baranowska, A.; Sierakowska, M.; Owczarczuk, A.; Olejnik, B.J.; Lankau, A.; Baranowski, P. An Analysis of the Risk Factors for Postural Defects among Early School-Aged Children. J. Clin. Med. 2023, 12, 4621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Penha, P.J.; Penha, N.L.J.; De Carvalho, B.K.G.; Andrade, R.M.; Schmitt, A.C.B.; João, S.M.A. Posture alignment of adolescent idiopathic scoliosis: Photogrammetry in scoliosis school screening. J. Manip. Physiol. Ther. 2017, 40, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, O.; Mazet, C.; Mazet, D.; Hammes, A.; Schmitt, E. Age-dependency of posture parameters in children and adolescents. J. Phys. Ther. Sci. 2016, 28, 1607–1610. [Google Scholar] [CrossRef]
- McMaster, M.; Lee, A.J.; Burwell, R.G. Physical activities of patients with adolescent idiopathic scoliosis (AIS) compared with a control group: Implications for etiology and possible prevention. J. Bone Jt. Surg. Br. 2006, 88-B (Suppl. II), 225. [Google Scholar]
- Drzał-Grabiec, J.; Truszczyńska, A.; Rykała, J.; Rachwał, M.; Snela, S.; Podgórska, J. Effect of asymmetrical backpack load on spinal curvature in school children. Work 2015, 51, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, M.; Czubek, Z.; Niedzielska, A.; Jankowski, M.; Kobus, T.; Ossowski, Z. Relationship between lower-extremity defects and body mass among polish children: A cross-sectional study. BMC Musculoskelet. Disord. 2019, 20, 84. [Google Scholar] [CrossRef] [PubMed]
- Maciałczyk-Paprocka, K.; Stawińska-Witoszyńska, B.; Kotwicki, T.; Sowińska, A.; Krzyżaniak, A.; Walkowiak, J.; Krzywińska-Wiewiorowska, M. Prevalence of incorrect body posture in children and adolescents with overweight and obesity. Eur. J. Pediatr. 2017, 176, 563–572. [Google Scholar] [CrossRef]
- Latalski, M.; Bylina, J.; Fatyga, M.; Repko, M.; Filipovic, M.; Jarosz, M.J.; Borowicz, K.B.; Matuszewski, Ł.; Trzpis, T. Risk factors of postural defects in children at school age. Ann. Agric. Environ. Med. 2013, 20, 583–587. [Google Scholar]
- Gijon-Nogueron, G.; Martinez-Nova, A.; Alfageme-Garcia, P.; Montes-Alguacil, J.; Evans, A.M. International normative data for paediatric foot posture assessment: A cross-sectional investigation. BMJ Open 2019, 9, e023341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bubanj, S.; Đorđević, S.; Milenković, S.; Stanković, R.; Vidojević, M.; Đokić, M. Postural Disorders and Muscle Power in Primary School Children. Acta Fac. Medicae Naissensis 2021, 38, 270–278. [Google Scholar] [CrossRef]
- Kolarová, M.; Kutiš, P.; Rusnák, R.; Hrčková, Z.; Hudáková, Z.; Lysá, Ľ.; Luliak, M.; Babeľa, R. Analysis of body segments and postural state in school children. Neuro Endocrinol. Lett. 2019, 40 (Suppl. S1), 17–23. [Google Scholar] [PubMed]
- Genitrini, M.; Dotti, F.; Bianca, E.; Ferri, A. Impact of Backpacks on Ergonomics: Biomechanical and Physiological Effects: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 6737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walicka-Cupryś, K.; Skalska-Izdebska, R.; Rachwał, M.; Truszczyńska, A. Influence of the Weight of a School Backpack on Spinal Curvature in the Sagittal Plane of Seven-Year-Old Children. BioMed Res. Int. 2015, 2015, 817913. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Yi, C.H.; Kwon, O.Y.; Cho, S.H.; Yoo, W.G. Changes in Neck Muscle Electromyography and Forward Head Posture of Children When Carrying Schoolbags. Ergonomics 2008, 51, 890–901. [Google Scholar] [CrossRef]
- Perrone, M.; Orr, R.; Hing, W.; Milne, N.; Pope, R. The Impact of Backpack Loads on School Children: A Critical Narrative Review. Int. J. Environ. Res. Public Health 2018, 15, 2529. [Google Scholar] [CrossRef]
- Spiteri, K.; Busuttil, M.L.; Aquilina, S.; Gauci, D.; Camilleri, E.; Grech, V. Schoolbags and back pain in children between 8 and 13 years: A national study. Br. J. Pain 2017, 11, 81–86. [Google Scholar] [CrossRef]
- Drzał-Grabiec, J.; Snela, S.; Rachwał, M.; Podgórska, J.; Rykała, J. Effects of Carrying a Backpack in an Asymmetrical Manner on the Asymmetries of the Trunk and Parameters Defining Lateral Flexion of the Spine. Hum. Factors 2015, 57, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Negrini, A. Postural Effects of Symmetrical and Asymmetrical Loads on the Spines of Schoolchildren. Scoliosis 2007, 2, 8. [Google Scholar] [CrossRef]
- Mrozkowiak, M.; Żukowska, H. The significance of Good Chair as part of children’s school and home environment in the preventive treatment of body statistics distortions. J. Educ. Health Sport 2015, 5, 179–215. [Google Scholar]
- Fischer-Grote, L.; Kothgassner, O.D.; Felnhofer, A. Risk factors for problematic smartphone use in children and adolescents: A review of existing literature. Neuropsychiatrie 2019, 33, 179–190. [Google Scholar] [CrossRef]
- Anderson, M.; Jiang, J. Teens, social media and technology 2018. Pew Res. Center 2018, 31, 1673–1689. [Google Scholar]
- Spina, G.; Bozzola, E.; Ferrara, P.; Zamperini, N.; Marino, F.; Caruso, C.; Antilici, L.; Villani, A. Children and Adolescent’s Perception of Media Device Use Consequences. Int. J. Environ. Res. Public Health 2021, 18, 3048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.Y.; De Chen, M.; Huang, Y.C.; Lin, C.Y.; Chang, J.H. Association Between Smartphone Use and Musculoskeletal Discomfort in Adolescent Students. J. Community Health 2017, 42, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, E.; Thomée, S.; Grimby-Ekman, A.; Hagberg, M. Texting on mobile phones and musculoskeletal disorders in young adults: A five-year cohort study. Appl. Ergon. 2017, 58, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Rrecaj-Malaj, S.; Beqaj, S.; Krasniqi, V.; Qorolli, M.; Tufekcievski, A. Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest Expansion, Flexibility and Quality of Life in Adolescents with Idiopathic Scoliosis. Med. Sci. Monit. Basic Res. 2020, 26, e920449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, K.; Michikawa, T.; Yonezawa, I.; Takaso, M.; Minami, S.; Soshi, S.; Tsuji, T.; Okada, E.; Abe, K.; Takahashi, M.; et al. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis. J. Bone Jt. Surg. Am. 2017, 99, 284–294. [Google Scholar] [CrossRef]
- Scaturro, D.; Costantino, C.; Terrana, P.; Vitagliani, F.; Falco, V.; Cuntrera, D.; Sannasardo, C.E.; Vitale, F.; Letizia Mauro, G. Risk Factors, Lifestyle and Prevention among Adolescents with Idiopathic Juvenile Scoliosis: A Cross-Sectional Study in Eleven First-Grade Secondary Schools of Palermo Province, Italy. Int. J. Environ. Res. Public Health 2021, 18, 12335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrašić, S.; Milić, Z.; Cvetković, M.; Ujsasi, D.; Orlic, D. Relations between biomechanical parameters and static power of arms in children with disturbed posture. Index Cover. 2017, 15, 23–26. [Google Scholar]
- Herdea, A.; Charkaoui, A.; Ulici, A. Prevalence of 25-OH-Vitamin D and Calcium Deficiency in Adolescent Idiopathic Scoliosis. J. Med. Life 2020, 13, 260–264. [Google Scholar] [CrossRef]
- Batista, R.M.B.F.; Martins, D.E.; Wajchenberg, M.; Lazaretti, M.; Puertas, E.B.; Terreri, M.T.S.L.R.A.; Hayashi, L.F. Association between vitamin D levels and adolescent idiopathic scoliosis. Coluna/Columna 2014, 13, 275–278. [Google Scholar] [CrossRef]
- Kevin, L. Effective therapeutic control of curve progression using calcium and vitamin D supplementation for adolescent idiopathic scoliosis—A randomized double-blinded placebo-controlled trial. Bone Abstr. 2017, 6. [Google Scholar] [CrossRef]
Sex | Weight (kg) | Height (cm) | BMI (kg/m2) | BMI z-Score (WHO) | |
---|---|---|---|---|---|
F | Normal | 52 | 52 | 52 | 52 |
Minimum | 15.2 | 96 | 12.0 | −3.0 | |
Maximum | 57.0 | 185 | 21.5 | 1.38 | |
Median | 32.0 | 144.0 | 16.2 | −1.2 | |
M | Normal | 82 | 82 | 82 | 82 |
Minimum | 13.0 | 88 | 10.6 | −4.7 | |
Maximum | 62.0 | 182 | 23.9 | 2.3 | |
Median | 49.0 | 166.0 | 17.5 | −0.7 | |
P | 0.007 | 0.016 | 0.007 | Ns |
Association of Postural Deformities | Patients | |
---|---|---|
Absolute Frequency | % | |
S | 28 | 20.9 |
K | 10 | 7.5 |
L | 2 | 1.5 |
K, L | 6 | 4.5 |
K, S | 24 | 17.9 |
K, S, O | 30 | 22.3 |
K, S, L | 14 | 10.4 |
K, S, L, O | 12 | 9.0 |
S, O | 4 | 3.0 |
S, L | 2 | 1.5 |
S, L, O | 2 | 1.5 |
Total | 134 | 100.0 |
Postural Deformity | Number of Subjects | |||||
---|---|---|---|---|---|---|
Sex | Background | BMI ** | ||||
F | M | R | U | Normal | Below | |
SCOLIOSIS | 42 | 74 | 44 | 72 | 30 | 86 |
KYPHOSIS | 30 | 66 | 32 | 64 | 22 | 74 |
p = 0.004 * | p = 0.039 * | p = 0.834 | ||||
LORDOSIS | 20 | 18 | 12 | 26 | 12 | 26 |
p = 0.039 * | p = 0.943 | p = 0.896 | ||||
OTHER DEFORMITIES | 6 | 40 | 18 | 28 | 16 | 30 |
p = 0.000 * | p = 0.988 | p = 0.032 * | ||||
UNEVENNESS | 16 | 52 | 28 | 40 | 68 | 50 |
p = 0.000 * | p = 0.873 | p = 0.997 |
Postural Disorder | OR | OR 95% CI | p * | Determination Coefficient (Nagelkerke R2) |
---|---|---|---|---|
KYPHOSIS | 1.022 | 0.719–1.387 | 0.889 | |
Dorsal | 1.218 | 0.730–1.437 | 0.622 | |
Dorsolumbar | 0.812 | 0.350–1.428 | 0.470 | |
SCOLIOSIS | 0.630 | 0.406–0.977 | 0.039 | 0.61 |
Dorsal | 1.538 | 1.077–2.196 | 0.018 | 0.67 |
Dorsolumbar | 0.813 | 0.599–1.102 | 0.182 | |
Lumbar | 0.689 | 0.504–0.943 | 0.020 | 0.59 |
LORDOSIS | 1.093 | 0.803–1.489 | 0.571 | |
OTHER POSTURAL DISORDERS | 1.046 | 0.782–1.399 | 0.762 | |
HEMITHORAX UNEVENNESS | 0.822 | 0.822- 1.091 | 0.175 |
Type of Education | p | |||||
---|---|---|---|---|---|---|
Kindergarten | Primary School | Middle School | High School | |||
KYPHOSIS | YES | 10 | 20 | 38 | 24 | 0.020 |
NO | 24 | 8 | 6 | |||
SCOLIOSIS | YES | 4 | 36 | 42 | 34 | 0.006 |
NO | 6 | 8 | 4 | |||
OTHER DEFORMITIES | YES | 2 | 24 | 20 | 0.001 | |
NO | 10 | 42 | 22 | 14 | ||
HEMITHORAX UNEVENNESS | YES | 4 | 34 | 30 | 0.000 | |
NO | 10 | 40 | 12 | 4 |
Association of Postural Deformities | Age (Years) | Weight (kg) | Height (cm) | BMI (kg/cm2) | |
---|---|---|---|---|---|
K | Normal | 10 | 10 | 10 | 10 |
Median | 7.0 | 24.0 | 130.0 | 16.7 | |
K, L | Normal | 6 | 6 | 6 | 6 |
Median | 7.0 | 21.0 | 126.0 | 16.5 | |
K, S | Normal | 16 | 16 | 16 | 16 |
Median | 8.0 | 26.0 | 140.5 | 13.6 | |
K, S, O | Normal | 2 | 2 | 2 | 2 |
Median | 7.0 | 17.0 | 116.0 | 12.6 | |
K, S, O, U | Normal | 28 | 28 | 28 | 28 |
Median | 14.0 | 49.5 | 163.0 | 17.8 | |
K, S, U | Normal | 8 | 8 | 8 | 8 |
Median | 14.5 | 51.0 | 171.0 | 17.4 | |
K, S, L | Normal | 10 | 10 | 10 | 10 |
Median | 8.0 | 28.0 | 136.0 | 16.6 | |
K, S, L, O, U | Normal | 12 | 12 | 12 | 12 |
Median | 16.0 | 55.5 | 175.0 | 17.8 | |
K, S, L, U | Normal | 4 | 4 | 4 | 4 |
Median | 16.5 | 50.3 | 174.0 | 16.6 | |
L | Normal | 2 | 2 | 2 | 2 |
Median | 11.0 | 42.0 | 153.0 | 17.9 | |
S | Normal | 20 | 20 | 20 | 20 |
Median | 9.0 | 31.5 | 142.5 | 15.7 | |
S, O, U | Normal | 4 | 4 | 4 | 4 |
Median | 14.0 | 44.5 | 159.00 | 16.9 | |
S, U | Normal | 8 | 8 | 8 | 8 |
Median | 14.5 | 46.8 | 166.00 | 16.9 | |
S, L, O, U | Normal | 2 | 2 | 2 | 2 |
Median | 17.0 | 57.0 | 168.00 | 20.2 | |
S, L, U | Normal | 2 | 2 | 2 | 2 |
Median | 11.0 | 27.0 | 142.00 | 13.4 | |
P | 0.000 | 0.000 | 0.000 | 0.008 |
Risk Factors | Patients | |
---|---|---|
Frequency | % | |
Deformities in the parents | 38 | 28 |
Rickets sequelae | 94 | 70 |
Flat foot | 16 | 12 |
Congenital clubfoot | 10 | 8 |
Hip dysplasia | 4 | 3 |
Genu varum | 20 | 15 |
Genu valgum | 20 | 15 |
Pectus excavatum | 58 | 43 |
Pectus carinatum | 36 | 27 |
Desk positions (incorrect) | 120 | 90 |
Backpack carrying (incorrect) | 56 | 42 |
Classes Hours | Device Hours | Homework Hours | Playing Hours | |
---|---|---|---|---|
Normal | 132 | 134 | 120 | 76 |
Average | 5.5 | 4.3 | 3.2 | 2.1 |
Median | 6.0 | 4.0 | 3.0 | 2.0 |
Standard deviation | 1.2 | 1.2 | 0.8 | 1.1 |
Minimum | 4 | 2 | 1 | 1 |
Maximum | 8 | 7 | 5 | 7 |
Postural Deformity | Patients with cu Deficient Diet (n, %) | OR | p * | |
---|---|---|---|---|
KYPHOSIS (N = 96) | 74 | 77% | 3.737 | 0.001 |
SCOLIOSIS (N = 116) | 86 | 74% | 5.733 | 0.001 |
LORDOSIS (N = 38) | 24 | 63% | 0.706 | 0.398 |
OTHER DEFORMITIES (N = 46) | 44 | 96% | 18.33 | 0.000 |
HEMITHORAX UNEVENNESS (N = 68) | 60 | 88% | 7.69 | 0.000 |
Postural Deformity | Strength | Total | ||
---|---|---|---|---|
Good | Reduced | Low | ||
K | 4 | 6 | 10 | |
K, L | 4 | 2 | 6 | |
K, S | 10 | 4 | 2 | 16 |
K, S, O | 2 | 2 | ||
K, S, O, U | 6 | 22 | 28 | |
K, S, U | 4 | 2 | 2 | 8 |
K, S, L | 6 | 2 | 2 | 10 |
K, S, L, O, U | 10 | 2 | 12 | |
K, S, L, U | 2 | 2 | 4 | |
L | 2 | 2 | ||
S | 20 | 20 | ||
S, O, U | 2 | 2 | 4 | |
S, U | 2 | 2 | 4 | 8 |
S, L, O, U | 2 | 2 | ||
S, L, U | 2 | 2 | ||
Total | 66 | 54 | 14 | 134 |
Postural Deformities | Vitamin D3 | Alkaline Phosphatase | Ca | Mg | |
---|---|---|---|---|---|
K | Normal | 10 | 10 | 10 | 10 |
Minimum | 21.0 | 211.0 | 8.3 | 1.6 | |
Maximum | 29.0 | 510.0 | 8.5 | 2.2 | |
Median | 22.0 | 350.0 | 8.3 | 2.0 | |
Mean | 23.6 | 361.0 | 8.4 | 2.0 | |
Standard deviation | 3.2 | 146.0 | 0.1 | 0.2 | |
K, L | Normal | 6 | 6 | 6 | 5 |
Minimum | 18.0 | 170.0 | 8.1 | 2.1 | |
Maximum | 25.0 | 200.0 | 8.7 | 2.1 | |
Median | 21.0 | 200.0 | 8.6 | 2.1 | |
Mean | 21.3 | 190.0 | 8.5 | 2.1 | |
Standard deviation | 3.5 | 17.3 | 0.3 | 0.0 | |
K, S | Normal | 16 | 16 | 16 | 16 |
Minimum | 19.0 | 170.0 | 8.0 | 1.7 | |
Maximum | 26.0 | 470.0 | 8.7 | 2.1 | |
Median | 23.0 | 220.5 | 8.3 | 2.0 | |
Mean | 22.8 | 253.3 | 8.4 | 2.0 | |
Standard deviation | 2.2 | 98.4 | 0.3 | 0.1 | |
K, S, O, U | Normal | 28 | 28 | 28 | 28 |
Minimum | 17.0 | 160.0 | 8.0 | 1.8 | |
Maximum | 27.0 | 518.0 | 8.6 | 2.1 | |
Median | 21.0 | 285.0 | 8.3 | 1.8 | |
Mean | 21.3 | 308.3 | 8.3 | 1.9 | |
Standard deviation | 3.1 | 128.5 | 0.1 | 0.1 | |
K, S, U | Normal | 8 | 8 | 8 | 8 |
Minimum | 17.0 | 150.0 | 8.1 | 1.6 | |
Maximum | 25.0 | 360.0 | 8.5 | 2.1 | |
Median | 22.0 | 164.0 | 8.2 | 2.0 | |
Mean | 21.5 | 209.5 | 8.3 | 1.9 | |
Standard deviation | 3.3 | 100.7 | 0.2 | 0.2 | |
K, S, L | Normal | 10 | 10 | 10 | 10 |
Minimum | 19.0 | 167.0 | 8.2 | 1.9 | |
Maximum | 28.0 | 221.0 | 8.7 | 2.1 | |
Median | 22.0 | 210.0 | 8.2 | 1.9 | |
Mean | 23.2 | 204.4 | 8.4 | 1.9 | |
Standard deviation | 3.7 | 21.4 | 0.2 | 0.1 | |
K, S, L, O, U | Normal | 12 | 12 | 12 | 12 |
Minimum | 17.0 | 150.0 | 8.1 | 1.7 | |
Maximum | 22.0 | 550.0 | 8.4 | 1.9 | |
Median | 20.0 | 275.0 | 8.2 | 1.8 | |
Mean | 19.8 | 333.3 | 8.2 | 1.8 | |
Standard deviation | 2.1 | 163.3 | 0.1 | 0.1 | |
K, S, L, U | Normal | 4 | 4 | 4 | 4 |
Minimum | 18.0 | 205.0 | 8.0 | 1.7 | |
Maximum | 20.0 | 280.0 | 8.2 | 2.0 | |
Median | 19.0 | 242.5 | 8.1 | 1.9 | |
Mean | 19.0 | 242.5 | 8.1 | 1.9 | |
Standard deviation | 1.4 | 53.0 | 0.1 | 0.2 | |
S | Normal | 20 | 20 | 20 | 20 |
Minimum | 20.0 | 170.0 | 8.0 | 1.7 | |
Maximum | 31.0 | 380.0 | 8.8 | 2.2 | |
Median | 26.5 | 207.0 | 8.5 | 2.0 | |
Mean | 25.6 | 239.7 | 8.5 | 2.0 | |
Standard deviation | 3.4 | 70.8 | 0.3 | 0.1 | |
S, O, U | Normal | 4 | 4 | 4 | 4 |
Minimum | 21.0 | 300.0 | 8.4 | 1.9 | |
Maximum | 25.0 | 519.0 | 8.7 | 2.0 | |
Median | 23.0 | 409.5 | 8.6 | 2.0 | |
Mean | 23.0 | 409.5 | 8.6 | 2.0 | |
Standard deviation | 2.8 | 154.9 | 0.2 | 0.1 | |
S, U | Normal | 8 | 8 | 8 | 8 |
Minimum | 18.0 | 210.0 | 8.3 | 1.9 | |
Maximum | 22.0 | 320.0 | 8.7 | 2.6 | |
Median | 21.0 | 215.5 | 8.5 | 2.0 | |
Mean | 20.5 | 240.3 | 8.5 | 2.1 | |
Standard deviation | 1.9 | 53.4 | 0.2 | 0.3 | |
p | 0.000 | 0.001 | 0.000 | 0.000 |
SCOLIOSIS Global batch | Age | BMI | Weight | Height | |
R | 0.371 | 0.310 | 0.397 | 0.353 | |
P | 0.004 | 0.018 | 0.002 | 0.007 | |
N | 116 | 116 | 116 | 116 | |
SCOLIOSIS Localization | Age | BMI | Weight | Height | |
Dorsal | R | 0.173 | −0.0105 | 0.051 | 0.094 |
P | 0.522 | 0.698 | 0.850 | 0.729 | |
N | 32 | 32 | 32 | 32 | |
Dorsolumbar | R | 0.583 | 0.610 | 0.676 | 0.635 |
P | 0.007 | 0.004 | 0.001 | 0.003 | |
N | 40 | 40 | 40 | 40 | |
Lumbar | R | 0.202 | 0.298 | 0.283 | 0.218 |
P | 0.366 | 0.049 | 0.202 | 0.331 | |
N | 44 | 44 | 44 | 44 |
Localization of Scoliosis | Classes Hours | Device Hours | Homework Hours | Playing Hours | |
---|---|---|---|---|---|
Dorsal | R | 0.129 | 0.359 | −0.0009 | 0.094 |
P | 0.633 | 0.044 | 0.977 | 0.797 | |
N | 32 | 32 | 28 | 20 | |
Dorsolumbar | R | 0.616 | 0.285 | 0.540 | −0.504 |
P | 0.004 | 0.222 | 0.000 | 0.001 | |
N | 40 | 40 | 38 | 20 | |
Lumbar | R | 0.223 | 0.080 | 0.121 | −0.308 |
P | 0.319 | 0.724 | 0.611 | 0.387 | |
N | 44 | 44 | 40 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dop, D.; Pădureanu, V.; Pădureanu, R.; Niculescu, S.-A.; Drăgoescu, A.N.; Moroșanu, A.; Mateescu, D.; Niculescu, C.E.; Marcu, I.R. Risk Factors Involved in Postural Disorders in Children and Adolescents. Life 2024, 14, 1463. https://doi.org/10.3390/life14111463
Dop D, Pădureanu V, Pădureanu R, Niculescu S-A, Drăgoescu AN, Moroșanu A, Mateescu D, Niculescu CE, Marcu IR. Risk Factors Involved in Postural Disorders in Children and Adolescents. Life. 2024; 14(11):1463. https://doi.org/10.3390/life14111463
Chicago/Turabian StyleDop, Dalia, Vlad Pădureanu, Rodica Pădureanu, Stefan-Adrian Niculescu, Alice Nicoleta Drăgoescu, Aritina Moroșanu, Diana Mateescu, Carmen Elena Niculescu, and Iulia Rahela Marcu. 2024. "Risk Factors Involved in Postural Disorders in Children and Adolescents" Life 14, no. 11: 1463. https://doi.org/10.3390/life14111463
APA StyleDop, D., Pădureanu, V., Pădureanu, R., Niculescu, S. -A., Drăgoescu, A. N., Moroșanu, A., Mateescu, D., Niculescu, C. E., & Marcu, I. R. (2024). Risk Factors Involved in Postural Disorders in Children and Adolescents. Life, 14(11), 1463. https://doi.org/10.3390/life14111463