Omics Biology in Diagnosis of Diseases: Towards Empowering Genomic Medicine from an Evolutionary Perspective
1. Recalling the Special Issue Aims and Scope
2. An Overview of Published Articles
3. Discussion
3.1. Recent Developments
3.2. Gap in Knowledge
3.3. Special Issue Results
3.4. Future Work
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Athar, M.; Toonsi, M.; Abduljaleel, Z.; Bouazzaoui, A.; Bogari, N.M.; Dannoun, A.; Al-Allaf, F.A. Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life 2023, 13, 1542. https://doi.org/10.3390/life13071542.
- Chou, P.C.; Huang, Y.C.; Yu, S. Mechanisms of Epigenetic Inheritance in Post-Traumatic Stress Disorder. Life 2024, 14, 98. https://doi.org/10.3390/life14010098.
- Kumar, A.H.S. Network Proteins of Human Sortilin1, Its Expression and Targetability Using Lycopene. Life 2024, 14, 137. https://doi.org/10.3390/life14010137.
- Dsouza, N.R.; Cottrell, C.E.; Davies, O.M.T.; Tollefson, M.M.; Frieden, I.J.; Basel, D.; Urrutia, R.; Drolet, B.A.; Zimmermann, M.T. Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes. Life 2024, 14, 297. https://doi.org/10.3390/life14030297.
- Kim, S.; Hong, K.W.; Oh, M.; An, S.; Han, J.; Park, S.; Kim, G.; Cho, J.Y. Genetic Variants Associated with Sensitive Skin: A Genome-Wide Association Study in Korean Women. Life 2024, 14, 1352. https://doi.org/10.3390/life14111352.
References
- Maldonado, E.; Khan, I. (Eds.) Omics Biology in Diagnosis of Diseases: Advances in Bioinformatics and Data Analyses. Life. 2024. Available online: https://www.mdpi.com/journal/life/special_issues/5BE4W6K4N3 (accessed on 5 December 2024).
- Regateiro, F.J.; Silva, H.; Lemos, M.C.; Moura, G.; Torres, P.; Pereira, A.D.; Dias, L.; Ferreira, P.L.; Amaral, S.; Santos, M.A.S. Promoting advanced medical services in the framework of 3PM—A proof-of-concept by the “Centro” Region of Portugal. EPMA J. 2024, 15, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Huang, L.; Andrade, J.; Tan, W.; Kibbe, W.A.; Jiang, H.; Feng, G. Review of Current Methods, Applications, and Data Management for the Bioinformatics Analysis of Whole Exome Sequencing. Cancer Inform. 2014, 13 (Suppl. S2), 67–82. [Google Scholar] [CrossRef] [PubMed]
- Maroilley, T.; Tarailo-Graovac, M. Uncovering Missing Heritability in Rare Diseases. Genes 2019, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Li, Z.; Moult, J. Loss of Protein Structure Stability as a Major Causative Factor in Monogenic Disease. J. Mol. Biol. 2005, 353, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Kingdom, R.; Wright, C.F. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front. Genet. 2022, 13, 920390. [Google Scholar] [CrossRef]
- Petersen, B.S.; Fredrich, B.; Hoeppner, M.P.; Ellinghaus, D.; Franke, A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017, 18, 14. [Google Scholar] [CrossRef]
- da Fonseca, R.R.; Albrechtsen, A.; Themudo, G.E.; Ramos-Madrigal, J.; Sibbesen, J.A.; Maretty, L.; Zepeda-Mendoza, M.L.; Campos, P.F.; Heller, R.; Pereira, R.J. Next-generation biology: Sequencing and data analysis approaches for non-model organisms. Mar. Genom. 2016, 30, 3–13. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life 2022, 12, 30. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Lemos, M.C.; Thakker, R.V. Hypoparathyroidism, deafness, and renal dysplasia syndrome: 20 Years after the identification of the first GATA3 mutations. Hum. Mutat. 2020, 41, 1341–1350. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, H.Y. Epigenomics: Technologies and Applications. Circ. Res. 2018, 122, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Cummings, B.B.; Karczewski, K.J.; Kosmicki, J.A.; Seaby, E.G.; Watts, N.A.; Singer-Berk, M.; Mudge, J.M.; Karjalainen, J.; Satterstrom, F.K.; O’Donnell-Luria, A.H.; et al. Transcript expression-aware annotation improves rare variant interpretation. Nature 2020, 581, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Ziegenhain, C.; Vieth, B.; Parekh, S.; Reinius, B.; Guillaumet-Adkins, A.; Smets, M.; Leonhardt, H.; Heyn, H.; Hellmann, I.; Enard, W. Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol. Cell. 2017, 65, 631–643.e4. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Antunes, A.; Ramos, M.J. Gathering Computational Genomics and Proteomics to Unravel Adaptive Evolution. Evol. Bioinform. 2007, 3, 207–209. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Fernandes, M.Z.; Caetano, C.F.; Gaspar, C.; Oliveira, A.S.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Rolo, J.; Palmeira-de-Oliveira, A. Uncovering the Yeast Diversity in the Female Genital Tract: An Exploration of Spatial Distribution and Antifungal Resistance. Pathogens 2023, 12, 595. [Google Scholar] [CrossRef]
- Sankararaman, S.; Noriega, K.; Velayuthan, S.; Sferra, T.; Martindale, R. Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr. Gastroenterol. Rep. 2023, 25, 31–44. [Google Scholar] [CrossRef]
- Caetano, C.F.; Gaspar, C.; Oliveira, A.S.; Palmeira-de-Oliveira, R.; Rodrigues, L.; Gonçalves, T.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A.; Rolo, J. Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms 2023, 11, 2398. [Google Scholar] [CrossRef]
- Kwan, S.Y.; Sabotta, C.M.; Joon, A.; Wei, P.; Petty, L.E.; Below, J.E.; Wu, X.; Zhang, J.; Jenq, R.R.; Hawk, E.T.; et al. Gut Microbiome Alterations Associated with Diabetes in Mexican Americans in South Texas. mSystems 2022, 7, e00033-22. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio, M.; Mateus, C.; Alves, A.R.; Maldonado, E.; Duarte, A.P.; Domingues, F.; Oleastro, M.; Ferreira, S. Natural Transformation as a Mechanism of Horizontal Gene Transfer in Aliarcobacter butzleri. Pathogens 2021, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Baranova, E.D.; Druzhinin, V.G. Human Bacterial Microflora Composition: Genotoxic and Carcinogenic Effects Associated with Its Changes in Various Organs. Mol. Genet. Microbiol. Virol. 2019, 34, 75–80. [Google Scholar] [CrossRef]
- Druzhinin, V.G.; Matskova, L.V.; Fucic, A. Induction and modulation of genotoxicity by the bacteriome in mammals. Mutat. Res. Rev. Mutat. Res. 2018, 776, 70–77. [Google Scholar] [CrossRef]
- Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr. Diabetes Rep. 2018, 18, 98. [Google Scholar] [CrossRef]
- Arita, M. Computational resources for metabolomics. Brief Funct. Genom. 2004, 3, 84–93. [Google Scholar] [CrossRef]
- Ledford, H. ‘Phenomenal’ tool sequences DNA and tracks proteins—Without cracking cells open. Nature 2024, 634, 759–760. [Google Scholar] [CrossRef]
- Maldonado, E.; Khan, I.; Philip, S.; Vasconcelos, V.; Antunes, A. EASER: Ensembl Easy Sequence Retriever. Evol. Bioinform. Online 2013, 9, 487–490. [Google Scholar] [CrossRef]
- Maldonado, E.; Sunagar, K.; Almeida, D.; Vasconcelos, V.; Antunes, A. IMPACT_S: Integrated Multiprogram Platform to Analyze and Combine Tests of Selection. PLoS ONE 2014, 9, e96243. [Google Scholar] [CrossRef]
- Maldonado, E.; Antunes, A. LMAP_S: Lightweight Multigene Alignment and Phylogeny eStimation. BMC Bioinform. 2019, 20, 739. [Google Scholar] [CrossRef]
- Cooper, G.M.; Shendure, J. Needles in stacks of needles: Finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 2011, 12, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J.; Meredith, R.W.; et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014, 346, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Völker, M.; Backström, N.; Skinner, B.M.; Langley, E.J.; Bunzey, S.K.; Ellegren, H.; Griffin, D.K. Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome Res. 2010, 20, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. Am. Biol. Teach. 1973, 35, 125–129. [Google Scholar] [CrossRef]
- Wang, W. Exploring mysteries of life and their great values in biomedicine through evolutionary genomics. Natl. Sci. Open 2023, 2, 20220054. [Google Scholar] [CrossRef]
- Levasseur, A.; Pontarotti, P.; Poch, O.; Thompson, J.D. Strategies for Reliable Exploitation of Evolutionary Concepts in High Throughput Biology. Evol. Bioinform. 2008, 4, 121–137. [Google Scholar] [CrossRef]
- Li, P.; Liu, M.; He, W.M. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life 2024, 14, 960. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Maldonado, E.; Khan, I. (Eds.) Multi-Omics for Diagnosing Diseases: Bioinformatics Approaches and Integrative Data Analyses. Life. 2024. in press. Available online: https://www.mdpi.com/journal/life/special_issues/15JSWLKS45 (accessed on 11 July 2024).
- Maldonado, E.; Khan, I. (Eds.) Multi-Omics for Diagnosing Diseases: Bioinformatics Approaches and Integrative Data Analyses. Computation. 2024. in press. Available online: https://www.mdpi.com/journal/computation/special_issues/D97DPHGA83 (accessed on 11 July 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, E.; Khan, I. Omics Biology in Diagnosis of Diseases: Towards Empowering Genomic Medicine from an Evolutionary Perspective. Life 2024, 14, 1637. https://doi.org/10.3390/life14121637
Maldonado E, Khan I. Omics Biology in Diagnosis of Diseases: Towards Empowering Genomic Medicine from an Evolutionary Perspective. Life. 2024; 14(12):1637. https://doi.org/10.3390/life14121637
Chicago/Turabian StyleMaldonado, Emanuel, and Imran Khan. 2024. "Omics Biology in Diagnosis of Diseases: Towards Empowering Genomic Medicine from an Evolutionary Perspective" Life 14, no. 12: 1637. https://doi.org/10.3390/life14121637
APA StyleMaldonado, E., & Khan, I. (2024). Omics Biology in Diagnosis of Diseases: Towards Empowering Genomic Medicine from an Evolutionary Perspective. Life, 14(12), 1637. https://doi.org/10.3390/life14121637