Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Cultivation of Parental Lines Under Controlled Conditions
2.2. Hand Pollination of Flowers
2.3. Extraction of Flavonoids
2.4. Quantification of Flavonoids and Cinnamic Acid
2.5. Shoot Regeneration and Multiple Shoot Induction
2.6. Construction of Vectors and Explant Preparation
2.7. Confirmation of Transgenesis Through GUS and GFP Signals
2.8. Statistical Analysis
3. Results
3.1. Speed Breeding Under Controlled Conditions
3.2. Elevation of Selected Flavonoids in New Soybean Progenies
3.3. Positive Response of Shoot Regeneration and Shoot Induction After Allele Segregation
3.4. Identification of the Inheritance of High Susceptibility to Agrobacterium in New Soybean Progeny Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, E.J.; Ali, L.; Beavis, W.D.; Chen, P.; Clemente, T.E.; Diers, B.W.; Graef, G.L.; Grassini, P.; Hyten, D.L.; McHale, L.K.; et al. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. Adv. Plant Breed. Strateg. Legum. 2019, 7, 431–516. [Google Scholar]
- Sparrow, P.A.C.; Townsend, T.M.; Arthur, A.E.; Dale, P.J.; Irwin, J.A. Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor. Appl. Genet. 2004, 108, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Matthysse, A.G.; Gelvin, S.B. Differences in susceptibility of arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 1997, 9, 317–333. [Google Scholar] [PubMed]
- Robbs, S.L.; Hawes, M.C.; Lin, H.J.; Pueppke, S.G.; Smith, L.Y. Inheritance of resistance to crown gall in Pisum sativum. Plant Physiol. 1991, 95, 52–57. [Google Scholar] [CrossRef]
- Bailey, M.A.; Boerma, H.R.; Parrott, W.A. Inheritance of Agrobacterium tumefaciens-induced tumorigenesis of soybean. Crop. Sci. 1994, 34, 514–519. [Google Scholar] [CrossRef]
- Tzfira, T.; Vaidya, M.; Citovsky, V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc. Natl. Acad. Sci. USA 2002, 99, 10435–10440. [Google Scholar] [CrossRef]
- Subramoni, S.; Nathoo, N.; Klimov, E.; Yuan, Z.C. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front. Plant Sci. 2014, 5, 322. [Google Scholar] [CrossRef]
- De Cleene, M. The susceptibility of plants to Agrobacterium: A discussion of the role of phenolic compounds. FEMS Microbiol. Lett. 1988, 54, 1–7. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Biol. 2000, 51, 223–256. [Google Scholar] [CrossRef]
- Dong, W.; Song, Y. The significance of flavonoids in the process of biological nitrogen fixation. Int. J. Mol. Sci. 2020, 21, 5926. [Google Scholar] [CrossRef]
- Cha, T.S.; Chen, C.F.; Yee, W.; Aziz, A.; Loh, S.H. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J. Microbiol. Methods. 2011, 84, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Zerback, R.; Dressler, K.; Hess, D. Flavonoid compounds from pollen and stigma of Petunia hybrida: Inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Sci. 1989, 62, 83–91. [Google Scholar] [CrossRef]
- Mou, J.; Zhang, Z.; Qiu, H.; Lu, Y.; Zhu, X.; Fan, Z.; Zhang, Q.; Ye, J.; Fernie, A.R.; Cheng, Y.; et al. Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. Hortic. Res. 2021, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Van Wordragen, M.F.; De Jong, J.; Schornagel, M.J.; Dons, H.J.M. Rapid screening for host-bacterium interactions in Agrobacterium-mediated gene transfer to Chrysanthemum, by using the GUS-intron gene. Plant Sci. 1992, 81, 207–214. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, S.; Yang, W.; Li, B.; Lan, C.; Zhang, J.; Yuan, L.; Wang, Y.; Xie, Q.; Han, J.; et al. Multi-omic dissection of the drought resistance traits of soybean landrace LX. Plant Cell Environ. 2021, 44, 1379–1398. [Google Scholar] [CrossRef]
- Jähne, F.; Hahn, V.; Würschum, T.; Leiser, W.L. Speed breeding short-day crops by LED-controlled light schemes. Theor. Appl. Genet. 2020, 133, 2335–2342. [Google Scholar] [CrossRef]
- Kim, D.Y.; Heo, J.H.; Pack, I.S.; Park, J.-H.; Um, M.S.; Kim, H.J.; Park, K.W.; Nam, K.-H.; Oh, S.D.; Kim, J.K.; et al. Natural hybridization between transgenic and wild soybean genotypes. Plant Biotechnol. Rep. 2021, 15, 299–308. [Google Scholar] [CrossRef]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol. Plant. 1962, 15, 474–497. [Google Scholar] [CrossRef]
- Luria, S.E.; Bertani, G. Recovery of bacterial cultures. J. Lab. Clin. Med. 1951, 38, 142–149. [Google Scholar]
- Khan, W.M.; Yang, W.; Yu, K.; Zhang, X. Aztreonam is a novel chemical inducer that promotes Agrobacteium transformation and lateral root development in soybean. Front. Microbiol. 2023, 14, 1257270. [Google Scholar]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.A.; Tabassum, R.; Bashir, H. Speed breeding methods for soybean improvement: Recent advances. J. Nutr. Health Food Eng. 2022, 12, 41–42. [Google Scholar] [CrossRef]
- Tzfira, T.; Citovsky, V. The Agrobacterium-Plant Cell Interaction. Taking Biology Lessons from a Bug. Plant Physiol. 2003, 133, 943–947. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Qiu, L.; Ran, Y. Progress in Soybean Genetic Transformation Over the Last Decade. Front. Plant Sci. 2022, 13, 900318. [Google Scholar] [CrossRef]
- Mauro, A.O.; Pfeiffer, T.W.; Collins, G.B. Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop. Sci. 1995, 35, 1152–1156. [Google Scholar] [CrossRef]
- Owens, L.D.; Cress, D.E. Genotypic Variability of Soybean Response to Agrobacterium Strains Harboring the Ti or Ri Plasmids. Plant Physiol. 1985, 77, 87–94. [Google Scholar] [CrossRef]
- Jia, Y.; Yao, X.; Zhao, M.; Zhao, Q.; Du, Y.; Yu, C.; Xie, F. Comparison of soybean transformation efficiency and plant factors affecting transformation during the Agrobacterium infection process. Int. J. Mol. Sci. 2015, 16, 18522–18543. [Google Scholar] [CrossRef]
- Labadie, M.; Vallin, G.; Petit, A.; Ring, L.; Hoffmann, T.; Gaston, A.; Potier, A.; Schwab, W.; Rothan, C.; Denoyes, B. Omics Technologies Applied to Agriculture and Food Metabolite Quantitative Trait Loci for flavonoids provide new insights into the genetic architecture of strawberry (Fragaria × ananassa) fruit quality. J. Agric. Food Chem. 2020, 68, 6927–6939. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sood, P.; Citovsky, V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010, 11, 705–719. [Google Scholar] [CrossRef]
- Joubert, P.; Beaupère, D.; Lelièvre, P.; Wadouachi, A.; Sangwan, R.S.; Sangwan-Norreel, B.S. Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction—A plausible molecular mechanism of phenol binding protein activation. Plant Sci. 2002, 162, 733–743. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.; Lam, P.Y.; Dini-Andreote, F.; Dai, L.; Wei, Z. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Jin, S.; Sim, W.S.; Nester, E.W. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 1995, 92, 12245–12249. [Google Scholar] [CrossRef]
- Degtyarenko, A.I.; Gorpenchenko, T.Y.; Grigorchuk, V.P.; Bulgakov, V.P.; Shkryl, Y.N. Optimization of the transient Agrobacterium-mediated transformation of Panax ginseng shoots and its use to change the profile of ginsenoside production. Plant Cell Tissue Organ Cult. 2021, 146, 357–373. [Google Scholar] [CrossRef]
- Donaldson, P.A.; Simmonds, D.H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep. 2000, 19, 478–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.W.; Shaheen, A.; Zhang, X.; Zhang, J.; Dewir, Y.H.; Magyar-Tábori, K. Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation. Life 2024, 14, 1649. https://doi.org/10.3390/life14121649
Khan MW, Shaheen A, Zhang X, Zhang J, Dewir YH, Magyar-Tábori K. Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation. Life. 2024; 14(12):1649. https://doi.org/10.3390/life14121649
Chicago/Turabian StyleKhan, Muhammad Waqar, Aaqib Shaheen, Xuebin Zhang, Junli Zhang, Yaser Hassan Dewir, and Katalin Magyar-Tábori. 2024. "Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation" Life 14, no. 12: 1649. https://doi.org/10.3390/life14121649
APA StyleKhan, M. W., Shaheen, A., Zhang, X., Zhang, J., Dewir, Y. H., & Magyar-Tábori, K. (2024). Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation. Life, 14(12), 1649. https://doi.org/10.3390/life14121649