Active Video Games Using Virtual Reality Influence Cognitive Performance in Sedentary Female University Students: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Methods
2.1. Participants and Study Design
2.2. Procedure
2.2.1. Montreal Cognitive Assessment (MoCA)
2.2.2. International Physical Activity Questionnaire (IPAQ)
2.2.3. ActivPAL
2.2.4. Virtual Reality Game and Headset
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; Geoge, S.M.; Olson, R.D. The physical activity guidelines for Americans. Am. Med. Assoc. 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Giandonato, J.A.; Tringali, V.M.; Thoms, R.C. Improving Mental Health through Physical Activity: A Narrative Literature Review. Phys. Act. Health 2021, 5, 146–153. [Google Scholar] [CrossRef]
- Anderson, E.; Durstine, J.L. Physical Activity, Exercise, and Chronic Diseases: A Brief Review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Activity; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 1 June 2024).
- Gómez-López, M.; Gallegos, A.G.; Extremera, A.B. Perceived Barriers by University Students in the Practice of Physical Activities. J. Sports Sci. Med. 2010, 9, 374. [Google Scholar]
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Maselli, M.; Ward, P.B.; Gobbi, E.; Carraro, A. Promoting physical activity among university students: A systematic review of controlled trials. Am. J. Health Promot. 2018, 32, 1602–1612. [Google Scholar] [CrossRef]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef]
- Parks, S.E.; Housemann, R.A.; Brownson, R.C. Differential Correlates of Physical Activity in Urban and Rural Adults of Various Socioeconomic Backgrounds in the United States. J. Epidemiol. Community Health 2003, 57, 29–35. [Google Scholar] [CrossRef]
- Cotten, E.; Prapavessis, H. Increasing nonsedentary behaviors in university students using text messages: Randomized controlled trial. JMIR mHealth uHealth 2016, 4, e5411. [Google Scholar] [CrossRef]
- American College Health Association. American College Health Association-National College Health Assessment II: Ontario Canada Reference Group Executive Summary Spring 2016; Hanover MACHA 2016; American College Health Association: Silver Spring, MD, USA, 2016. [Google Scholar]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081. [Google Scholar] [CrossRef]
- Anuar, A.; Hussin, N.Z.; Maon, S.N.; Hassan, N.M.; Abdullah, M.Z.; Mohd, I.H.; Sahudin, Z. Physical Inactivity among University Students. Int. J. Acad. Res. Bus. Social. Sci. 2021, 11, 356–366. [Google Scholar] [CrossRef]
- Oluyinka, S.; Endozo, A. Factors Affecting Physical Activity Participation Among University Students. J. Soc. Sci. Res. 2019, 14, 3161–3170. [Google Scholar] [CrossRef]
- Carballo-Fazanes, A.; Rico-Díaz, J.; Barcala-Furelos, R.; Rey, E.; Rodríguez-Fernández, J.; Varela-Casal, C.; Abelairas-Gómez, C. Physical activity habits and determinants, sedentary behaviour and lifestyle in university students. Int. J. Environ. Res. Public Health 2020, 17, 3272. [Google Scholar] [CrossRef] [PubMed]
- Al-Eisa, E.S.; Al-Sobayel, H.I. Physical activity and health beliefs among Saudi women. J. Nutr. Metab. 2012, 2012, 642187. [Google Scholar] [CrossRef] [PubMed]
- Gawwad, E.S.A. Stages of change in physical activity, self efficacy and decisional balance among Saudi university students. J. Fam. Community Med. 2008, 15, 107–115. [Google Scholar] [CrossRef]
- Al-Zalabani, A.H.; Al-Hamdan, N.A.; Saeed, A.A. The prevalence of physical activity and its socioeconomic correlates in Kingdom of Saudi Arabia: A cross-sectional population-based national survey. J. Taibah Univ. Med. Sci. 2015, 10, 208–215. [Google Scholar] [CrossRef]
- El Bcheraoui, C.; Tuffaha, M.; Daoud, F.; Kravitz, H.; Almazroa, M.A.; Alsaeedi, M.; Memish, Z.A.; Basulaiman, M.; Alrabeeh, A.A.; Mokdad, A.H. On your mark, get set, go: Levels of physical activity in the Kingdom of Saudi Arabia, 2013. J. Phys. Act. Health 2016, 13, 231–238. [Google Scholar] [CrossRef]
- Alqahtani, B.A.; Alenazi, A.M.; Alhowimel, A.S.; Elnaggar, R.K. The descriptive pattern of physical activity in Saudi Arabia: Analysis of national survey data. Int. Health 2021, 13, 232–239. [Google Scholar] [CrossRef]
- Samara, A.; Nistrup, A.; Al-Rammah, T.Y.; Aro, A.R. Lack of facilities rather than sociocultural factors as the primary barrier to physical activity among female Saudi university students. Int. J. Womens Health 2015, 7, 279–286. [Google Scholar] [CrossRef]
- Awadalla, N.J.; Aboelyazed, A.E.; Hassanein, M.A.; Khalil, S.N.; Aftab, R.; Gaballa, I.I.; Mahfouz, A.A. Assessment of physical inactivity and perceived barriers to physical activity among health college students, south-western Saudi Arabia. East. Mediterr. Health J. 2014, 20, 596–604. [Google Scholar] [CrossRef]
- Al Salim, Z.A. Barriers to Physical Activity Participation Among University Students in Saudi Arabia. Inf. Sci. Lett. 2023, 12, 353–360. [Google Scholar] [CrossRef]
- Khalaf, A.; Ekblom, Ö.; Kowalski, J.; Berggren, V.; Westergren, A.; Alhazzaa, H. Female university students’ physical activity levels and associated factors—A cross-sectional study in southwestern Saudi Arabia. Int. J. Environ. Res. Public Health 2013, 10, 3502–3517. [Google Scholar] [CrossRef] [PubMed]
- Biele, C. Movement and Cognition from the Perspective of New Technologies. Train. Educ. Learn. Sci. 2022, 59, 41–47. [Google Scholar] [CrossRef]
- Pasco, D. The Potential of Using Virtual Reality Technology in Physical Activity Settings. Quest 2013, 65, 429–441. [Google Scholar] [CrossRef]
- Zeng, N.; Pope, Z.; Gao, Z. Acute Effect of Virtual Reality Exercise BikeGames on College Students’ Physiological and Psychological Outcomes. Cy-berpsychol. Behav. Soc. Netw. 2017, 20, 453–457. [Google Scholar] [CrossRef]
- Gao, Z.; Lee, J.E.; Pope, Z.; Zhang, D. Effect of active videogames on underserved children’s classroom behaviors, effort, and fitness. Games Health J. 2016, 5, 318–324. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, S.; Pasco, D.; Pope, Z. A meta-analysis of active video games on health outcomes among children and adolescents. Obes. Rev. 2015, 16, 783–794. [Google Scholar] [CrossRef]
- Bond, S.; Laddu, D.R.; Ozemek, C.; Lavie, C.J.; Arena, R. Exergaming and Virtual Reality for Health: Implications for Cardiac Rehabilitation. Curr. Probl. Cardiol. 2021, 46, 100472. [Google Scholar] [CrossRef]
- Costa, M.T.S.; Vieira, L.P.; de Oliveira Barbosa, E.; Oliveira, L.M.; Maillot, P.; Vaghetti, C.A.O.; Carta, M.G.; Machado, S.; Gatica-Rojas, V.; Monteiro-Junior, R. Virtual Reality-Based Exercise with Exergames as Medicine in Different Contexts: A Short Review. Clin. Pract. Epidemiol. Ment. Health 2019, 15, 15–20. [Google Scholar] [CrossRef]
- Peng, W.; Lin, J.H.; Crouse, J. Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 681–688. [Google Scholar] [CrossRef]
- Yu, J.; Huang, H.C.; Cheng, T.C.E.; Wong, M.K.; Teng, C.I. Effects of Playing Exergames on Quality of Life among Young Adults: A 12-Week Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 1359. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Wong, M.K.; Lu, J.; Huang, W.F.; Teng, C.I. Can using exergames improve physical fitness? A 12-week randomized controlled trial. Comput. Hum. Behav. 2017, 70, 310–316. [Google Scholar] [CrossRef]
- Christensen, J.V.; Mathiesen, M.; Poulsen, J.H.; Ustrup, E.; Kraus, M. Player experience in a VR and non-VR multiplayer game. In Proceedings of the Virtual Reality International Conference-Laval Virtual, Laval, France, 4–6 April 2018. [Google Scholar] [CrossRef]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef] [PubMed]
- Stanmore, E.; Stubbs, B.; Vancampfort, D.; de Bruin, E.D.; Firth, J. The Effect of Active Video Games on Cognitive Functioning in Clinical and Non-Clinical Populations: A Meta-Analysis of Randomized Controlled Trials. Neurosci. Biobehav. Rev. 2017, 78, 34–43. [Google Scholar] [CrossRef]
- Benzing, V.; Heinks, T.; Eggenberger, N.; Schmidt, M. Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PLoS ONE 2016, 11, e0167501. [Google Scholar] [CrossRef]
- Grant, D.A.; Berg, E. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J. Exp. Psychol. 1948, 38, 404–411. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Tombaugh, T.N. Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS. Arch. Clin. Neuropsychol. 2005, 20, 485–503. [Google Scholar] [CrossRef]
- Stark, S.M.; Kirwan, C.B.; Stark, C.E.L. Mnemonic similarity task: A tool for assessing hippocampal integrity. Trends Cogn. Sci. 2019, 23, 938–951. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 2008, 9, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Etnier, J.L.; Nowell, P.M.; Landers, D.M.; Sibley, B.A. A Meta-Regression to Examine the Relationship between Aerobic Fitness and Cognitive Performance. Brain Res. Rev. 2006, 52, 119–130. [Google Scholar] [CrossRef]
- Staiano, A.E.; Calvert, S.L. Exergames for Physical Education Courses: Physical, Social, and Cognitive Benefits. Child Dev. Perspect. 2011, 5, 93–98. [Google Scholar] [CrossRef]
- Salas-Gomez, D.; Fernandez-Gorgojo, M.; Pozueta, A.; Diaz-Ceballos, I.; Lamarain, M.; Perez, C.; Kazimierczak, M.; Sanchez-Juan, P. Physical Activity Is Associated With Better Executive Function in University Students. Front. Hum. Neurosci. 2020, 14, 11. [Google Scholar] [CrossRef]
- Booth, M. Assessment of physical activity: An international perspective. Res. Q. Exerc. Sport 2000, 71 (Suppl. S2), 114–120. [Google Scholar] [CrossRef]
- Aminian, S.; Hinckson, E.A. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 119. [Google Scholar] [CrossRef]
- Grant, P.M.; Ryan, C.G.; Tigbe, W.W.; Granat, M.H. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br. J. Sports Med. 2006, 40, 992–997. [Google Scholar] [CrossRef]
- MoCA Cognition. MoCA—Cognitive Assessment. 2023. Available online: https://mocacognition.com (accessed on 14 January 2024).
- Rahman, T.T.A.; El Gaafary, M.M. Montreal Cognitive Assessment Arabic version: Reliability and validity prevalence of mild cognitive impairment among elderly attending geriatric clubs in Cairo. Geriatr. Gerontol. Int. 2009, 9, 54–61. [Google Scholar] [CrossRef]
- Azdad, A.; Benabdeljlil, M.; Al Zemmouri, K.; Faris, M.E.A. Standardization and validation of Montreal cognitive assessment (MoCA) in the Moroccan population. Int. J. Brain Cogn. Sci. 2019, 8, 1–5. [Google Scholar] [CrossRef]
- Ajrouch, K.J.; Tarraf, W.; Brauer, S.; Zahodne, L.B.; Antonucci, T.C. Adapted MoCA for Use among Arabic-Speaking Immigrants in the United States. J. Cross-Cult. Gerontol. 2024, 39, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, I.; Kang, M. Convergent validity of the international physical activity questionnaire (IPAQ): Meta-analysis. Public Health Nutr. 2013, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Helou, K.; El Helou, N.; Mahfouz, M.; Mahfouz, Y.; Salameh, P.; Harmouche-Karaki, M. Validity and reliability of an adapted arabic version of the long international physical activity questionnaire. BMC Public Health 2018, 18, 49. [Google Scholar] [CrossRef]
- Al Salloum, A.A.; El Mouzan, M.I.; Al Omar, A.A.; Alherbish, A.S.; Qurashi, M.M. The prevalence of neurological disorders in Saudi children: A community-based study. J. Child Neurol. 2011, 26, 21–24. [Google Scholar] [CrossRef]
- Deans, S.; Kirk, A.; McGarry, A.; Rowe, D. Reliability and criterion-related validity of the activPAL™ accelerometer when measuring physical activity and sedentary behavior in adults with lower limb absence. J. Meas. Phys. Behav. 2020, 3, 244–252. [Google Scholar] [CrossRef]
- Lyden, K.; Keadle, S.K.; Staudenmayer, J.; Freedson, P.S. The activPAL™ accurately classifies activity intensity categories in healthy adults. Med. Sci. Sports Exerc. 2017, 49, 1022–1028. [Google Scholar] [CrossRef]
- Meta. Meta Quest 2: General Information and Technical Specifications. 2023. Available online: https://www.meta.com/es/en/quest/ (accessed on 28 October 2023).
- Beat Games. Beat Saber—VR Rhythm Game. 2023. Available online: https://beatsaber.com (accessed on 14 January 2024).
- Corder, K.; Winpenny, E.; Love, R.; Brown, H.E.; White, M.; van Sluijs, E. Change in Physical Activity from Adolescence to Early Adulthood: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Br. J. Sports Med. 2019, 53, 496–503. [Google Scholar] [CrossRef]
- Tominari, M.; Uozumi, R.; Becker, C.; Kinoshita, A. Reminiscence therapy using virtual reality technology affects cognitive function and subjective well-being in older adults with dementia. Cogent Psychol. 2021, 8, 1968991. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, Q.; He, B.; Huang, M.Z.; Lin, R.; Li, H. Immersive virtual reality–based cognitive intervention for the improvement of cognitive function, depression, and perceived stress in older adults with mild cognitive impairment and mild dementia: Pilot pre-post study. JMIR Serious Games 2022, 10, e32117. [Google Scholar] [CrossRef] [PubMed]
- Maeng, S.; Hong, J.P.; Kim, W.H.; Kim, H.; Cho, S.E.; Kang, J.M.; Na, K.S.; Oh, S.H.; Park, J.W.; Bae, J.N.; et al. Effects of virtual reality-based cognitive training in the elderly with and without mild cognitive impairment. Psychiatry Investig. 2021, 18, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Torpil, B.; Şahin, S.; Pekçetin, S.; Uyanik, M. The effectiveness of a virtual reality-based intervention on cognitive functions in older adults with mild cognitive impairment: A single-blind, randomized controlled trial. Games Health J. 2021, 10, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.; Gamito, P.; Souto, T.; Conde, R.; Ferreira, M.; Corotnean, T.; Fernandes, A.; Silva, H.; Neto, T. Virtual reality-based cognitive stimulation on people with mild to moderate dementia due to Alzheimer’s disease: A pilot randomized controlled trial. Int. J. Environ. Res. Public Health 2021, 18, 5290. [Google Scholar] [CrossRef]
- Rosa, P.J.; Sousa, C.; Faustino, B.; Feiteira, F.; Oliveira, J.; Lopes, P.; Gamito, P.; Morais, D. The Effect of Virtual Reality-Based Serious Games in Cognitive Interventions: A Meta-Analysis Study. In Proceedings of the 4th Workshop on Icts for Improving Patients Rehabilitation Research Techniques, Lisbon, Portugal, 13–14 October 2016; pp. 113–116. [Google Scholar]
- Yang, S.; Chun, M.H.; Son, Y.R. Effect of virtual reality on cognitive dysfunction in patients with brain tumor. Ann. Rehabil. Med. 2014, 38, 726–733. [Google Scholar] [CrossRef]
- Street, T.D.; Lacey, S.J.; Langdon, R.R. Gaming your way to health: A systematic review of exergaming programs to increase health and exercise behaviors in adults. Games Health J. 2017, 6, 136–146. [Google Scholar] [CrossRef]
- Cacciata, M.; Stromberg, A.; Lee, J.A.; Sorkin, D.; Lombardo, D.; Clancy, S.; Nyamathi, A.; Evangelista, L.S. Effect of exergaming on health-related quality of life in older adults: A systematic review. Int. J. Nurs. Stud. 2019, 93, 30–40. [Google Scholar] [CrossRef]
- Golden, D.; Getchell, N. Physical activity levels in children with and without autism spectrum disorder when playing active and sedentary xbox kinect videogames. Games Health J. 2017, 6, 97–103. [Google Scholar] [CrossRef]
- Li, B.J.; Lwin, M.O. Player see, player do: Testing an exergame motivation model based on the influence of the self avatar. Comput. Hum. Behav. 2016, 59, 350–357. [Google Scholar] [CrossRef]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Liu, W.; Gao, Z. Comparison of college students’ blood pressure, perceived exertion, and psychosocial outcomes during virtual reality, exergaming, and traditional exercise: An exploratory study. Games Health J. 2020, 9, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; Abdi, E.; Bernardo-Filho, M.; Taiar, R. Aerobic exercise with superimposed virtual reality improves cognitive flexibility and selective attention in young males. Appl. Sci. 2020, 10, 8029. [Google Scholar] [CrossRef]
- Sousa, C.V.; Hwang, J.; Cabrera-Perez, R.; Fernandez, A.; Misawa, A.; Newhook, K.; Lu, A.S. Active video games in fully immersive virtual reality elicit moderate-to-vigorous physical activity and improve cognitive performance in sedentary college students. J. Sport Health Sci. 2022, 11, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Born, F.; Graf, L.; Masuch, M. Exergaming: The Impact of Virtual Reality on Cognitive Performance and Player Experience. In Proceedings of the 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, 17–20 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Ochi, G.; Kuwamizu, R.; Fujimoto, T.; Ikarashi, K.; Yamashiro, K.; Sato, D. The Effects of Acute Virtual Reality Exergaming on Mood and Executive Function: Exploratory Crossover Trial. JMIR Serious Games 2022, 10, e38200. [Google Scholar] [CrossRef]
- Bahrudin, M.; Pratiwi, A.; Seta, A.B.; Prabawati, R.K. The Effect of Brain Training Game activities on Improvement of Cognitive Function measured by Montreal Cognitive Assesment Indonesia version (MoCA-Ina). Saintika Med. 2022, 18, 80–91. [Google Scholar]
- Shabbir, M.S.; Khurshied, S.; Siddique, S.; Ahmed, I.; Zaidi, F. Identification of cognition level in physically active and inactive young adults. Pak. J. Phys. Ther. 2022. [Google Scholar] [CrossRef]
- Gluhm, S.; Goldstein, J.; Loc, K.; Colt, A.; Liew, C.V.; Corey-Bloom, J. Cognitive performance on the mini-mental state examination and the montreal cognitive assessment across the healthy adult lifespan. Cogn. Behav. Neurol. 2013, 26, 1–5. [Google Scholar] [CrossRef]
Variable | Control Group | VR Group | p-value |
---|---|---|---|
Age, years | 21.65 (1.08) | 21.16 (1.12) | 0.15 |
Weight, kg | 59.60 (10.37) | 55.20 (12.76) | 0.22 |
Height, cm | 156.55 (4.83) | 159.20 (5.55) | 0.10 |
BMI, kg/m2 | 24.29 (3.96) | 21.72 (4.58) | 0.05 |
Preferred leg, n (%) | |||
Right | 20 (100) | 24 (100) | 1.0 |
MoCA pre-test | 23.55 (2.80) | 22.25 (2.25) | 0.09 |
MoCA post-test | 23.50 (3.08) | 23.37 (2.48) | 0.88 |
IPAQ-SF weekly MET (min) | 525 (479) | 609 (797) | 0.68 |
MoCA Domain | Control Group | d | VR Group | d | ||
---|---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | |||
Visuospatial/Executive | 3.65 (0.87) | 3.65 (1.04) | 0.00 | 3.67 (1.01) | 3.42 (1.06) | 0.21 |
Naming | 2.95 (0.22) | 3.0 (0) | 0.22 | 2.87 (0.33) | 3.0 (0) | 0.37 * |
Attention A | 1.80 (0.41) | 1.65 (0.48) | 0.25 | 1.58 (0.65) | 1.79 (0.50) | 0.23 |
Attention B | 1.0 (0) | 0.95 (0.22) | 0.22 | 1.0 (0) | 1.0 (0) | 0.00 |
Attention C | 2.15 (0.98) | 1.85 (1.22) | 0.32 * | 1.83 (1.0) | 2.0 (1.06) | 0.16 |
Language A | 1.30 (0.57) | 1.20 (0.61) | 0.12 | 1.45 (0.58) | 1.66 (0.48) | 0.25 |
Language B | 0.10 (0.30) | 0.30 (0.47) | 0.48 * | 0.08 (0.28) | 0.20 (0.41) | 0.27 |
Abstraction | 1.50 (0.68) | 1.35 (0.74) | 0.20 | 1.70 (0.46) | 1.41 (0.50) | 0.46 * |
Delayed recall | 3.30 (1.34) | 3.65 (1.42) | 0.24 | 2.29 (1.51) | 2.95 (1.51) | 0.28 |
Orientation | 5.80 (0.41) | 5.90 (0.30) | 0.32 | 5.75 (0.44) | 5.91 (0.28) | 0.43 * |
Total score | 23.55 (2.80) | 23.50 (3.08) | 0.01 | 22.25 (2.25) | 23.37 (2.48) | 0.38 * |
Variable | Control Group | VR Group | t | d |
---|---|---|---|---|
METs using ActivPAL | 0.02 (0.01) | 4.98 (1.20) | 18.48 * | 5.60 |
Total number of steps | 3.01 (0.01) | 146.92 (46.34) | 14.15 * | 4.28 |
Total time of stepping (min) | 0.02 (0.01) | 5.47 (1.93) | 12.67 * | 3.83 |
Number of sit-to-stands | 0.01 (0.01) | 2.13 (1.08) | 8.82 * | 2.67 |
Number of stand-to-sits | 0.02 (0.01) | 2.50 (1.22) | 9.18 * | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghadier, M.; Alharbi, T.; Almasoud, N.; Alshalawi, A.A. Active Video Games Using Virtual Reality Influence Cognitive Performance in Sedentary Female University Students: A Randomized Clinical Trial. Life 2024, 14, 1651. https://doi.org/10.3390/life14121651
Alghadier M, Alharbi T, Almasoud N, Alshalawi AA. Active Video Games Using Virtual Reality Influence Cognitive Performance in Sedentary Female University Students: A Randomized Clinical Trial. Life. 2024; 14(12):1651. https://doi.org/10.3390/life14121651
Chicago/Turabian StyleAlghadier, Mshari, Taif Alharbi, Nada Almasoud, and Abdulaziz A. Alshalawi. 2024. "Active Video Games Using Virtual Reality Influence Cognitive Performance in Sedentary Female University Students: A Randomized Clinical Trial" Life 14, no. 12: 1651. https://doi.org/10.3390/life14121651
APA StyleAlghadier, M., Alharbi, T., Almasoud, N., & Alshalawi, A. A. (2024). Active Video Games Using Virtual Reality Influence Cognitive Performance in Sedentary Female University Students: A Randomized Clinical Trial. Life, 14(12), 1651. https://doi.org/10.3390/life14121651