Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. MnB1 Preparation
2.2. Material Preparation
2.3. Powder X-ray Diffraction
2.4. Scanning Electron Microscopy
2.5. Surface Area Analysis
2.6. Determination of Metal Content via ICP-OES
2.7. Electrochemical Water Oxidation Studies
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Romano, C.A.; Zhou, M.; Song, Y.; Wysocki, V.H.; Dohnalkova, A.C.; Kovarik, L.; Paša-Tolić, L.; Tebo, B.M. Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx. Nat. Commun. 2017, 8, 746. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Kim, D.-G.; Ko, S.-O. Synergistic Effects of Biogenic Manganese Oxide and Mn(II)-Oxidizing Bacterium Pseudomonas putida Strain MnB1 on the Degradation of 17 α-Ethinylestradiol. J. Hazard. Mater. 2018, 344, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Farda, B.; Djebaili, R.; Del Gallo, M.; Ercole, C.; Bellatreccia, F.; Pellegrini, M. The “Infernaccio” Gorges: Microbial Diversity of Black Deposits and Isolation of Manganese-Solubilizing Bacteria. Biology 2022, 11, 1204. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Kim, D.-G.; Kim, J.-H.; Ko, S.-O. Characterization of the Biogenic Manganese Oxides Produced by Pseudomonas putida Strain MnB1. Environ. Eng. Res. 2010, 15, 183–190. [Google Scholar] [CrossRef]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef]
- Mandernack, K.W.; Fogel, M.L.; Tebo, B.M.; Usui, A. Oxygen Isotope Analyses of Chemically and Microbially Produced Manganese Oxides and Manganates. Geochim. Cosmochim. Acta 1995, 59, 4409–4425. [Google Scholar] [CrossRef]
- Cömert, S.; Tepe, O. Production and Characterization of Biogenic Manganese Oxides by Manganese-Adapted Pseudomonas putida NRRL B-14878. Geomicrobiol. J. 2020, 37, 753–763. [Google Scholar] [CrossRef]
- Guo, J.; Guo, H.; Liu, J.; Zhong, F.; Wu, Y. Manganese(II) Oxidizing Bacteria as Whole-Cell Catalyst for β-Keto Ester Oxidation. Int. J. Mol. Sci. 2020, 21, 1709. [Google Scholar] [CrossRef]
- Spiro, T.G.; Bargar, J.R.; Sposito, G.; Tebo, B.M. Bacteriogenic Manganese Oxides. Acc. Chem. Res. 2010, 43, 2–9. [Google Scholar] [CrossRef]
- Webb, S.M.; Tebo, B.M.; Barger, J.R. Structural Influences of Sodium and Calcium Ions on the Biogenic Manganese Oxides Produced by the Marine Bacillus sp., Strain SG-1. Geomicrobiol. J. 2005, 22, 181–193. [Google Scholar] [CrossRef]
- Tran, T.N.; Kim, D.-G.; Ko, S.-O. Encapsulation of Biogenic Manganese Oxide and Pseudomonas putida MnB1 for Removing 17 α-Ethinylestradiol from Aquatic Environments. J. Water Process Eng. 2020, 37, 101423. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Chen, N.; Ding, H.; Zhang, H.; Liu, F.; Yin, H.; Chu, S.; Wang, C.; Lu, A. Cu(II) Sorption by Biogenic Birnessite Produced by Pseudomonas putida Strain MnB1: Structural Differences from Abiotic Birnessite and Its Environmental Implications. CrystEngComm 2018, 20, 1361–1374. [Google Scholar] [CrossRef]
- Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G. Characterization of the Manganese Oxide Produced by Pseudomonas putida Strain MnB1. Geochim. Cosmochim. Acta 2003, 67, 2649–2662. [Google Scholar] [CrossRef]
- Webb, S.M.; Tebo, B.M.; Bargar, J.R. Structural Characterization of Biogenic Mn Oxides Produced in Seawater by the Marine Bacillus sp. Strain SG-1. Am. Mineral. 2005, 90, 1342–1357. [Google Scholar] [CrossRef]
- Bargar, J.R.; Tebo, B.M.; Bergmann, U.; Webb, S.M.; Glatzel, P.; Chiu, V.Q.; Villalobos, M. Biotic and Abiotic Products of Mn(II) Oxidation by Spores of the Marine Bacillus sp. Strain SG-1. Am. Mineral. 2005, 90, 143–154. [Google Scholar] [CrossRef]
- Bargar, J.R. Situ Characterization of Mn(II) Oxidation by Spores of the Marine bacillus sp. Strain SG-1; SLAC-PUB-8438; SLAC National Accelerator Laboratory: Menlo Park, CA, USA, 2000. [Google Scholar] [CrossRef]
- Hocking, R.K.; Brimblecombe, R.; Chang, L.Y.; Singh, A.; Cheah, M.H.; Glover, C.; Casey, W.H.; Spiccia, L. Water-Oxidation Catalysis by Manganese in a Geochemical-like Cycle. Nat. Chem. 2011, 3, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Soldatova, A.V.; Romano, C.A.; Tao, L.; Stich, T.A.; Casey, W.H.; Britt, R.D.; Tebo, B.M.; Spiro, T.G. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism. J. Am. Chem. Soc. 2017, 139, 11381–11391. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.D.; Refson, K.; Sposito, G. On the Role of Mn(IV) Vacancies in the Photoreductive Dissolution of Hexagonal Birnessite. Geochim. Cosmochim. Acta 2009, 73, 4142–4150. [Google Scholar] [CrossRef]
- Soldatova, A.V.; Balakrishnan, G.; Oyerinde, O.F.; Romano, C.A.; Tebo, B.M.; Spiro, T.G. Biogenic and Synthetic MnO2 Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. Environ. Sci. Technol. 2019, 53, 4185–4197. [Google Scholar] [CrossRef]
- Pokhrel, R.; Goetz, M.K.; Shaner, S.E.; Wu, X.; Stahl, S.S. The “Best Catalyst” for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides. J. Am. Chem. Soc. 2015, 137, 8384–8387. [Google Scholar] [CrossRef]
- Sa, Y.J.; Kim, S.; Lee, Y.; Kim, J.M.; Joo, S.H. Mesoporous Manganese Oxides with High-Valent Mn Species and Disordered Local Structures for Efficient Oxygen Electrocatalysis. ACS Appl. Mater. Interfaces 2023, 15, 31393–31402. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Wilkinson, D.P.; Gyenge, E.L. Gas Diffusion Electrode Design and Conditioning with a Manganese(III/IV) Oxide Catalyst for Reversible Oxygen Reduction/Evolution Reactions. Energy Fuels 2023, 37, 19278–19291. [Google Scholar] [CrossRef]
- Heidari, S.; Balaghi, S.E.; Sologubenko, A.S.; Patzke, G.R. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catal. 2021, 11, 2511–2523. [Google Scholar] [CrossRef]
- Ghadge, S.D.; Velikokhatnyi, O.I.; Datta, M.K.; Shanthi, P.M.; Tan, S.; Kumta, P.N. Computational and Experimental Study of Fluorine Doped (Mn1−xNbx)O2 Nanorod Electrocatalysts for Acid-Mediated Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 541–557. [Google Scholar] [CrossRef]
- Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M. Selective Catalyst for Oxygen Evolution in Neutral Brine Electrolysis: An Oxygen-Deficient Manganese Oxide Film. ACS Catal. 2021, 11, 6390–6397. [Google Scholar] [CrossRef]
- Zhao, G.; Yao, Y.; Lu, W.; Liu, G.; Guo, X.; Tricoli, A.; Zhu, Y. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. Nano Lett. 2021, 21, 7012–7020. [Google Scholar] [CrossRef]
- Zand, Z.; Mohammadi, M.R.; Sologubenko, A.S.; Handschin, S.; Bagheri, R.; Chernev, P.; Song, Z.; Dau, H.; Najafpour, M.M. Oxygen Evolution Reaction by Silicate-Stabilized Manganese Oxide. ACS Appl. Energy Mater. 2023, 6, 1702–1713. [Google Scholar] [CrossRef]
- Qin, C.; Luo, J.; Zhang, D.; Brennan, L.; Tian, S.; Berry, A.; Campbell, B.M.; Sadtler, B. Light-Mediated Electrochemical Synthesis of Manganese Oxide Enhances Its Stability for Water Oxidation. ACS Nanosci. Au 2023, 3, 310–322. [Google Scholar] [CrossRef]
- Melder, J.; Bogdanoff, P.; Zaharieva, I.; Fiechter, S.; Dau, H.; Kurz, P. Water-Oxidation Electrocatalysis by Manganese Oxides: Syntheses, Electrode Preparations, Electrolytes and Two Fundamental Questions. Z. Phys. Chem. 2020, 234, 925–978. [Google Scholar] [CrossRef]
- Robinson, D.M.; Go, Y.B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G.C. Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis. J. Am. Chem. Soc. 2013, 135, 3494–3501. [Google Scholar] [CrossRef]
- Morita, M.; Iwakura, C.; Tamura, H. The Anodic Characteristics of Massive Manganese Oxide Electrode. Electrochim. Acta 1979, 24, 357–362. [Google Scholar] [CrossRef]
- Trasatti, S. Electrocatalysis by Oxides—Attempt at a Unifying Approach. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 125–131. [Google Scholar] [CrossRef]
- Gates, C.; Ananyev, G.; Roy-Chowdhury, S.; Cullinane, B.; Miller, M.; Fromme, P.; Dismukes, G.C. Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth? J. Phys. Chem. B 2022, 126, 3257–3268. [Google Scholar] [CrossRef]
- Wiechen, M.; Spiccia, L. Manganese Oxides as Efficient Water Oxidation Catalysts. ChemCatChem 2014, 6, 439–441. [Google Scholar] [CrossRef]
- Iyer, A.; Del-Pilar, J.; King’ondu, C.K.; Kissel, E.; Garces, H.F.; Huang, H.; El-Sawy, A.M.; Dutta, P.K.; Suib, S.L. Water Oxidation Catalysis Using Amorphous Manganese Oxides, Octahedral Molecular Sieves (OMS-2), and Octahedral Layered (OL-1) Manganese Oxide Structures. J. Phys. Chem. C 2012, 116, 6474–6483. [Google Scholar] [CrossRef]
- Geszvain, K.; Butterfield, C.; Davis, R.E.; Madison, A.S.; Lee, S.-W.; Parker, D.L.; Soldatova, A.; Spiro, T.G.; Luther, G.W.; Tebo, B.M. The Molecular Biogeochemistry of Manganese(II) Oxidation. Biochem. Soc. Trans. 2012, 40, 1244–1248. [Google Scholar] [CrossRef]
- Menezes, P.W.; Indra, A.; Littlewood, P.; Schwarze, M.; Göbel, C.; Schomäcker, R.; Driess, M. Nanostructured Manganese Oxides as Highly Active Water Oxidation Catalysts: A Boost from Manganese Precursor Chemistry. ChemSusChem 2014, 7, 2202–2211. [Google Scholar] [CrossRef]
- Taguchi, T.; Stone, K.L.; Gupta, R.; Kaiser-Lassalle, B.; Yano, J.; Hendrich, M.P.; Borovik, A.S. Preparation and Properties of an MnIV–Hydroxide Complex: Proton and Electron Transfer at a Mononuclear Manganese Site and Its Relationship to the Oxygen Evolving Complex within Photosystem II. Chem. Sci. 2014, 5, 3064–3071. [Google Scholar] [CrossRef]
- Chernev, P.; Fischer, S.; Hoffmann, J.; Oliver, N.; Assunção, R.; Yu, B.; Burnap, R.L.; Zaharieva, I.; Nürnberg, D.J.; Haumann, M.; et al. Light-Driven Formation of Manganese Oxide by Today’s Photosystem II Supports Evolutionarily Ancient Manganese-Oxidizing Photosynthesis. Nat. Commun. 2020, 11, 6110. [Google Scholar] [CrossRef]
- Daye, M.; Klepac-Ceraj, V.; Pajusalu, M.; Rowland, S.; Farrell-Sherman, A.; Beukes, N.; Tamura, N.; Fournier, G.; Bosak, T. Light-Driven Anaerobic Microbial Oxidation of Manganese. Nature 2019, 576, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Trainer, E.L.; Ginder-Vogel, M.; Remucal, C.K. Selective Reactivity and Oxidation of Dissolved Organic Matter by Manganese Oxides. Environ. Sci. Technol. 2021, 55, 12084–12094. [Google Scholar] [CrossRef]
- McKenzie, R.M. The Synthesis of Birnessite, Cryptomelane, and Some Other Oxides and Hydroxides of Manganese. Mineral. Mag. 1971, 38, 493–502. [Google Scholar] [CrossRef]
- Nielsen-Franco, D.; Ginder-Vogel, M. Kinetic Study of the Influence of Humic Acids on the Oxidation of As(III) by Acid Birnessite. ACS EST Water 2023, 3, 1060–1070. [Google Scholar] [CrossRef]
- Trainer, E.L.; Ginder-Vogel, M.; Remucal, C.K. Enhancement and Inhibition of Oxidation in Phenolic Compound Mixtures with Manganese Oxides. ACS EST Water 2022, 2, 2400–2408. [Google Scholar] [CrossRef]
- Galezowski, L.; Recham, N.; Larcher, D.; Miot, J.; Skouri-Panet, F.; Ahouari, H.; Guyot, F. Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries. Microorganisms 2023, 11, 603. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Brouwers, G.-J.; de Vrind, J.P.M.; Corstjens, P.L.A.M.; Cornelis, P.; Baysse, C.; de Vrind-de Jong, E.W. cumA, a Gene Encoding a Multicopper Oxidase, Is Involved in Mn2+ Oxidation in Pseudomonas putida GB-1. Appl. Environ. Microbiol. 1999, 65, 1762–1768. [Google Scholar] [CrossRef]
- Francis, C.A.; Tebo, B.M. cumA Multicopper Oxidase Genes from Diverse Mn(II)-Oxidizing and Non-Mn(II)-Oxidizing Pseudomonas Strains. Appl. Environ. Microbiol. 2001, 67, 4272–4278. [Google Scholar] [CrossRef]
- Geszvain, K.; Smesrud, L.; Tebo, B.M. Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1. Appl. Environ. Microbiol. 2016, 82, 3774–3782. [Google Scholar] [CrossRef]
- Remucal, C.K.; Ginder-Vogel, M. A Critical Review of the Reactivity of Manganese Oxides with Organic Contaminants. Environ. Sci. Process. Impacts 2014, 16, 1247–1266. [Google Scholar] [CrossRef]
Mass Percent of Element in Sample | |||||||
---|---|---|---|---|---|---|---|
Mn | Ca | K | Mg | Fe | Cu | Zn | |
Whole-cell BMO | 7.0% | 0.6% | 0.3% | 0.3% | 0.1% | 0.2% | 0% |
Acid birnessite | 44.6% | 0% | 5.0% | 0% | 0% | 0.1% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, E.; Formanski, L.N.; Sarah, S.E.; Kari, S.L. Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation. Life 2024, 14, 171. https://doi.org/10.3390/life14020171
Morales E, Formanski LN, Sarah SE, Kari SL. Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation. Life. 2024; 14(2):171. https://doi.org/10.3390/life14020171
Chicago/Turabian StyleMorales, Elisa, Lauren N. Formanski, Shaner E. Sarah, and Stone L. Kari. 2024. "Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation" Life 14, no. 2: 171. https://doi.org/10.3390/life14020171
APA StyleMorales, E., Formanski, L. N., Sarah, S. E., & Kari, S. L. (2024). Characterizing Biogenic MnOx Produced by Pseudomonas putida MnB1 and Its Catalytic Activity towards Water Oxidation. Life, 14(2), 171. https://doi.org/10.3390/life14020171