Effectiveness of Virtual Reality on Postoperative Pain, Disability and Range of Movement after Knee Replacement: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Study Selection
2.3. Data Extraction
2.4. Assessment of Risk of Bias
2.5. Data Synthesis and Statistical Analysis
3. Results
3.1. Study Identification and Selection
3.2. Qualitative Summary of the Included Studies
3.2.1. Study Characteristics
3.2.2. Participant Characteristics
3.2.3. Interventions
3.2.4. Outcome Measures
3.2.5. Risk of Bias within Included Studies
3.2.6. Quantitative Summary of the Included Studies
4. Discussion
4.1. Limitations
4.2. Clinical Implications
4.3. Future Lines of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An Update with Relevance for Clinical Practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee Replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Mayoral Rojals, V. Epidemiología, Repercusión Clínica y Objetivos Terapéuticos. Rev. Soc. Española Dolor 2021, 28, 4–10. [Google Scholar] [CrossRef]
- Romanini, E.; Decarolis, F.; Luzi, I.; Zanoli, G.; Venosa, M.; Laricchiuta, P.; Carrani, E.; Torre, M. Total Knee Arthroplasty in Italy: Reflections from the Last Fifteen Years and Projections for the next Thirty. Int. Orthop. 2019, 43, 133–138. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Ong, K.L.; Lau, E.; Widmer, M.; Maravic, M.; Gómez-Barrena, E.; De Fátima De Pina, M.; Manno, V.; Torre, M.; Walter, W.L.; et al. International Survey of Primary and Revision Total Knee Replacement. Int. Orthop. 2011, 35, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Ortega Andreu, M.; Barco Laakso, R.; Rodríguez Merchán, E.C. Artroplastia Total de Rodilla. Rev. Ortop. Traumatol. 2002, 46, 476–484. [Google Scholar] [CrossRef]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.M.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain Intensity on the First Day after Surgery: A Prospective Cohort Study Comparing 179 Surgical Procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Latijnhouwers, D.A.J.M.; Martini, C.H.; Nelissen, R.G.H.H.; Verdegaal, S.H.M.; Vliet Vlieland, T.P.M.; Gademan, M.G.J.; van der Linden, H.M.J.; Kaptein, B.L.; Damen, P.J.; Kaptijn, H.H.; et al. Acute Pain after Total Hip and Knee Arthroplasty Does Not Affect Chronic Pain during the First Postoperative Year: Observational Cohort Study of 389 Patients. Rheumatol. Int. 2022, 42, 689–698. [Google Scholar] [CrossRef]
- Esteve Pérez, N.; Sansaloni Perelló, C.; Verd Rodriguez, M.; Ribera Leclerc, H.; Mora Fernandez, C. Nuevos Enfoques En El Tratamiento Del Dolor Agudo Postoperatorio. Rev. Soc. Española Dolor 2017, 24, 132–139. [Google Scholar] [CrossRef]
- González De Mejía, N. Analgesia Multimodal Postoperatoria. Rev. Soc. Esp. Dolor 2005, 12, 112–118. [Google Scholar]
- Aguilar, J.L.; Montes, A.; Benito, C.; Caba, F.; Margarit, C. Manejo Farmacológico Del Dolor Agudo Postoperatorio En España. Datos de La Encuesta Nacional de La Sociedad Española Del Dolor (SED). Rev. Soc. Esp. Dolor 2018, 25, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Lier, E.J.; de Vries, M.; Steggink, E.M.; ten Broek, R.P.G.; van Goor, H. Effect Modifiers of Virtual Reality in Pain Management: A Systematic Review and Meta-Regression Analysis. Pain 2023, 164, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2019. [Google Scholar]
- Cochrane Reviews. RoB 2: A Revised Cochrane Risk-of-Bias Tool for Randomized Trials; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Słupik, A.; Białoszewski, D. A Comparative Analysis of the Clinical Utility of the Staffelstein-Score and the Hospital for Special Surgery Knee Score (HSS) in Monitoring Physiotherapy of Total Knee. Ortop. Traumatol. Rehabil. 2009, 11, 37–45. [Google Scholar] [PubMed]
- Guyatt, G.H.; Thorlund, K.; Oxman, A.D.; Walter, S.D.; Patrick, D.; Furukawa, T.A.; Johnston, B.C.; Karanicolas, P.; Akl, E.A.; Vist, G.; et al. GRADE Guidelines: 13. Preparing Summary of Findings Tables and Evidence Profiles—Continuous Outcomes. J. Clin. Epidemiol. 2013, 66, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. (Eds.) GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations; Updated October 2013; The GRADE Working Group: Hamilton, Canada, 2013. [Google Scholar]
- Li, L. Effect of Remote Control Augmented Reality Multimedia Technology for Postoperative Rehabilitation of Knee Joint Injury. Comput. Math. Methods Med. 2022, 2022, 9320063. [Google Scholar] [CrossRef] [PubMed]
- Gianola, S.; Stucovitz, E.; Castellini, G.; Mascali, M.; Vanni, F.; Tramacere, I.; Banfi, G.; Tornese, D. Effects of Early Virtual Reality-Based Rehabilitation in Patients with Total Knee Arthroplasty: A Randomized Controlled Trial. Medicine 2020, 99, e19136. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.S.; Nimma, S.R.; Spaulding, A.C.; Wilke, B.K.; Torp, K.D.; Ledford, C.K. Perioperative Outcomes of Immersive Virtual Reality as Adjunct Anesthesia in Primary Total Hip and Knee Arthroplasty. Arthroplast. Today 2022, 18, 84–88. [Google Scholar] [CrossRef]
- Fuchs, L.; Kluska, A.; Novak, D.; Kosashvili, Y. The Influence of Early Virtual Reality Intervention on Pain, Anxiety, and Function Following Primary Total Knee Arthroplasty. Complement. Ther. Clin. Pract. 2022, 49, 101687. [Google Scholar] [CrossRef]
- Chi, J.; Yongjian, F.; Yongjian, N.; Zhonglin, S. Virtual reality intervention in postoperative rehabilitation after total knee arthroplasty: A prospective and randomized controlled clinical trial. Int. J. Clin. Exp. Med. 2018, 11, 6119–6124. [Google Scholar]
- López Alonso, S.R.; Martínez Sánchez, C.M.; Romero Cañadillas, A.B.; Navarro Casado, F.; González Rojo, J. Propiedades Métricas Del Cuestionario WOMAC y de Una Versión Reducida Para Medir La Sintomatología y La Discapacidad Física. Aten. Primaria 2009, 41, 613–620. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, J.; Han, R.; Peng, C.; Huang, A. Using Virtual Reality Exposure Therapy in Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Value Health 2022, 25, 288–301. [Google Scholar] [CrossRef]
- Patterson, D.R.; Hoffman, H.G.; Palacios, A.G.; Jensen, M.J. Analgesic Effects of Posthypnotic Suggestions and Virtual Reality Distraction on Thermal Pain. J. Abnorm. Psychol. 2006, 115, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; He, Y.; Chen, L.; Zhu, B.; Cai, Q.; Chen, K.; Liu, G. Virtual Reality Distraction Decreases Pain during Daily Dressing Changes Following Haemorrhoid Surgery. J. Int. Med. Res. 2019, 47, 4380–4388. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Hua, H.; Zhu, H.; Zhu, S.; Lu, J.; Zhao, K.; Xu, Q. Effects of Virtual Reality on Relieving Postoperative Pain in Surgical Patients: A Systematic Review and Meta-Analysis. Int. J. Surg. 2020, 82, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; He, J.; Wang, R.; Chen, Z.; Zhou, F. The Effectiveness of Virtual Reality, Augmented Reality, and Mixed Reality Rehabilitation in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J. Arthroplast. 2023, In press. [Google Scholar] [CrossRef]
- Agüero-Millan, B.; Abajas-Bustillo, R.; Ortego-Maté, C. Efficacy of Nonpharmacologic Interventions in Preoperative Anxiety: A Systematic Review of Systematic Reviews. J. Clin. Nurs. 2023, 32, 6229–6242. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Montaño, Z.; Chen, V.J.; Gold, J.I. Virtual Reality and Pain Management: Current Trends and Future Directions. Pain Manag. 2011, 1, 147–157. [Google Scholar] [CrossRef]
- Sweta, V.R.; Abhinav, R.P.; Ramesh, A. Role of Virtual Reality in Pain Perception of Patients Following the Administration of Local Anesthesia. Ann. Maxillofac. Surg. 2019, 9, 110–113. [Google Scholar] [CrossRef]
- Goudman, L.; Jansen, J.; Billot, M.; Vets, N.; De Smedt, A.; Roulaud, M.; Rigoard, P.; Moens, M. Virtual Reality Applications in Chronic Pain Management: Systematic Review and Meta-Analysis. JMIR Serious Games 2022, 10, e34402. [Google Scholar] [CrossRef]
- Eijlers, R.; Utens, E.M.W.J.; Staals, L.M.; de Nijs, P.F.A.; Berghmans, J.M.; Wijnen, R.M.H.; Hillegers, M.H.J.; Dierckx, B.; Legerstee, J.S. Systematic Review and Meta-Analysis of Virtual Reality in Pediatrics: Effects on Pain and Anxiety. Anesth. Analg. 2019, 129, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Czech, O.; Wrzeciono, A.; Rutkowska, A.; Guzik, A.; Kiper, P.; Rutkowski, S. Virtual Reality Interventions for Needle-Related Procedural Pain, Fear and Anxiety—A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3248. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zeng, Y.; Wu, Y.; Si, H.; Shen, B. Virtual Reality-Based Rehabilitation in Patients Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Chin. Med. J. Engl. 2022, 135, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Mutsuzaki, H.; Takeuchi, R.; Mataki, Y.; Wadano, Y. Target Range of Motion for Rehabilitation after Total Knee Arthroplasty. J. Rural. Med. 2017, 12, 33–37. [Google Scholar] [CrossRef]
- Koo, K.; Park, D.K.; Youm, Y.S.; Cho, S.D.; Hwang, C.H. Enhanced Reality Showing Long-Lasting Analgesia after Total Knee Arthroplasty: Prospective, Randomized Clinical Trial. Sci. Rep. 2018, 8, 2343. [Google Scholar] [CrossRef]
- García-Sánchez, M.; García-Robles, P.; Osuna-Pérez, M.C.; Lomas-Vega, R.; Obrero-Gaitán, E.; Cortés-Pérez, I. Effectiveness of Virtual Reality-Based Early Postoperative Rehabilitation after Total Knee Arthroplasty: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Appl. Sci. 2023, 13, 4597. [Google Scholar] [CrossRef]
- Son, H.; Ross, A.; Mendoza-Tirado, E.; Lee, L.J. Virtual Reality in Clinical Practice and Research: Viewpoint on Novel Applications for Nursing. JMIR Nurs. 2022, 5, e34036. [Google Scholar] [CrossRef]
- Kodvavi, M.S.; Asghar, M.A.; Ghaffar, R.A.; Nadeem, I.; Bhimani, S.; Kumari, V.; Rabbani, A.; Iqbal, M.; Naeem, R.; Nasir, A.M.; et al. Effectiveness of Virtual Reality in Managing Pain and Anxiety in Adults during Periprocedural Period: A Systematic Review and Meta-Analysis. Langenbecks Arch. Surg. 2023, 408, 301. [Google Scholar] [CrossRef]
- Berton, A.; Longo, U.G.; Candela, V.; Fioravanti, S.; Giannone, L.; Arcangeli, V.; Alciati, V.; Berton, C.; Facchinetti, G.; Marchetti, A.; et al. Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients’ Rehabilitation. J. Clin. Med. 2020, 9, 2567. [Google Scholar] [CrossRef]
- Nusser, M.; Kramer, M.; Knapp, S.; Krischak, G. Effects of Virtual Reality-Based Neck-Specific Sensorimotortraining in Patients with Chronic Neck Pain: A Randomized Controlled Pilot Trial. J. Rehabil. Med. 2021, 53, jrm00151. [Google Scholar] [CrossRef]
- Merlot, B.; Elie, V.; Périgord, A.; Husson, Z.; Jubert, A.; Chanavaz-Lacheray, I.; Dennis, T.; Cotty-Eslous, M.; Roman, H. Pain Reduction with an Immersive Digital Therapeutic in Women Living with Endometriosis-Related Pelvic Pain: At-Home Self-Administered Randomized Controlled Trial. J. Med. Internet Res. 2023, 25, e47869. [Google Scholar] [CrossRef]
- Chamberland, C.; Bransi, M.; Boivin, A.; Jacques, S.; Gagnon, J.; Tremblay, S. The Effect of Augmented Reality on Preoperative Anxiety in Children and Adolescents: A Randomized Controlled Trial. Pediatr. Anesth. 2024, 34, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Roesmann, K.; Leehr, E.J.; Böhnlein, J.; Gathmann, B.; Herrmann, M.J.; Junghöfer, M.; Schwarzmeier, H.; Seeger, F.; Siminski, N.; Straube, T.; et al. Mechanisms of Action Underlying Virtual Reality Exposure Treatment in Spider Phobia: Pivotal Role of Within-Session Fear Reduction. SSRN Electron. J. 2022, 100, 102790. [Google Scholar] [CrossRef]
- Smilovich, A.A.; Nelyubova, E.S.; Kolsanov, A.V.; Burygina, L.A. Comprehensive Treatment of Adynamic Depression with the Combined Use of Traditional Psychopharmacotherapy, Transcranial Magnetic Stimulation and Virtual Reality Technologies. Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova 2023, 123, 75. [Google Scholar] [CrossRef] [PubMed]
- Blasco, J.; Igual-Camacho, C.; Blasco, M.; Antón-Antón, V.; Ortiz-Llueca, l.; Roig-Casasús, S. The Efficacy of Virtual Reality Tools for Total Knee Replacement Rehabilitation: A Systematic Review. Physiother. Theory Pract. 2021, 37, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Delshad, S.D.; Almario, C.V.; Fuller, G.; Luong, D.; Spiegel, B.M.R. Economic Analysis of Implementing Virtual Reality Therapy for Pain among Hospitalized Patients. NPJ Digit. Med. 2018, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Fatoye, F.; Gebrye, T.; Mbada, C.E.; Fatoye, C.T.; Makinde, M.O.; Ayomide, S.; Ige, B. Cost Effectiveness of Virtual Reality Game Compared to Clinic Based McKenzie Extension Therapy for Chronic Non-Specific Low Back Pain. Br. J. Pain 2022, 16, 601–609. [Google Scholar] [CrossRef]
- Pandrangi, V.C.; Shah, S.N.; Bruening, J.D.; Wax, M.K.; Clayburgh, D.; Andersen, P.E.; Li, R.J. Effect of Virtual Reality on Pain Management and Opioid Use among Hospitalized Patients after Head and Neck Surgery: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 724–730. [Google Scholar] [CrossRef]
Author, Year, Country | Study Design | Patients Characteristics | Diagnosis | Intervention | Study Period | Outcome Measure | Follow-Up | ||
---|---|---|---|---|---|---|---|---|---|
Participants (IG/CG); (Female) [Male] | Age (Years) (IG/CG) | IG | CG | ||||||
1 Lingfeng Li, 2022, China Ref. [19] | RCT | 40 IG: 20; (12) [8] CG: 20; (10) [10] | IG: 33.6 ± 8.11 CG: 31.8 ± 7.36 | Knee joint injury | IG: AR—based rhb training technology (real scene training data acquisition, virtual scene construction, and virtual and real fusion) | CG: Traditional rehabilitation (active and passive exercises) | During rehabilitation | VAS | 6 weeks and 3 months after the surgery (HSS) 3 days, 7 days and 14 days postintervention (VAS) |
2 Gianola et al., 2020, Italy Ref. [20] | RCTsimple blind | 85 IG: 44 CG: 41 (48) [37] | 68.6 ± 8.8 | TKA | IG: VR rhb + passive knee motion on a Kinetec knee continuous passive motion system and functional exercises (stairs and level walking) | CG: Traditional rehabilitation (similar exercises for goals without the VR support system) + passive knee motion on a Kinetec knee continuous passive motion system and functional exercises (stair negotiation and level walking) | Daily for 60 min on at least 5 days | VAS, WOMAC, (EQ-5D), GPE score, frequency of medication intake | At baseline (3–4 days after TKA); at discharge (around 10 days after surgery) |
3 S. Barry et al., 2022, EE.UU Ref. [21] | CT | 18 THA IG: 8 CG: 16 TKA IG: 7 CG: 20 (67%) | CG: 74 | THA and TKA | IG: Spinal anesthesia+ IVR (PICO G2 4K Enterprise goggles and Bose Quiet comfort QC 35 noise-canceling headsets, choice of the 4 different visual content environments created by HypnoVR and voice-guided relaxation technique sounds) | CG: spinal anesthesia | During the intervention | Intraoperative Quantity of sedation (preoperative and intraoperative); maximum heart rate; maximum systolic blood pressure; anesthesia time; OMEs Immediate postoperative outcomes PACU sedative/narcotic usage; vital signs; Numerical Pain Rating Scale; recovery duration | Preoperative, intraoperative, immediate postoperative and acute postoperative outcomes |
4 Fuchs et al., 2022, Israel Ref. [22] | RCT | 55 IG: 30 (19) [11] CG: 25 (13) [12] | Average age 70 years in the control and experimental group | Primary TKA | IG: Conventional physiotherapy + CPM equipment + Samsung Gear VR | CG: Conventional physiotherapy + CPM equipment | IG: CPM 15 min and Samsung Gear VR 15 min CG: CPM 15 min | VAS WOMAC | Before surgery, day 1 and day 2 post-operatively (VAS) Before surgery and six-months postoperatively (WOMAC) |
5 Chi Jin et al., 2018, China Ref. [23] | RCT | 66 IG: 33 (18) [15] CG: 33 (17) [16] | IG: 66.45 ± 3.49 CG: 66.30 ± 4.41 | Osteoarthritis patients undergoing total knee arthroplasty | IG: VR rehabilitation (foot dorsiflexion and plantar flexion, exercises targeting quadriceps muscle strength and passive exercises on knee flexion with VR(Mide Technology Inc.) | CG: conventional rehabilitation(foot dorsiflexion and plantar flexion, exercises targeting quadriceps muscle strength and passive exercises on knee flexion) | Dorsiflexion and flexion: first day after TKA Quadriceps strength: from the second day after TKA IG: knee flexion with VR 30 min 3 times a day CG: knee flexion 3 daily sets of 30 repetitions | VAS WOMAC | 1, 2, 3, 5 AND 7 days after TKA (VAS) Before TKA and 1, 3, 6 months after TKA (WOMAC) |
Author, Year | Hardware | Content (Scenario) | Interaction | Supervision Yes/No |
---|---|---|---|---|
Lingfeng Li, 2022 Ref. [19] | AR (unspecified) | Fusion scene of virtual and reality to guide the training. Initial stage: virtual knee joint in the exercise therapy Middle and late stage: aircraft roaming scene games | Training movements | Yes |
Gianola et al., 2020 Ref. [20] | VR goggles | Games during rehabilitation | Training movements | Yes |
S. Barry et al., 2022 Ref. [21] | PICO G2 4K Enterprise goggles, Bose Quiet Comfort QC 35 noise canceling headsets, choice of 4 different visual content environments created by HypnoVR and voice-guided relaxation techniques/sounds | Distract patients from their intraoperative environment by voice—guided relaxation techniques/sounds | No | Yes |
Fuchs et al., 2022 Ref. [22] | Head mounted display that allows projection of a three-dimensional image (Samsung Gear VR) | The VR intervention included a movie that was chosen by the patient from several options, either a nature film or a music film. Patients underwent CPM physiotherapy for 15 min (one session per day) with VR headset. | Rehabilitation movements | Yes |
Chi Jin et al., 2018 Ref. [23] | Virtual reality glasses | Patients were asked to row a boat using knee flexion (interaction of VR) in an immersive virtual environment for 30-min periods, three times a day | Rehabilitation movements | Yes |
Certainty Assessment | No. of Patients | Effect | Certainty | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | Virtual Reality | Control | Relative (95% CI) | Absolute (95% CI) | ||
VAS pain (Scale from: 0 to 10 cm, decreasing values indicate improvement) (follow-up: range 2 days to 10 days) | ||||||||||||
4 | randomized trials | serious a | serious b | not serious | not serious | publication bias strongly suspected c | 118 | 122 | - | MD 0.82 cm lower (1.3 lower to 0.35 lower) | ⨁◯◯◯ Very low | CRITICAL |
WOMAC (Scale from: 0 to 100 points, decreasing values indicate improvement) (follow-up: 6 months) | ||||||||||||
2 | randomized trials | serious a | not serious d | not serious | not serious | publication bias strongly suspected c | 63 | 58 | - | MD 4.6 points lower (6.5 lower to 2.6 lower) | ⨁⨁◯◯ Low | IMPORTANT |
Hospital for Special Surgery Knee-Rating Scale (Scale from: 0 to 100 points, decreasing values indicate improvement) (follow-up: 3 months) | ||||||||||||
2 | randomized trials | serious a | very serious e | not serious | not serious | publication bias strongly suspected c | 53 | 53 | - | MD 6.5 points higher (0.04 higher to 13 higher) | ⨁◯◯◯ Very low | IMPORTANT |
Range of Motion (Grades, increasing values indicate improvement) (follow-up: 7 days) | ||||||||||||
2 | randomized trials | serious a | very serious f | not serious | not serious | publication bias strongly suspected c | 68 | 72 | - | MD 3.4 grades higher (6 lower to 12.8 higher) | ⨁◯◯◯ Very low | IMPORTANT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban-Sopeña, J.; Beltran-Alacreu, H.; Terradas-Monllor, M.; Avendaño-Coy, J.; García-Magro, N. Effectiveness of Virtual Reality on Postoperative Pain, Disability and Range of Movement after Knee Replacement: A Systematic Review and Meta-Analysis. Life 2024, 14, 289. https://doi.org/10.3390/life14030289
Esteban-Sopeña J, Beltran-Alacreu H, Terradas-Monllor M, Avendaño-Coy J, García-Magro N. Effectiveness of Virtual Reality on Postoperative Pain, Disability and Range of Movement after Knee Replacement: A Systematic Review and Meta-Analysis. Life. 2024; 14(3):289. https://doi.org/10.3390/life14030289
Chicago/Turabian StyleEsteban-Sopeña, Jara, Hector Beltran-Alacreu, Marc Terradas-Monllor, Juan Avendaño-Coy, and Nuria García-Magro. 2024. "Effectiveness of Virtual Reality on Postoperative Pain, Disability and Range of Movement after Knee Replacement: A Systematic Review and Meta-Analysis" Life 14, no. 3: 289. https://doi.org/10.3390/life14030289
APA StyleEsteban-Sopeña, J., Beltran-Alacreu, H., Terradas-Monllor, M., Avendaño-Coy, J., & García-Magro, N. (2024). Effectiveness of Virtual Reality on Postoperative Pain, Disability and Range of Movement after Knee Replacement: A Systematic Review and Meta-Analysis. Life, 14(3), 289. https://doi.org/10.3390/life14030289