Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Variables of Interest
2.3. Statistical Analysis
3. Results
3.1. Preoperative Characteristics of Patients
3.2. Intraoperative Characteristics
3.3. Postoperative Outcomes
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Sondergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Cormican, D.; Jayaraman, A.; Villablanca, P.; Ramakrishna, H. TAVR Procedural Volumes and Patient Outcomes: Analysis of Recent Data. J. Cardiothorac. Vasc. Anesth. 2020, 34, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Thyregod, H.G.; Steinbruchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrom, T.; Clemmensen, P.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Valve Stenosis: 1-Year Results from the All-Comers NOTION Randomized Clinical Trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
- Pineda, A.M.; Harrison, J.K.; Kleiman, N.S.; Rihal, C.S.; Kodali, S.K.; Kirtane, A.J.; Leon, M.B.; Sherwood, M.W.; Manandhar, P.; Vemulapalli, S.; et al. Incidence and Outcomes of Surgical Bailout during TAVR: Insights from the STS/ACC TVT Registry. JACC Cardiovasc. Interv. 2019, 12, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Gerfer, S.; Kuhn, E.W.; Gablac, H.; Ivanov, B.; Djordjevic, I.; Mauri, V.; Adam, M.; Mader, N.; Baldus, S.; Eghbalzadeh, K.; et al. Outcomes and Characteristics of Patients with Intraprocedural Cardiopulmonary Resuscitation during TAVR. Thorac. Cardiovasc. Surg. 2023, 71, 101–106. [Google Scholar] [CrossRef]
- Huang, H.; Kovach, C.P.; Bell, S.; Reisman, M.; Aldea, G.; McCabe, J.M.; Dvir, D.; Don, C. Outcomes of Emergency Transcatheter Aortic Valve Replacement. J. Interv. Cardiol. 2019, 2019, 7598581. [Google Scholar] [CrossRef]
- Seese, L.; Sultan, I.; Gleason, T.; Wang, Y.; Thoma, F.; Navid, F.; Kilic, A. Outcomes of Conventional Cardiac Surgery in Patients with Severely Reduced Ejection Fraction in the Modern Era. Ann. Thorac. Surg. 2020, 109, 1409–1418. [Google Scholar] [CrossRef]
- Kodra, A.; Cinelli, M.; Alexander, R.; Hamfreth, R.; Wang, D.; Thampi, S.; Basman, C.; Kliger, C.; Scheinerman, J.; Pirelli, L. Comparison of Periprocedural and Intermediate-Term Outcomes of TAVI in Patients with Ejection Fraction </= 20% vs. Patients with 20% < EF </= 40. J. Clin. Med. 2023, 12, 2390. [Google Scholar] [CrossRef] [PubMed]
- Kachrimanidis, I.; Apostolos, A.; Synetos, A.; Pitsis, A.; Perreas, K.; Dedeilias, P.; Kollias, V.; Zacharoulis, A.; Kanakakis, I.; Voudris, V.; et al. TCT-489 Importance of Onsite Urgent Cardiac Surgery Access in TAVI Procedures. J. Am. Coll. Cardiol. 2023, 82, B197. [Google Scholar] [CrossRef]
- Eggebrecht, H.; Schmermund, A.; Kahlert, P.; Erbel, R.; Voigtlander, T.; Mehta, R.H. Emergent cardiac surgery during transcatheter aortic valve implantation (TAVI): A weighted meta-analysis of 9251 patients from 46 studies. EuroIntervention 2013, 8, 1072–1080. [Google Scholar] [CrossRef]
- Sohal, S.; Mehta, H.; Kurpad, K.; Mathai, S.V.; Tayal, R.; Visveswaran, G.K.; Wasty, N.; Waxman, S.; Cohen, M. Declining Trend of Transapical Access for Transcatheter Aortic Valve Replacement in Patients with Aortic Stenosis. J. Interv. Cardiol. 2022, 2022, 5688026. [Google Scholar] [CrossRef] [PubMed]
- Koifman, E.; Magalhaes, M.; Kiramijyan, S.; Escarcega, R.O.; Didier, R.; Torguson, R.; Ben-Dor, I.; Corso, P.; Shults, C.; Satler, L.; et al. Impact of transfemoral versus transapical access on mortality among patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Cardiovasc. Revasc. Med. 2016, 17, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, A.; Sudo, M.; Al-Kassou, B.; Shamekhi, J.; Silaschi, M.; Wilde, N.; Sedaghat, A.; Becher, U.M.; Weber, M.; Sinning, J.M.; et al. Percutaneous trans-axilla transcatheter aortic valve replacement. Heart Vessel. 2022, 37, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Saadat, S.; Soin, A.; Kawabori, M.; Chen, F.Y. A meta-analysis comparing transaxillary and transfemoral transcatheter aortic valve replacement. J. Thorac. Dis. 2019, 11, 5140–5151. [Google Scholar] [CrossRef]
- Madigan, M.; Atoui, R. Non-transfemoral access sites for transcatheter aortic valve replacement. J. Thorac. Dis. 2018, 10, 4505–4515. [Google Scholar] [CrossRef]
- Merdler, I.; Loewenstein, I.; Hochstadt, A.; Morgan, S.; Schwarzbard, S.; Sadeh, B.; Peri, Y.; Shacham, Y.; Finkelstein, A.; Steinvil, A. Effectiveness and Safety of Transcatheter Aortic Valve Implantation in Patients with Aortic Stenosis and Variable Ejection Fractions (<40%, 40%–49%, and >50%). Am. J. Cardiol. 2020, 125, 583–588. [Google Scholar] [CrossRef]
- Oikonomou, G.; Apostolos, A.; Drakopoulou, M.; Simopoulou, C.; Karmpalioti, M.; Toskas, P.; Stathogiannis, K.; Xanthopoulou, M.; Ktenopoulos, N.; Latsios, G.; et al. Long-Term Outcomes of Aortic Stenosis Patients with Different Flow/Gradient Patterns Undergoing Transcatheter Aortic Valve Implantation. J. Clin. Med. 2024, 13, 1200. [Google Scholar] [CrossRef]
- Zheng, H.J.; Yan, C.J.; Lin, D.Q.; Cheng, Y.B.; Yu, S.J.; Li, J.; Zhang, X.P.; Cheng, W. Prognostic impact of new permanent pacemaker implantation following transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2023, 102, 743–750. [Google Scholar] [CrossRef]
- Gaudino, M.; Hameed, I.; Khan, F.M.; Tam, D.Y.; Rahouma, M.; Yongle, R.; Naik, A.; Di Franco, A.; Demetres, M.; Petrie, M.C.; et al. Treatment strategies in ischaemic left ventricular dysfunction: A network meta-analysis. Eur. J. Cardiothorac. Surg. 2020, 59, 293–301. [Google Scholar] [CrossRef]
- Benke, K.; Korca, E.; Boltjes, A.; Stengl, R.; Hofmann, B.; Matin, M.; Krohe, K.; Yakobus, Y.; Michaelsen, J.; Khizaneishvili, L.; et al. Preventive Impella((R)) Support in High-Risk Patients Undergoing Cardiac Surgery. J. Clin. Med. 2022, 11, 5404. [Google Scholar] [CrossRef]
Preoperative Characteristics | EF ≤ 40% (n = 148) | EF > 40% (n = 571) | p-Value |
---|---|---|---|
Age, years | 80 ± 6.2 | 82 ± 6.1 | 0.007 |
Female, n (%) | 60 (41) | 296 (52) | 0.014 |
Coronary artery disease, n (%) | 102 (70) | 314 (55) | 0.002 |
Prior myocardial infarction, n (%) | 39 (26) | 67 (12) | <0.001 |
Peripheral artery disease, n (%) | 39 (26) | 82 (14) | <0.001 |
Arterial hypertension, n (%) | 141 (95) | 536 (94) | 0.518 |
Pulmonary hypertension, n (%) | 101 (68) | 347 (61) | 0.095 |
Chronic obstructive pulmonary disease, n (%) | 48 (32) | 153 (27) | 0.173 |
Diabetes mellitus, n (%) | 59 (40) | 178 (31) | 0.045 |
Hyperlipidemia, n (%) | 96 (65) | 379 (66) | 0.730 |
Atrial fibrillation, n (%) | 83 (56) | 251 (44) | 0.008 |
Prior heart surgery, n (%) | 46 (31) | 107 (19) | 0.002 |
Prior pacemaker, n (%) | 35 (24) | 67 (12) | <0.001 |
Prior stroke, n (%) | 20 (14) | 85 (15) | 0.673 |
Left-ventricular ejection fraction, % | 33 ± 7.7 | 59 ± 7.8 | <0.001 |
Aortic annulus diameter, mm | 25 ± 2.5 | 24 ± 2.5 | <0.001 |
Aortic valve diameter, mm | 26 ± 2.3 | 25 ± 2.1 | <0.001 |
Mean pressure gradient, mmHg | 37 ± 15 | 46 ± 17 | <0.001 |
Peak pressure gradient, mmHg | 62 ± 23 | 74 ± 25 | <0.001 |
Systolic blood pressure, mmHg | 118 ± 13 | 120 ± 16 | 0.064 |
Diastolic blood pressure, mmHg | 56 ± 8.3 | 57 ± 8.9 | 0.639 |
Intraoperative Characteristics | EF ≤ 40% (n = 148) | EF > 40% (n = 571) | p-Value |
---|---|---|---|
Femoral access, n (%) | 116 (78) | 511 (89) | <0.001 |
Transapical access, n (%) | 22 (15) | 54 (9.5) | 0.057 |
Transaortic access, n (%) | 6 (4.1) | 10 (18) | <0.001 |
Mechanical ventilation, n (%) | 52 (35) | 108 (19) | <0.001 |
Operation time, minutes | 93 ± 39 | 88 ± 33 | 0.257 |
Valve-in-valve implantation, n (%) | 6 (4.1) | 23 (4.0) | 1.000 |
Rapid pacing, n (%) | 128 (86) | 544 (95) | <0.001 |
Valvuloplasty, n (%) | 61 (41) | 321 (56) | <0.001 |
Balloon dilation, n (%) | 107 (72) | 438 (77) | 0.264 |
Cardiopulmonary resuscitation, n (%) | 25 (17) | 33 (5.8) | <0.001 |
Before rapid pacing, n (%) | 1 (0.7) | 7 (1.2) | 1.000 |
After rapid pacing, n (%) | 4 (2.7) | 4 (0.7) | 0.061 |
Before balloon dilation, n (%) | 5 (3.4) | 5 (0.8) | 0.055 |
After balloon dilation, n (%) | 1 (0.7) | 1 (0.2) | 0.370 |
Before valve deployment, n (%) | 2 (1.4) | 2 (0.4) | 0.189 |
After valve deployment, n (%) | 4 (2.7) | 6 (1.1) | 0.130 |
Defibrillation, n (%) | 19 (13) | 31 (5.4) | 0.002 |
Heart–lung circulatory support, n (%) | 9 (6.1) | 14 (2.5) | 0.035 |
Emergency Heart–lung circulatory support, n (%) | 1 (0.7) | 0 (0.0) | 0.206 |
Conversion to open heart surgery, n (%) | 3 (2.0) | 11 (1.9) | 1.000 |
Pericardial tamponade, n (%) | 2 (1.4) | 14 (2.5) | 0.546 |
Valve malpositioning, n (%) | 6 (4.1) | 26 (4.6) | 1.000 |
Coronary artery obstruction, n (%) | 0 (0.0) | 2 (0.4) | 1.000 |
Ventricular septal perforation, n (%) | 1 (0.7) | 4 (0.7) | 1.000 |
Postoperative Characteristics | EF ≤ 40% (n = 148) | EF > 40% (n = 571) | p-Value |
---|---|---|---|
In-hospital mortality, n (%) | 9 (6.1) | 17 (3.0) | 0.071 |
Cardiopulmonary | 1 (0.7) | 1 (0.2) | 0.370 |
Major bleeding | 3 (2.0) | 2 (0.4) | 0.062 |
Cerebrovascular | 0 (0.0) | 2 (0.4) | 1.000 |
Sepsis, n (%) | 6 (4.1) | 14 (2.5) | 0.272 |
Stroke, n (%) | 5 (3.4) | 10 (1.8) | 0.208 |
Transient ischemic attack, n (%) | 1 (0.7) | 5 (0.9) | 1.000 |
New onset of atrial fibrillation, n (%) | 7 (4.7) | 29 (5.1) | 1.000 |
New atrioventricular block I°, n (%) | 6 (4.1) | 41 (7.2) | 0.195 |
New atrioventricular block II°, n (%) | 6 (4.1) | 6 (1.1) | 0.021 |
New atrioventricular block III°, n (%) | 13 (8.8) | 70 (12) | 0.238 |
New pacemaker implantation, n (%) | 17 (11) | 67 (12) | 0.933 |
In-hospital stay, days | 10 ± 7.7 | 8.9 ± 5.4 | 0.402 |
Intensive care unit stay, days | 4.4 ± 6.5 | 3.3 ± 3.5 | 0.298 |
Second intensive care unit stay, n (%) | 13 (8.8) | 39 (6.8) | 0.414 |
Red blood cell transfusion, units | 1.3 ± 2.8 | 0.8 ± 2.4 | 0.009 |
Paravalvular leakage, higher grade, n (%) | 6 (4.1) | 33 (5.8) | 0.618 |
Aortic valve endocarditis, n (%) | 3 (2.0) | 2 (0.4) | 0.062 |
Aortic valve thrombosis, n (%) | 1 (0.7) | 1 (0.2) | 0.370 |
Left-ventricular ejection fraction, % | 47 ± 12 | 60 ± 7.0 | <0.001 |
Mean pressure gradient, mmHg | 11 ± 5.1 | 12 ± 5.6 | 0.067 |
Peak pressure gradient, mmHg | 21 ± 9.3 | 23 ± 9.7 | 0.101 |
Coronary artery obstruction, n (%) | 0 (0.0) | 2 (0.4) | 1.000 |
Ventricular septal perforation, n (%) | 1 (0.7) | 4 (0.7) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerfer, S.; Großmann, C.; Gablac, H.; Elderia, A.; Wienemann, H.; Krasivskyi, I.; Mader, N.; Lee, S.; Mauri, V.; Djordjevic, I.; et al. Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation. Life 2024, 14, 424. https://doi.org/10.3390/life14040424
Gerfer S, Großmann C, Gablac H, Elderia A, Wienemann H, Krasivskyi I, Mader N, Lee S, Mauri V, Djordjevic I, et al. Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation. Life. 2024; 14(4):424. https://doi.org/10.3390/life14040424
Chicago/Turabian StyleGerfer, Stephen, Clara Großmann, Hannah Gablac, Ahmed Elderia, Hendrik Wienemann, Ihor Krasivskyi, Navid Mader, Samuel Lee, Victor Mauri, Ilija Djordjevic, and et al. 2024. "Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation" Life 14, no. 4: 424. https://doi.org/10.3390/life14040424
APA StyleGerfer, S., Großmann, C., Gablac, H., Elderia, A., Wienemann, H., Krasivskyi, I., Mader, N., Lee, S., Mauri, V., Djordjevic, I., Adam, M., Kuhn, E., Baldus, S., Eghbalzadeh, K., & Wahlers, T. (2024). Low Left-Ventricular Ejection Fraction as a Predictor of Intraprocedural Cardiopulmonary Resuscitation in Patients Undergoing Transcatheter Aortic Valve Implantation. Life, 14(4), 424. https://doi.org/10.3390/life14040424